JPH09184036A - Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production - Google Patents

Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production

Info

Publication number
JPH09184036A
JPH09184036A JP34231495A JP34231495A JPH09184036A JP H09184036 A JPH09184036 A JP H09184036A JP 34231495 A JP34231495 A JP 34231495A JP 34231495 A JP34231495 A JP 34231495A JP H09184036 A JPH09184036 A JP H09184036A
Authority
JP
Japan
Prior art keywords
thermal conductivity
diamond
alloy
high thermal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34231495A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Takashi Iwasa
孝 岩佐
Toshio Tokune
敏生 徳根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP34231495A priority Critical patent/JPH09184036A/en
Publication of JPH09184036A publication Critical patent/JPH09184036A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diamond reinforces Al alloy composite member excellent in heat radiation characteristic in the normal service temp. region of the member and having high thermal conductivity. SOLUTION: This diamond reinforced Al alloy composite member with high thermal conductivity comprises an Al matrix composed of Al and diamond grains dispersed in the matrix. The member is a plastic worked article. Thermal conductivity C varies so as to draw a conic section with the increase in temp. The maximum value (Cmax) of the thermal conductivity (C) lies in the normal service temp. region (Rt) of the member, represented by 373K<=Rt<=573K.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高熱伝導性ダイヤモ
ンド複合Al合金部材、特に、AlおよびAl合金の一
方よりなるマトリックスと、そのマトリックスに分散す
るダイヤモンド粒子とより構成された部材およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high thermal conductivity diamond composite Al alloy member, and more particularly to a member composed of a matrix composed of one of Al and Al alloy and diamond particles dispersed in the matrix, and a method for producing the same. .

【0002】[0002]

【従来の技術】Alは、金属材料の中ではAg、Cu、
Auに次いで高い熱伝導率Cを有するが、強度向上のた
め合金化すると熱伝導率Cが低下する。
2. Description of the Related Art Al is a metal material containing Ag, Cu,
It has the next highest thermal conductivity C after Au, but the thermal conductivity C decreases when alloyed to improve strength.

【0003】そこで、従来はAl合金マトリックスに、
それよりも高い熱伝導率Cを有するダイヤモンド粒子を
分散させて、熱伝導率Cの向上を図っている(特開平4
−259305号公報参照)。
Therefore, conventionally, in the Al alloy matrix,
Diamond particles having a higher thermal conductivity C than that are dispersed to improve the thermal conductivity C (Japanese Patent Application Laid-Open No. Hei 4 (1999) -498).
-259305).

【0004】[0004]

【発明が解決しようとする課題】Al合金、例えば60
61材の熱膨脹率は約23.6×10-6Kであり、また
ダイヤモンドのそれは約2×10-6/Kであって、両者
の間には比較的大きな熱膨脹率差が存在する。
Al alloy, for example, 60
The coefficient of thermal expansion of 61 material is about 23.6 × 10 −6 K, and that of diamond is about 2 × 10 −6 / K, and there is a relatively large coefficient of thermal expansion difference between them.

【0005】このような状況下において、従来は部材製
造に当り、ホットプレス法を採用しているので、その成
形温度が比較的高く、例えば873K前後に設定されて
いる。
Under these circumstances, since the hot pressing method has been conventionally used for manufacturing the member, the molding temperature is relatively high, for example, set to about 873K.

【0006】しかしながら前記のように成形温度を高く
設定すると、前記熱膨脹率差に起因して、部材の冷却中
にその部材に比較的大きな歪が発生し、このような歪
は、部材の熱伝導率向上を妨げる要因となるためその上
昇程度が低くなる。
However, when the molding temperature is set high as described above, a relatively large strain is generated in the member during cooling of the member due to the difference in the coefficient of thermal expansion, and such strain is caused by the heat conduction of the member. The rate of increase will be low because it will hinder the rate improvement.

【0007】またこの種部材の熱伝導率Cは温度の上昇
に伴い山形をなすように変化するが、従来の部材におけ
る熱伝導率Cの最高値Cmaxは、前記のような歪に起
因してAl合金の限界使用温度を超えた高温域に現われ
易い。
Further, the thermal conductivity C of this kind of member changes so as to form a mountain shape as the temperature rises, but the maximum value Cmax of the thermal conductivity C in the conventional member is caused by the strain as described above. It is likely to appear in a high temperature range exceeding the limit operating temperature of Al alloy.

【0008】その結果、前記部材を内燃機関用ピストン
等の耐熱性部材として使用した場合には、その常用温度
域における熱伝導率Cが低いことに起因して放熱性が悪
化し、過熱による耐久性劣化が著しい、という問題を生
じる。
As a result, when the above-mentioned member is used as a heat-resistant member such as a piston for an internal combustion engine, its heat dissipation property is deteriorated due to its low thermal conductivity C in the normal temperature range, and durability due to overheating is caused. There is a problem that the sexual deterioration is remarkable.

【0009】[0009]

【課題を解決するための手段】本発明は熱伝導率Cが高
く、また部材常用温度域において良好な放熱性を発揮す
ることが可能な前記部材を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a member having a high thermal conductivity C and capable of exhibiting good heat dissipation in a member normal temperature range.

【0010】前記目的を達成するため本発明によれば、
AlおよびAl合金の一方よりなるマトリックスと、そ
のマトリックスに分散するダイヤモンド粒子とより構成
された高熱伝導性ダイヤモンド複合Al合金部材におい
て、この部材は塑性加工品であって、熱伝導率Cが温度
の上昇に伴い山形をなすように変化し、且つその熱伝導
率Cの最高値Cmaxが部材常用温度域Rtである37
3K≦Rt≦573Kに存在する高熱伝導性ダイヤモン
ド複合Al合金部材が提供される。
According to the present invention to achieve the above object,
In a high thermal conductivity diamond composite Al alloy member composed of a matrix composed of one of Al and Al alloy and diamond particles dispersed in the matrix, this member is a plastically worked product, and the thermal conductivity C is the temperature. As the temperature rises, it changes into a mountain shape, and the maximum value Cmax of its thermal conductivity C is the member normal temperature range Rt 37.
Provided is a high thermal conductivity diamond composite Al alloy member present in 3K ≦ Rt ≦ 573K.

【0011】前記部材は塑性加工品であるから、その成
形温度は比較的低く、したがって部材冷却中に生じる歪
は小さくなる。これにより部材の熱伝導率Cを大いに向
上させることができる。
Since the member is a plastically processed product, its forming temperature is relatively low, and therefore the strain generated during cooling of the member is small. This can greatly improve the thermal conductivity C of the member.

【0012】また熱伝導率Cの最大値Cmaxを部材常
用温度域Rtに存在させたので、その温度域Rtにおけ
る放熱性を良好にして部材の過熱を回避し、その部材の
耐久性を高めることができる。
Further, since the maximum value Cmax of the thermal conductivity C is made to exist in the member normal temperature range Rt, it is possible to improve the heat dissipation in the temperature range Rt to avoid overheating of the member and enhance the durability of the member. You can

【0013】さらに前記最高値Cmaxが部材常用温度
域Rtに存在するということは、その温度域Rtの下限
温度373Kよりも低い領域では部材の熱伝導率Cが低
く、したがってその部材は加温され易いという特性を持
つ。
Further, the fact that the maximum value Cmax exists in the member normal temperature range Rt means that the thermal conductivity C of the member is low in a region lower than the lower limit temperature 373K of the temperature range Rt, and therefore the member is heated. It has the characteristic of being easy.

【0014】ただし、前記最高値Cmaxが部材常用温
度域Rtの下限温度373Kよりも低い領域に存在する
と、その部材を加温しにくくなり、一方、前記最高値C
maxが部材常用温度域Rtの上限温度573Kを超え
た領域に存在すると、部材の過熱を惹起する。
However, if the maximum value Cmax exists in a region lower than the lower limit temperature 373K of the member normal temperature range Rt, it becomes difficult to heat the member, while the maximum value Cmax is increased.
If max exists in a region exceeding the upper limit temperature 573K of the member normal temperature region Rt, overheating of the member is caused.

【0015】また本発明は前記部材を量産することが可
能な前記製造方法を提供することを目的とする。
Another object of the present invention is to provide the above-mentioned manufacturing method capable of mass-producing the member.

【0016】前記目的を達成するため本発明によれば、
AlおよびAl合金の一方よりなるマトリックスと、そ
のマトリックスに分散するダイヤモンド粒子とより構成
された高熱伝導性ダイヤモンド複合Al合金部材を製造
するに当り、Al粉末およびAl合金粉末の一方と、体
積分率Vfが25%≦Vf≦60%であるダイヤモンド
粉末とよりなる素材に、加工温度Tが573K≦T≦8
23Kの条件で塑性加工を施す高熱伝導性ダイヤモンド
複合Al合金部材の製造方法が提供される。
According to the present invention to achieve the above object,
In producing a highly heat-conductive diamond composite Al alloy member composed of a matrix composed of Al and one of Al alloys and diamond particles dispersed in the matrix, one of the Al powder and the Al alloy powder and the volume fraction are used. A processing temperature T of 573K ≦ T ≦ 8 is applied to a material made of diamond powder having Vf of 25% ≦ Vf ≦ 60%.
Provided is a method for manufacturing a high thermal conductivity diamond composite Al alloy member which is subjected to plastic working under the condition of 23K.

【0017】前記方法によれば、熱伝導率Cの最高値C
maxが、部材常用温度域Rtである373K≦Rt≦
573Kに存在する前記部材を量産することができる。
According to the above method, the maximum value C of the thermal conductivity C
max is a member normal temperature range Rt, 373K ≦ Rt ≦
The member existing at 573K can be mass-produced.

【0018】ただし、ダイヤモンド粉末の体積分率Vf
がVf<25%では部材の熱伝導率Cが前記のように山
形をなすように変化せず、一方、Vf>60%では部材
の強度が低下する。また加工温度TがT<573Kでは
塑性加工を行うことができず、一方、T>823Kで
は、前記のような大きな歪に起因して部材の熱伝導率C
の向上程度が低く、またその熱伝導率Cの最高値Cma
xが部材常用温度域Rtの上限温度573Kを超えた領
域に存在する。
However, the volume fraction Vf of diamond powder
When Vf <25%, the thermal conductivity C of the member does not change like the mountain shape as described above, while when Vf> 60%, the strength of the member decreases. Further, when the working temperature T is T <573K, plastic working cannot be performed, while when T> 823K, the thermal conductivity C of the member is caused by the large strain as described above.
Of the thermal conductivity C is the highest value Cma
x exists in a region exceeding the upper limit temperature 573K of the member normal temperature region Rt.

【0019】[0019]

【発明の実施の形態】図1において、高熱伝導性ダイヤ
モンド複合Al合金部材1は、塑性加工品としての押出
し材であり、AlおよびAl合金の一方、図示例ではA
lよりなるマトリックス2と、そのマトリックス2に分
散するダイヤモンド粒子3とより構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a high thermal conductivity diamond composite Al alloy member 1 is an extruded material as a plastic work product, and one of Al and Al alloys, in the illustrated example, A
The matrix 2 is composed of 1 and the diamond particles 3 dispersed in the matrix 2.

【0020】図2はダイヤモンド、Alおよび前記部材
1に関する温度と熱伝導率Cとの関係を示す。前記部材
1において、ダイヤモンド粉末の体積分率VfはVf=
50%に、また押出し温度(加工温度)TはT=673
Kにそれぞれ設定された。
FIG. 2 shows the relationship between the thermal conductivity C and the temperature of diamond, Al and the member 1. In the member 1, the volume fraction Vf of diamond powder is Vf =
50%, and the extrusion temperature (processing temperature) T is T = 673.
Each set to K.

【0021】ダイヤモンドの熱伝導率Cはその温度が上
昇するに従って低下し、またAlの熱伝導率Cはその温
度変化に関係なく、略一定である。
The thermal conductivity C of diamond decreases as its temperature rises, and the thermal conductivity C of Al is substantially constant regardless of its temperature change.

【0022】前記部材1の熱伝導率Cは、複合則に則っ
て、ダイヤモンドとAlの両熱伝導率Cの間に存在す
る。また熱伝導率Cの計算値は、部材1の温度が上昇す
るに従って低下するが、熱伝導率Cの実測値は次のよう
な変化をする。
The thermal conductivity C of the member 1 exists between both the thermal conductivity C of diamond and Al according to the composite rule. The calculated value of the thermal conductivity C decreases as the temperature of the member 1 rises, but the measured value of the thermal conductivity C changes as follows.

【0023】ダイヤモンドの熱膨脹率は約2×10-6
Kであり、一方、Alのそれは約25×10-6/Kであ
って、両者の間には比較的大きな熱膨脹率差が存在す
る。これに起因して、押出し加工後、部材1の冷却中に
その部材1に歪が発生し、この歪は部材1の熱伝導率向
上を妨げる要因となるので、熱伝導率Cの実測値は、部
材1の温度が室温(293K)から押出し温度K=67
3K未満の範囲にあるときには、その計算値よりも差Δ
Cだけ小さくなる。一方、部材1の温度が押出し温度T
=673Kに上昇した後は前記歪が消失するので、ΔC
=0となって実測値は計算値と等しくなる。
The coefficient of thermal expansion of diamond is about 2 × 10 -6 /
K, while that of Al is about 25 × 10 −6 / K, and there is a relatively large coefficient of thermal expansion difference between the two. Due to this, distortion occurs in the member 1 during cooling of the member 1 after extrusion, and this distortion becomes a factor that hinders the improvement of the thermal conductivity of the member 1. Therefore, the measured value of the thermal conductivity C is , The temperature of the member 1 is from room temperature (293K) to the extrusion temperature K = 67.
When it is in the range of less than 3K, the difference Δ is larger than the calculated value.
It becomes smaller by C. On the other hand, the temperature of the member 1 is the extrusion temperature T
= 673K, the distortion disappears, so ΔC
= 0, the measured value becomes equal to the calculated value.

【0024】また実測値は、温度473Kに熱伝導率C
の最高値Cmaxが現出するように温度の上昇に伴い山
形をなすように変化する。
The measured value is that the thermal conductivity C at a temperature of 473K.
As the maximum value Cmax of C.sub.max appears, the temperature changes to form a mountain shape.

【0025】部材1の歪量は、ダイヤモンド粉末の体積
分率Vfを一定としたとき押出し温度Tによって変化す
る。図3はVf=30%において、押出し温度TをT=
573Kに設定した場合とT=873Kに設定した場合
の熱伝導率Cを示す。押出し温度TをT=573Kに設
定すると、873Kに設定した場合よりも部材1の歪量
が少なくなり、その結果、熱伝導率Cが高く、しかもそ
の最高値Cmaxが低温側に位置する。
The amount of strain of the member 1 changes depending on the extrusion temperature T when the volume fraction Vf of the diamond powder is constant. In FIG. 3, when Vf = 30%, the extrusion temperature T is T =
The thermal conductivity C when set to 573K and when set to T = 873K is shown. When the extrusion temperature T is set to T = 573K, the amount of strain of the member 1 is smaller than that when it is set to 873K, and as a result, the thermal conductivity C is high and the maximum value Cmax is located on the low temperature side.

【0026】本発明は前記のようなダイヤモンド複合A
l合金部材1において、熱伝導率Cの最高値Cmaxが
部材常用温度域Rtである373K≦Rt≦573Kに
存在することを必須要件とする。これは前記部材1を内
燃機関用ピストン等の耐熱性部材に適用するためであ
る。
The present invention provides the diamond composite A as described above.
In the 1-alloy member 1, it is essential that the maximum value Cmax of the thermal conductivity C exists in the member normal temperature range Rt of 373K ≦ Rt ≦ 573K. This is because the member 1 is applied to a heat resistant member such as a piston for an internal combustion engine.

【0027】前記部材1の製造に当っては、Al粉末
と、体積分率Vfが25%≦Vf≦60%であるダイヤ
モンド粉末とよりなる素材に、押出し温度Tが573K
≦T≦823Kの条件で押出し加工を施すものである。
In the production of the member 1, an extrusion temperature T is 573K on a material composed of Al powder and diamond powder having a volume fraction Vf of 25% ≤Vf≤60%.
Extrusion processing is performed under the condition of ≦ T ≦ 823K.

【0028】前記部材1は押出し材であって、その押出
し温度Tは比較的低く、したがって部材1冷却中に生じ
る歪は小さくなる。これにより部材1の熱伝導率Cを大
いに向上させることができる。
The member 1 is an extruded material, and the extrusion temperature T thereof is relatively low, so that the strain generated during cooling of the member 1 is small. Thereby, the thermal conductivity C of the member 1 can be greatly improved.

【0029】また熱伝導率Cの最高値Cmaxを部材常
用温度域Rtに存在させたので、その温度域Rtにおけ
る放熱性を良好にして部材1の過熱を回避し、その部材
1の耐久性を高めることができる。
Further, since the maximum value Cmax of the thermal conductivity C is made to exist in the member normal temperature range Rt, the heat dissipation of the temperature range Rt is improved to avoid the overheating of the member 1 and the durability of the member 1 is improved. Can be increased.

【0030】さらに前記最高値Cmaxが部材常用温度
域Rtに存在するということは、その温度域Rtの下限
温度373Kよりも低い領域では部材1の熱伝導率が低
く、したがってその部材1は加温され易いという特性を
持つ。
Further, the fact that the maximum value Cmax exists in the member normal temperature range Rt means that the heat conductivity of the member 1 is low in a region lower than the lower limit temperature 373K of the temperature range Rt, and therefore the member 1 is heated. It has the characteristic that it is easy to be affected.

【0031】ダイヤモンド粒子3の平均粒径dは1μm
≦d≦60μmであることが望ましい。平均粒径dがd
>60μmでは部材1の強度が低下し、一方、d<1μ
mでは界面が多過ぎるため部材1の熱伝導率Cが低下す
る。
The average particle diameter d of the diamond particles 3 is 1 μm.
It is desirable that ≦ d ≦ 60 μm. Average particle size d is d
> 60 μm, the strength of member 1 decreases, while d <1 μ
With m, the thermal conductivity C of the member 1 decreases because there are too many interfaces.

【0032】以下、実施例について説明する。 (a) それぞれエアーアトマイズ法により製造された
純度99.9%のAl粉末と、6061材よりなるAl
合金粉末を用意した。これら粉末の平均粒径は25μm
である。また高圧合成法により製造された平均粒径dが
d=20μmであるダイヤモンド粉末を用意した。 (b) V型ブレンダによる24時間の混合工程によっ
て、Al合金粉末および体積分率Vfがそれぞれ10
%,20%,25%,30%,50%であるダイヤモン
ド粉末よりなる5種類の混合粉末と、Al合金粉末およ
び体積分率Vfが30%のダイヤモンド粉末よりなる混
合粉末とを調製した。 (c) 各混合粉末を用い、4000kgf/cm2 の条件
でCIP(冷間静水圧プレス)法を行うことにより、直
径35mm、長さ50mmのビレット(素材)を成形した。
各ビレットの相対密度は92〜98%であった。(d)
各ビレットを用い、押出し温度Tをそれぞれ、室温、
473K,573K,673K,823K,873Kに
設定し、また押出し比を9.8に設定して押出し加工を
行い、複数のダイヤモンド複合Al合金部材の例1〜9
を得た。なお、押出し温度Tを室温および473Kに設
定した場合は押出し加工を行うことができなかった。
Hereinafter, embodiments will be described. (A) Al powder of 99.9% purity manufactured by the air atomizing method and Al composed of 6061 material
Alloy powder was prepared. The average particle size of these powders is 25 μm
It is. Further, a diamond powder having an average particle diameter d of d = 20 μm manufactured by the high pressure synthesis method was prepared. (B) The Al alloy powder and the volume fraction Vf are each 10 by the mixing process for 24 hours using a V-type blender.
%, 20%, 25%, 30%, and 50% mixed powder of diamond powder, and a mixed powder of Al alloy powder and diamond powder having a volume fraction Vf of 30% were prepared. (C) A billet (material) having a diameter of 35 mm and a length of 50 mm was formed by performing CIP (Cold Isostatic Press) method using each mixed powder under the condition of 4000 kgf / cm 2 .
The relative density of each billet was 92-98%. (D)
Using each billet, the extrusion temperature T is set to room temperature,
Examples 1 to 9 of a plurality of diamond composite Al alloy members were set by setting 473K, 573K, 673K, 823K, and 873K, and extruding by setting the extrusion ratio to 9.8.
I got In addition, when the extrusion temperature T was set to room temperature and 473K, extrusion processing could not be performed.

【0033】例1〜9より、直径10mm、厚さ2mmのテ
ストピースを作製し、各テストピースの熱伝導率Cをレ
ーザフラッシュ法により測定したところ、図4の結果を
得た。図4にはAlに関するデータも例10として記載
されている。
A test piece having a diameter of 10 mm and a thickness of 2 mm was prepared from Examples 1 to 9 and the thermal conductivity C of each test piece was measured by the laser flash method. The results shown in FIG. 4 were obtained. Data regarding Al is also shown in FIG. 4 as Example 10.

【0034】図4から明らかなように、ダイヤモンド粉
末の体積分率Vfを25%≦Vf≦60%に、また押出
し温度Tを573K≦T≦823Kにそれぞれ設定され
た例1〜6は、熱伝導率Cが高く、また部材常用温度域
Rt、即ち、373K≦Rt≦573Kに熱伝導率Cの
最高値Cmaxが存在する。
As is clear from FIG. 4, in Examples 1 to 6 in which the volume fraction Vf of the diamond powder is set to 25% ≤Vf≤60% and the extrusion temperature T is set to 573K≤T≤823K, respectively. The conductivity C is high, and the maximum value Cmax of the thermal conductivity C exists in the member normal temperature range Rt, that is, 373K ≦ Rt ≦ 573K.

【0035】例7は前記最高値Cmaxが部材常用温度
域Rtを超えている。これは押出し温度TがT>873
Kであることに起因する。また例8,9の熱伝導率Cは
略平坦な変化をし、したがって部材常用温度域Rtに最
高値Cmaxは現出しない。これはダイヤモンド粉末の
体積分率VfがVf<25%であることに起因する。
In Example 7, the maximum value Cmax exceeds the member normal temperature range Rt. This is because the extrusion temperature T is T> 873.
Due to being K. Further, the thermal conductivity C of Examples 8 and 9 changes substantially flatly, so that the maximum value Cmax does not appear in the member normal temperature range Rt. This is because the volume fraction Vf of diamond powder is Vf <25%.

【0036】図4より、部材常用温度域Rtにおける熱
伝導率CはC>260W/mKであることが望ましい、
と言える。
From FIG. 4, it is desirable that the thermal conductivity C in the member normal temperature range Rt is C> 260 W / mK,
It can be said.

【0037】[0037]

【発明の効果】本発明によれば前記のように構成するこ
とによって、高い熱伝導率を有し、また部材常用温度域
における放熱性が良好なダイヤモンド複合Al合金部材
を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, with the above-mentioned constitution, it is possible to provide a diamond composite Al alloy member having high thermal conductivity and good heat dissipation in the member normal temperature range.

【0038】また本発明によれば、前記ダイヤモンド複
合Al合金部材を量産することが可能な製造方法を提供
することができる。
Further, according to the present invention, it is possible to provide a manufacturing method capable of mass-producing the diamond composite Al alloy member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダイヤモンド複合Al合金部材の断面図であ
る。
FIG. 1 is a cross-sectional view of a diamond composite Al alloy member.

【図2】ダイヤモンド、Alおよびダイヤモンド複合A
l合金部材に関する温度と熱伝導率との関係を示すグラ
フである。
FIG. 2 Diamond, Al and diamond composite A
It is a graph which shows the relationship between the temperature and thermal conductivity regarding a 1-alloy member.

【図3】押出し温度を異にするダイヤモンド複合Al合
金部材に関する温度と熱伝導率との関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between temperature and thermal conductivity for diamond composite Al alloy members having different extrusion temperatures.

【図4】各種ダイヤモンド複合Al合金部材に関する温
度と熱伝導率との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between temperature and thermal conductivity for various diamond composite Al alloy members.

【符号の説明】[Explanation of symbols]

1 ダイヤモンド複合Al合金部材 2 マトリックス 3 ダイヤモンド粒子 1 Diamond composite Al alloy member 2 Matrix 3 Diamond particles

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 AlおよびAl合金の一方よりなるマト
リックスと、そのマトリックスに分散するダイヤモンド
粒子とより構成された高熱伝導性ダイヤモンド複合Al
合金部材において、この部材は塑性加工品であって、熱
伝導率Cが温度の上昇に伴い山形をなすように変化し、
且つその熱伝導率Cの最高値Cmaxが部材常用温度域
Rtである373K≦Rt≦573Kに存在することを
特徴とする高熱伝導性ダイヤモンド複合Al合金部材。
1. A highly heat-conductive diamond composite Al comprising a matrix composed of one of Al and Al alloy and diamond particles dispersed in the matrix.
In the alloy member, this member is a plastically worked product, and the thermal conductivity C changes into a mountain shape with an increase in temperature,
Further, the high thermal conductivity diamond composite Al alloy member is characterized in that the maximum value Cmax of its thermal conductivity C exists in a member normal temperature range Rt of 373K ≦ Rt ≦ 573K.
【請求項2】 前記部材常用温度域Rtにおける前記熱
伝導率CがC>260W/mKである、請求項1記載の
高熱伝導性ダイヤモンド複合Al合金部材。
2. The high thermal conductivity diamond composite Al alloy member according to claim 1, wherein the thermal conductivity C in the member normal temperature range Rt is C> 260 W / mK.
【請求項3】 前記ダイヤモンド粒子の平均粒径dが1
μm≦d≦60μmであり、またその体積分率Vfが2
5%≦Vf≦60%である、請求項1または2記載の高
熱伝導性ダイヤモンド複合Al合金部材。
3. The average particle diameter d of the diamond particles is 1
μm ≦ d ≦ 60 μm, and its volume fraction Vf is 2
The high thermal conductivity diamond composite Al alloy member according to claim 1, wherein 5% ≦ Vf ≦ 60%.
【請求項4】 AlおよびAl合金の一方よりなるマト
リックスと、そのマトリックスに分散するダイヤモンド
粒子とより構成された高熱伝導性ダイヤモンド複合Al
合金部材を製造するに当り、Al粉末およびAl合金粉
末の一方と、体積分率Vfが25%≦Vf≦60%であ
るダイヤモンド粉末とよりなる素材に、加工温度Tが5
73K≦T≦823Kの条件で塑性加工を施すことを特
徴とする、高熱伝導性ダイヤモンド複合Al合金部材の
製造方法。
4. A high thermal conductivity diamond composite Al composed of a matrix composed of one of Al and Al alloy and diamond particles dispersed in the matrix.
In manufacturing the alloy member, one of Al powder and Al alloy powder and diamond powder having a volume fraction Vf of 25% ≦ Vf ≦ 60% is used as a material, and the processing temperature T is 5
A method for producing a highly heat-conductive diamond composite Al alloy member, characterized by performing plastic working under the condition of 73K ≦ T ≦ 823K.
JP34231495A 1995-12-28 1995-12-28 Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production Pending JPH09184036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34231495A JPH09184036A (en) 1995-12-28 1995-12-28 Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34231495A JPH09184036A (en) 1995-12-28 1995-12-28 Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production

Publications (1)

Publication Number Publication Date
JPH09184036A true JPH09184036A (en) 1997-07-15

Family

ID=18352772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34231495A Pending JPH09184036A (en) 1995-12-28 1995-12-28 Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production

Country Status (1)

Country Link
JP (1) JPH09184036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031285A (en) * 1997-08-19 2000-02-29 Sumitomo Electric Industries, Ltd. Heat sink for semiconductors and manufacturing process thereof
KR101237578B1 (en) * 2003-10-02 2013-02-26 머티리얼즈 앤드 일렉트로케미칼 리써치 코포레이션 High Thermal Conductivity Metal Matrix Composites
RU2631996C2 (en) * 2015-12-01 2017-09-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ) Method for obtaining disperse-reinforced nanocomposite material based on aluminium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031285A (en) * 1997-08-19 2000-02-29 Sumitomo Electric Industries, Ltd. Heat sink for semiconductors and manufacturing process thereof
KR101237578B1 (en) * 2003-10-02 2013-02-26 머티리얼즈 앤드 일렉트로케미칼 리써치 코포레이션 High Thermal Conductivity Metal Matrix Composites
US8673453B2 (en) 2003-10-02 2014-03-18 Nano Materials International Corporation High thermal conductivity metal matrix composites
RU2631996C2 (en) * 2015-12-01 2017-09-29 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (НИ ТГУ) Method for obtaining disperse-reinforced nanocomposite material based on aluminium

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
CA2725837C (en) Al-mn based aluminium alloy composition combined with a homogenization treatment
JP2000135543A (en) Titanium system metal forging method, engine valve manufacturing method and engine valve
US4888054A (en) Metal composites with fly ash incorporated therein and a process for producing the same
CN1066492C (en) Manufacture of thin pipes
US6070323A (en) Piston for internal combustion engine and material therefore
JP3369009B2 (en) Piston forging method
JPH09184036A (en) Diamond reinforced aluminum alloy composite member with high thermal conductivity and its production
JP3845035B2 (en) Method for manufacturing piston for internal combustion engine and piston for internal combustion engine
JPS63243245A (en) Aluminum-alloy member excellent in forgeability
JP4906206B2 (en) Al-Si powder alloy material and method for producing the same
JP2000109944A (en) Wear resistant and high strength aluminum alloy molded body, its production and cylinder liner composed of the molded body
JP3230903B2 (en) Heat resistant aluminum powder metal alloy
JP3234380B2 (en) Heat resistant aluminum powder alloy
JPS60145349A (en) Aluminum alloy parts having high heat resistance and wear resistance and manufacture thereof
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JPH0739615B2 (en) Method for producing Zn-22A1 superplastic powder-potassium titanate composite material
JPH05202441A (en) Aluminum type composite sliding material and its production
JP2786954B2 (en) Manufacturing method of connecting rod
JPH0417724B2 (en)
JPS62185857A (en) Heat resistant and high strength aluminum alloy
CN1302870C (en) Composite radiator manufacturing method
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JPH08176615A (en) Closed powder forging
JP2003119531A (en) Aluminum alloy superior in abrasion resistance, heat resistance and thermal conductivity, and manufacturing method thereof