JPH09181546A - Manufacture of crystal resonator - Google Patents

Manufacture of crystal resonator

Info

Publication number
JPH09181546A
JPH09181546A JP33647695A JP33647695A JPH09181546A JP H09181546 A JPH09181546 A JP H09181546A JP 33647695 A JP33647695 A JP 33647695A JP 33647695 A JP33647695 A JP 33647695A JP H09181546 A JPH09181546 A JP H09181546A
Authority
JP
Japan
Prior art keywords
adjustment
value
crystal
electrode
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33647695A
Other languages
Japanese (ja)
Other versions
JP3453971B2 (en
Inventor
Masaya Nakatani
将也 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33647695A priority Critical patent/JP3453971B2/en
Publication of JPH09181546A publication Critical patent/JPH09181546A/en
Application granted granted Critical
Publication of JP3453971B2 publication Critical patent/JP3453971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method for a crystal resonator by which the dispersion of the frequency which can be finally obtained can be reduced even when an adjustment vapor deposition is performed in a wafer state and the dispersion of the adjusting amount within the wafer is large. SOLUTION: When a crystal resonator is obtained via a succeeding processing such as an annealing after an electrode 13 for adjustment is formed on the base electrode 6b for every resonator element piece of wafer state crystal substrates in which plural resonator element pieces including the vibration part 4 forming the base electrode 6b on the both surfaces are arrayed longitudinally and latitudinally, the correction value based on the approximate expression by a prescribed function is determined from the relative value of the initial frequency value for every resonator element piece and a target frequency value at the time of forming an electrode 13 for adjustment. Then, the electrode 13 for adjustment of the adjustment vapor deposition amount set by adding this correction value to the relative value is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水晶振動子の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal oscillator manufacturing method.

【0002】[0002]

【従来の技術】水晶振動子は、圧電体である水晶板を所
定の厚み、大きさにスライスし、その両面に励振用及び
入出力電極として、ベース電極を形成することで水晶の
振動を電気的に取り出すことができる。このときの周波
数の値は水晶板の厚み、ベース電極の膜厚に依存するの
で、水晶板の厚み、ベース電極の膜厚のバラツキ分を補
正するため、ベース電極が形成された領域より周囲約1
00マイクロメートル程度小さい領域内に、周波数の調
整用電極を形成することで、周波数を所望の値に微妙に
合わせ込む調整蒸着工程を導入していた。
2. Description of the Related Art A crystal unit is a crystal plate, which is a piezoelectric body, sliced into a predetermined thickness and size, and a base electrode is formed on both sides of the crystal plate as excitation and input / output electrodes. Can be taken out. Since the frequency value at this time depends on the thickness of the crystal plate and the film thickness of the base electrode, in order to compensate for the variations in the thickness of the crystal plate and the film thickness of the base electrode, the frequency around the area where the base electrode is formed is about 1
By forming the frequency adjustment electrode in a region as small as about 100 micrometers, the adjustment vapor deposition step of subtly adjusting the frequency to a desired value has been introduced.

【0003】このとき、周波数調整しやすいように、周
波数調整量が約1000ppm付近の、ある程度揃った
水晶板を選び出し、これを半田、導電性接着剤などを用
いて基板に実装してから、調整用電極を形成した。
At this time, in order to easily adjust the frequency, a crystal plate having a frequency adjustment amount of about 1000 ppm and having a certain degree of uniformity is selected and mounted on a substrate using solder, a conductive adhesive or the like, and then adjusted. An electrode for forming was formed.

【0004】水晶振動子の周波数は、調整蒸着後にもア
ニールなどの工程を経るに従って微妙な変化を起こす。
図8は、従来、これを補正するため行っていた調整蒸着
の前後の周波数変動の様子を示す。最終的な目標値21
に合わせるため、調整蒸着後にシフトする量23をあら
かじめ見込んで、初期値20と目標値21との差24か
らずらした値へ、実際に行う調整蒸着量22を設定して
周波数調整蒸着を行っていた。
The frequency of the crystal resonator slightly changes after the adjustment deposition, such as annealing.
FIG. 8 shows how the frequency changes before and after the adjustment vapor deposition, which is conventionally performed to correct this. Final target value 21
In order to adjust to, the amount 23 of shift after the adjustment vapor deposition is estimated in advance, and the frequency adjustment vapor deposition is performed by setting the actually adjusted vapor deposition amount 22 to a value shifted from the difference 24 between the initial value 20 and the target value 21. It was

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
方法では、個々の水晶板を一つ一つ基板等に実装してか
ら行うので、実装までに手間がかかり、さらに実装の際
に用いられる半田や接着剤から汚染物質が発生し、調整
蒸着時に水晶板の表面を汚染するので信頼性に欠けると
いう問題があった。そこで、ウエハ状態の水晶基板上に
両面にベース電極を形成した振動部を含む複数の振動子
素片を縦横に配列して、ウエハの状態で調整蒸着を行う
ことが有効であると考えられるが、ウエハの状態ではど
うしても、振動部の厚みとベース電極の膜厚がウエハ内
でばらついてしまうので、周波数の揃った振動子素片だ
けを選ぶことができず、調整する量が一枚のエウハの中
でも、振動子素片によって大きく差がでてしまうことに
なる。図9は初期値25が図8より高い振動子素片の例
を示したが、このような振動子素片を、図8の振動子素
片と同じ調整周波数29になるように、実際に行う調整
蒸着量26を設定すると、調整後の後工程でアニールな
どの処理を行うと、図8の調整蒸着後のシフト量23よ
り大きな値27となって、あらかじめ見込んだ周波数シ
フト量が違ってしまい、目標値21の周波数を得られな
い振動子素片が発生するという問題があった。
However, in the conventional method, since each crystal plate is mounted on a substrate or the like one by one, it takes a lot of time to mount it, and further, the solder used in mounting is used. However, contaminants are generated from the adhesive and the adhesive, which contaminates the surface of the crystal plate during adjustment vapor deposition, resulting in a lack of reliability. Therefore, it is considered effective to arrange a plurality of vibrator elements including a vibrating part having base electrodes formed on both surfaces in a vertical and horizontal direction on a quartz substrate in a wafer state and perform adjusted vapor deposition in a wafer state. In the state of the wafer, the thickness of the vibrating part and the film thickness of the base electrode will inevitably vary within the wafer, so it is not possible to select only the vibrator element with the same frequency. Among them, a large difference will occur depending on the vibrator element. FIG. 9 shows an example of a vibrator element whose initial value 25 is higher than that of FIG. 8. However, such a vibrator element is actually adjusted so as to have the same adjustment frequency 29 as that of the vibrator element of FIG. When the adjusted vapor deposition amount 26 to be performed is set, if a process such as annealing is performed in a post-process after the adjustment, the value becomes 27 which is larger than the shift amount 23 after the adjusted vapor deposition in FIG. Therefore, there is a problem that a vibrator element that cannot obtain the frequency of the target value 21 is generated.

【0006】図10は一枚のウエハ内の各振動子素片に
対して行われた周波数調整量と出来上がり周波数のシフ
ト量の関係を示したものであるが、周波数調整量が大き
い振動子素片は出来上がり時により大きくシフトしてお
り、ウエハ内で各振動子素片によって出来上がり周波数
が10ppm近く幅を持ってしまい、出来上がり周波数
のバラツキが大きい結果となっている。さらに調整量が
多いものが同一ウエハ内で存在するときは、このバラツ
キ幅が広がる。これは、調整蒸着量が多いものは調整用
電極がより多く形成されているため、後のアニール工程
で変化する量も多いからである。
FIG. 10 shows the relationship between the amount of frequency adjustment and the amount of shift of the finished frequency performed on each oscillator element in one wafer. The oscillator element with a large amount of frequency adjustment is shown in FIG. The piece is largely shifted at the time of completion, and the finished frequency has a width of about 10 ppm due to each oscillator element in the wafer, resulting in a large variation in the finished frequency. Further, when a large amount of adjustment exists in the same wafer, this variation width is widened. This is because a large amount of adjustment vapor deposition causes more adjustment electrodes to be formed, so that the amount of change in a subsequent annealing step is large.

【0007】本発明は、調整蒸着がウエハ状態で行わ
れ、ウエハ内での調整量のバラツキが大きい場合でも、
各振動子素片について後工程でのシフト量を事前に見極
め、最終的に得られる周波数のバラツキを少なくするこ
とができる水晶振動子の製造方法を提供することを目的
とするものである。
According to the present invention, even if the adjustment vapor deposition is performed in a wafer state and the variation in the adjustment amount within the wafer is large,
It is an object of the present invention to provide a method of manufacturing a crystal oscillator in which the amount of shift in each post of each oscillator element is determined in advance and variations in the finally obtained frequency can be reduced.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の水晶振動子の製造方法は、両面にベース電
極を形成した振動部を含む複数の振動子素片を縦横に配
列したウエハ状の水晶基板の振動子素片毎のベース電極
上に調整用電極を形成するに当たり、上記振動子素片毎
の初期周波数値と目標周波数値との相対値から所定関数
による近似式に基づく補正量を求め、この補正値を上記
相対値に加算して設定した調整蒸着量の調整用電極を形
成することを特徴とするものである。
In order to solve the above-mentioned problems, a method of manufacturing a crystal resonator according to the present invention is arranged such that a plurality of vibrator elements including a vibrator having base electrodes formed on both surfaces are arranged vertically and horizontally. When forming the adjustment electrode on the base electrode of each oscillator element of the wafer-shaped crystal substrate, based on the approximation formula by the predetermined function from the relative value of the initial frequency value and the target frequency value of each oscillator element It is characterized in that a correction amount is obtained, and the correction electrode is formed by adding the correction value to the relative value to set the adjusted deposition amount.

【0009】本発明によれば、ウエハ状の水晶基板内で
の調整蒸着量のバラツキが大きくとも、最終的に得られ
る周波数のバラツキの少ない水晶振動子を得ることがで
きる。
According to the present invention, it is possible to obtain a crystal resonator having a small variation in the frequency finally obtained even if the variation in the adjusted deposition amount in the wafer-shaped quartz substrate is large.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、両面にベース電極を形成した振動部を含む複数の振
動子素片を縦横に配列したウエハ状の水晶基板の振動子
素片毎のベース電極上に調整用電極を形成した後にアニ
ール等の後工程を経て両面に第一、第二のケース体を被
着し、その後、上記ウエハ状の水晶基板及び第一、第二
のケース体を上記振動子素片毎に分断して水晶振動子を
得る水晶振動子の製造方法であって、上記調整用電極の
形成時に、振動子素片毎の初期周波数値と目標周波数値
との相対値から所定関数による近似式に基づく補正値を
求め、この補正値を上記相対値に加算して設定した調整
蒸着量の調整用電極を形成することを特徴とする水晶振
動子の製造方法であり、ウエハ状の水晶基板内における
各振動子素片に対して、調整蒸着後にシフトする量を事
前に見込んで実際に行う調整蒸着量を補正するので、ウ
エハ状の水晶基板内で調整蒸着量のバラツキが大きくて
後工程で変化する量が各振動子素片毎に変わったとして
も、最終的に得られる周波数値は、各振動子素片に対し
て行われた調整蒸着量によらず、ウエハ状の水晶基板内
の全振動子素片について、バラツキの少ない水晶振動子
が得られるという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a vibrator element of a wafer-shaped crystal substrate in which a plurality of vibrator elements including a vibrating part having base electrodes formed on both sides are arranged in a matrix. After forming the adjustment electrode on each piece of the base electrode, the first and second case bodies are attached to both surfaces through post-processes such as annealing, and then the wafer-like crystal substrate and the first and second Is a method for manufacturing a crystal unit by dividing the case body into the crystal units to obtain a crystal unit, wherein an initial frequency value and a target frequency value for each unit are formed when the adjustment electrode is formed. A quartz oscillator characterized in that a correction value based on an approximate expression based on a predetermined function is obtained from a relative value of and the adjustment electrode is formed by adding the correction value to the relative value to set an adjusted deposition amount. Method for each oscillator element in a wafer-shaped quartz substrate Since the amount of shift that is actually adjusted is corrected by anticipating the amount that will be shifted after adjustment vapor deposition, the amount of variation in the amount of vapor deposition that is adjusted within the quartz crystal substrate in the wafer state is large and the amount that changes in the subsequent process is different for each transducer element. Even if it changes every time, the finally obtained frequency value does not depend on the adjustment vapor deposition amount performed for each vibrator element, and it varies for all vibrator elements in the wafer-shaped crystal substrate. It has an effect of obtaining a small number of crystal oscillators.

【0011】本発明の請求項2に記載の発明は、近似式
が対数関数、高次関数、指数関数のいずれか、またはそ
れらの組み合わせであることを特徴とする水晶振動子の
製造方法であり、ウエハ状の水晶基板の各振動子素片に
対して行われる調整蒸着量を決定する際に、調整蒸着後
にシフトする量を各振動子素片毎に事前に見極め、各振
動子素片に対して実際に行う調整蒸着量を補正する機構
を構成できるという作用を有する。
The invention according to claim 2 of the present invention is the method of manufacturing a crystal resonator, wherein the approximate expression is any one of a logarithmic function, a higher-order function, an exponential function, or a combination thereof. , When determining the adjustment deposition amount to be performed for each oscillator element on the wafer-shaped crystal substrate, determine the amount to be shifted after the adjustment deposition for each oscillator element in advance, and On the other hand, it has the effect of being able to configure a mechanism for correcting the actually adjusted deposition amount.

【0012】本発明の請求項3に記載の発明は、水晶基
板の振動子素片毎の初期周波数値と目標周波数値との相
対値から所定関数による近似式に基づく補正値を求め、
この補正値を上記相対値に加算して調整蒸着量を設定す
る工程を上記水晶基板の全ての振動子素片について実行
後、それらの設定値に基づき上記水晶基板の振動子素片
毎に調整用電極を形成することを特徴とする水晶振動子
の製造方法であり、始めにウエハ状の水晶基板の全ての
各水晶振動子素片に対して補正された調整蒸着量を求め
た後、その補正された調整蒸着量に基づいて連続して調
整用電極を形成するので、調整蒸着工程を効率よくでき
るという作用を有する。
According to a third aspect of the present invention, a correction value based on an approximate expression by a predetermined function is obtained from a relative value between an initial frequency value and a target frequency value for each vibrator element of a quartz substrate,
After performing the step of adding the correction value to the relative value and setting the adjusted vapor deposition amount for all the crystal elements of the crystal substrate, adjustment is made for each crystal element of the crystal substrate based on those set values. A method for manufacturing a crystal resonator, which is characterized by forming electrodes for use, in which first, after obtaining a corrected adjusted deposition amount for each crystal resonator element of a wafer-shaped crystal substrate, Since the adjustment electrode is continuously formed on the basis of the corrected adjusted deposition amount, the adjusted deposition process can be efficiently performed.

【0013】(実施の形態1)図1は本発明の第一の実
施形態に用いる水晶振動子を示す。図1において、1は
水晶板であり、サンドブラスト等の方法で溝部5をくり
抜いて型抜きを行うことで、振動部4が設けられてお
り、この振動部4の両面には励振用の電極としてベース
電極6aと6bが設けられている。2と3はそれぞれ水
晶板1と張り合わせるケースであり、ケース3には外部
への電極取り出しとして電極取り出し用貫通孔8,9が
設けられている。上記ベース電極6a,6bより引き出
し電極が引き出され、上記ベース電極6b側より引き出
された電極は貫通孔7を介してベース電極6a側へケー
ス3に設けた貫通孔8に対応するよう引き回されてい
る。そして、上記ベース電極6b側には周波数調整の為
の調整用電極13が設けられている。
(Embodiment 1) FIG. 1 shows a crystal resonator used in a first embodiment of the present invention. In FIG. 1, reference numeral 1 is a crystal plate, and a vibrating portion 4 is provided by punching out a groove portion 5 by a method such as sandblasting, and a vibrating portion 4 is provided on both sides of this vibrating portion 4 as electrodes for excitation. Base electrodes 6a and 6b are provided. Reference numerals 2 and 3 denote cases bonded to the crystal plate 1, respectively, and the case 3 is provided with through holes 8 and 9 for taking out electrodes for taking out electrodes to the outside. Extraction electrodes are drawn out from the base electrodes 6a and 6b, and the electrodes drawn out from the base electrode 6b side are drawn out through the through holes 7 to the base electrode 6a side so as to correspond to the through holes 8 provided in the case 3. ing. An adjusting electrode 13 for adjusting the frequency is provided on the side of the base electrode 6b.

【0014】ここで、上記両面にベース電極6a,6b
を設けた振動部4を含む振動子素片を有する水晶振動子
は、図2に示すウエハ状の水晶基板11とその両面に被
着した水晶よりなる第一,第二のケース体10,12よ
りなる水晶振動体を分断して構成される。上記ウエハ状
の水晶基板11は、両面にベース電極を形成した振動部
を含む複数の振動子素片を縦横に配列したものであり、
一方のベース電極上に調整用電極が設けられている。上
記第一,第二のケース体10,12は上記水晶基板11
の各々の座ぐり部周辺には外部への電極取り出しのため
の貫通孔が設けられている。上記ウエハ状水晶基板11
は第一,第二のケース体10,12と被着し組み合わさ
れる前に、各々の振動子素片のベース電極に対して調整
用電極が設けられて目的の周波数に設定され、その後、
アニール等の後工程を経る。
Here, the base electrodes 6a and 6b are provided on both surfaces.
A crystal unit having a resonator element including a vibrating section 4 is provided with a first and second case bodies 10 and 12 made of a wafer-shaped crystal substrate 11 shown in FIG. It is configured by dividing the quartz crystal vibrating body. The wafer-shaped crystal substrate 11 is formed by vertically and horizontally arranging a plurality of vibrator elements including a vibrating portion having base electrodes formed on both surfaces.
An adjustment electrode is provided on one of the base electrodes. The first and second case bodies 10, 12 are the quartz substrate 11
A through hole for taking out the electrode to the outside is provided in the vicinity of each of the spot facing portions. The wafer-shaped crystal substrate 11
Is attached to the first and second case bodies 10 and 12 before being combined with each other, an adjusting electrode is provided for the base electrode of each vibrator element to set the target frequency, and thereafter,
A post process such as annealing is performed.

【0015】図10は、このウエハ状の水晶基板11の
各振動子素片のベース電極に対して所望する周波数とな
るように調整用電極を調整蒸着した時に、各振動子素片
に対して実際に行われた周波数調整蒸着量22と、出来
上がり周波数値のシフト量(調整蒸着後にシフトする量
23)の関係を実験より得たものである。調整蒸着量が
多いものはより多く周波数がシフトしていることがわか
る。図10より周波数調整蒸着量と調整後のシフト量の
相関がわかる。この相関より図3に示すように対数関数
による近似式を求めることができる。図3において、Y
1は対数関数であり、 Y1=a+b・logX1 (1) その近似式Y11は Y11=2.49562−2.3850・logX11 (2) となる。このとき、実際に行われる調整量22をX11
出来上がり周波数値のシフト量をY11とする。また、こ
のとき、式(1)へ置き換える方法は最小自乗法などに
よって近似式置換を用いる。また、調整蒸着を行う際に
は、図5の様にベース電極6b上を調整用電極がはみ出
ることがないようにマスク14がセットされるが、調整
用電極を形成するマスク面積15によって実験値の傾向
が変化するので、その都度、実験を行い、近似式を求め
ることが望ましい。
FIG. 10 shows that when the adjustment electrode is adjusted and vapor-deposited so as to have a desired frequency with respect to the base electrode of each vibrator element of the wafer-shaped crystal substrate 11, The relationship between the frequency adjustment deposition amount 22 actually performed and the shift amount of the finished frequency value (the shift amount 23 after the adjustment deposition) is obtained by an experiment. It can be seen that the frequency is more shifted in the case where the adjusted deposition amount is large. From FIG. 10, the correlation between the frequency adjustment vapor deposition amount and the adjusted shift amount can be seen. From this correlation, an approximate expression by a logarithmic function can be obtained as shown in FIG. In FIG. 3, Y
1 is a logarithmic function, and Y 1 = a + b · logX 1 (1) The approximate expression Y 11 is Y 11 = 2.49562−2.3850 · logX 11 (2). At this time, the actual adjustment amount 22 is X 11 ,
Let Y 11 be the shift amount of the finished frequency value. Further, at this time, the method of replacing with the expression (1) uses approximate expression replacement by a least square method or the like. Further, when the adjustment vapor deposition is performed, the mask 14 is set so that the adjustment electrode does not protrude above the base electrode 6b as shown in FIG. 5, but the mask area 15 for forming the adjustment electrode causes an experimental value. Since the tendency of changes, it is desirable to perform an experiment each time and obtain an approximate expression.

【0016】図6と図7は本実施形態で行う周波数調整
工程の流れを示したものである。以下にその流れについ
て少し詳しく説明する。
6 and 7 show the flow of the frequency adjustment process performed in this embodiment. The flow will be described in detail below.

【0017】まず、初期測定ステップ30として調整蒸
着前の水晶振動子の初期値37を測定する。次に、目標
相対値計算ステップ31として初期値37と最終的に所
望する目標値38との相対値39を計算し、補正値計算
ステップ32として相対値39を式(2)のX11に代入
し、Y11として得られた値を補正値40とする。次に、
調整蒸着量設定ステップ33において得られた補正値4
0を目標相対値39に足し(補正値は正負のどちらもあ
り得るので足す)、これを調整蒸着量41として設定す
る。これまでの工程をウエハ内の各振動子素片に対して
個別に行い、各振動子素片で補正された調整蒸着量41
に従って調整蒸着ステップ34にて各振動子素片に対し
て調整用電極の形成を行う。
First, as an initial measurement step 30, an initial value 37 of the crystal oscillator before adjustment vapor deposition is measured. Next, as a target relative value calculation step 31, a relative value 39 between the initial value 37 and the finally desired target value 38 is calculated, and as a correction value calculation step 32, the relative value 39 is substituted into X 11 of the equation (2). Then, the value obtained as Y 11 is set as the correction value 40. next,
Correction value 4 obtained in the adjustment vapor deposition amount setting step 33
0 is added to the target relative value 39 (the correction value can be positive or negative, which is added), and this is set as the adjusted vapor deposition amount 41. The above steps are individually performed for each transducer element in the wafer, and the adjusted deposition amount 41 corrected by each transducer element is 41.
Accordingly, in the adjustment vapor deposition step 34, adjustment electrodes are formed on each vibrator element.

【0018】以上の様な流れにすると、調整値42が各
振動子素片に対して決まるので、調整後工程でシフトす
る量が各振動子素片毎に変化しても、最終的にはすべて
の振動子素片について、目標値38を持つ周波数の水晶
振動子が得られる。
With the above-described flow, the adjustment value 42 is determined for each transducer element, so that even if the amount of shift in the post-adjustment step changes for each transducer element, it will eventually A crystal oscillator having a frequency having the target value 38 is obtained for all the oscillator pieces.

【0019】なお、このとき、前測定、及び調整蒸着量
の設定プロセスを水晶基板の全素片に対して実行した後
で、その実行に基づいたデータより各振動子素片のそれ
ぞれに対して連続して調整用電極を形成すると、調整用
電極の形成の際に各々補正する必要がないので、効率よ
い周波数調整工程を行うことができるという利点があ
る。
At this time, after performing the pre-measurement and adjustment vapor deposition amount setting process for all the pieces of the quartz substrate, the data based on the execution are used for each of the transducer pieces. If the adjustment electrodes are formed continuously, there is no need to make corrections when forming the adjustment electrodes, so there is an advantage that an efficient frequency adjustment step can be performed.

【0020】なお、調整蒸着後の後工程とは、アニール
などの処理の他、洗浄など、周波数が変化する可能性の
あるものについては何でも適用できる。
The post-process after the adjustment vapor deposition can be applied to anything that may change the frequency, such as cleaning, other than annealing, etc.

【0021】なお、上記した実施形態においては、対数
関数による近似を行ったが、他に近似を行う関数として
は図4に示すような1次関数を用いても良い。この場合
2は1次関数であり、 Y2=a+bX2 (3) その近似式Y22は Y22=−9.2348−0.0049X22 (4) となり、図6、図7で示す相対値39で示す相対値39
を式(4)のX22に代入し、Y22として得られた値を補
正値40とすれば良い。他に関数としては2次関数、3
次関数などの高次関数、指数関数及びこれらの組み合わ
せなど、実験による傾向を正確に表すものであればよ
い。
Although the logarithmic function is used in the above embodiment, a linear function as shown in FIG. 4 may be used as another function for the approximation. In this case, Y 2 is a linear function, and Y 2 = a + bX 2 (3) The approximate expression Y 22 is Y 22 = −9.2348-0.0049X 22 (4), which is shown in FIG. 6 and FIG. Relative value 39 indicated by value 39
Is substituted for X 22 in the equation (4), and the value obtained as Y 22 may be used as the correction value 40. Other functions are quadratic functions, 3
A higher-order function such as a quadratic function, an exponential function, and a combination thereof may be used as long as they accurately represent the experimental tendency.

【0022】なお、上記実施形態ではウエハ状の全水晶
振動子素片に対して調整蒸着量の設定プロセスを実行し
てからそれぞれ調整蒸着を行う方法を示したが、水晶振
動子素片毎に前測定、及び調整蒸着量の設定をした後、
調整用の電極を形成しても良い。
In the above embodiment, the method of performing the adjustment vapor deposition amount setting process on all the wafer-shaped crystal unit pieces and then performing the adjustment vapor deposition is described. After the pre-measurement and setting of the adjusted deposition amount,
An adjustment electrode may be formed.

【0023】[0023]

【発明の効果】以上のように本発明によれば、ウエハ状
の水晶基板内の水晶振動子素片に対して調整蒸着を行う
際に、ウエハ内で調整量が大きくばらついて、調整後に
シフトする量が実際に行われた調整蒸着量によって変化
しても、最終的に得られる周波数値は、実際に行われた
調整蒸着量によらず、所望の値が得られ、ウエハ内で周
波数のバラツキの少ない水晶振動子を得ることができ
る。
As described above, according to the present invention, when the adjustment vapor deposition is performed on the crystal resonator element in the wafer-shaped crystal substrate, the adjustment amount greatly varies in the wafer and the shift is performed after the adjustment. Even if the amount to be adjusted varies depending on the adjustment deposition amount actually performed, the finally obtained frequency value does not depend on the adjustment deposition amount actually performed, and a desired value is obtained. A crystal oscillator with less variation can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態を適用する水晶振動子
を示す組立斜視図
FIG. 1 is an assembled perspective view showing a crystal unit to which a first embodiment of the present invention is applied.

【図2】同水晶振動子をウエハ状水晶基板上に複数形成
した場合の組立斜視図
FIG. 2 is an assembly perspective view when a plurality of the crystal units are formed on a wafer-shaped crystal substrate.

【図3】同水晶振動子の周波数調整量と出来上がり周波
数値のシフト量の相関を対数関数近似で表す相関図
FIG. 3 is a correlation diagram showing the correlation between the frequency adjustment amount of the crystal unit and the shift amount of the finished frequency value by a logarithmic function approximation.

【図4】同じく一次関数近似で表す相関図FIG. 4 is a correlation diagram similarly represented by a linear function approximation.

【図5】同水晶振動子を調整蒸着するときにマスクをセ
ットした断面図
FIG. 5 is a cross-sectional view in which a mask is set when adjusting and depositing the crystal unit.

【図6】同水晶振動子の周波数調整の工程の流れを示す
流れ図
FIG. 6 is a flowchart showing a flow of steps for frequency adjustment of the crystal unit.

【図7】同水晶振動子の周波数調整工程の流れにおいて
周波数の変動の様子を示す流れ図
FIG. 7 is a flowchart showing how the frequency changes in the flow of the frequency adjustment process of the crystal unit.

【図8】従来の水晶振動子で、工程の流れにおいて周波
数の変動の様子を示す流れ図
FIG. 8 is a flow chart showing a state of frequency fluctuation in a process flow of a conventional crystal unit.

【図9】同水晶振動子で、工程の流れにおいて周波数の
変動の様子を示す流れ図
FIG. 9 is a flow chart showing how the frequency changes in the process flow of the crystal unit.

【図10】同水晶振動子で調整蒸着量と出来上がり周波
数値のシフト量を実験より得た相関図
FIG. 10 is a correlation diagram obtained from an experiment of the adjusted deposition amount and the shift amount of the finished frequency value with the same crystal unit.

【符号の説明】[Explanation of symbols]

1 水晶板 2 第一のケース 3 第二のケース 4 振動部 5 溝部 6a ベース電極 6b ベース電極 7 貫通孔 8 電極取り出し用貫通孔 9 電極取り出し用貫通孔 10 第一のケース体 11 水晶基板 12 第二のケース体 13 調整用電極 14 マスク 15 マスク面積 20 初期値 21 目標値 22 実際に行う調整蒸着量 23 調整後にシフトする量 24 初期値と目標値の差 25 初期値 26 実際に行う調整蒸着量 27 調整後にシフトする量 28 初期値と目標値の差 29 調整周波数 30 初期測定ステップ 31 目標相対値計算ステップ 32 補正値計算ステップ 33 調整蒸着量設定ステップ 34 調整蒸着ステップ 35 調整後工程 36 出来上がり 37 初期値 38 目標値 39 目標相対値 40 補正値 41 調整蒸着量 42 調整値 DESCRIPTION OF SYMBOLS 1 Crystal plate 2 1st case 3 2nd case 4 Vibrating part 5 Groove part 6a Base electrode 6b Base electrode 7 Through hole 8 Electrode extraction through hole 9 Electrode extraction through hole 10 First case body 11 Crystal substrate 12th Second case body 13 Adjustment electrode 14 Mask 15 Mask area 20 Initial value 21 Target value 22 Actually adjusted evaporation amount 23 Shift amount after adjustment 24 Difference between initial value and target value 25 Initial value 26 Actually adjusted evaporation amount 27 Amount to shift after adjustment 28 Difference between initial value and target value 29 Adjustment frequency 30 Initial measurement step 31 Target relative value calculation step 32 Correction value calculation step 33 Adjustment evaporation amount setting step 34 Adjustment evaporation step 35 Post-adjustment process 36 Finished 37 Initial Value 38 Target value 39 Target relative value 40 Correction value 41 Adjustment evaporation amount 42 Adjustment value

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両面にベース電極を形成した振動部を含
む複数の振動子素片を縦横に配列したウエハ状の水晶基
板の振動子素片毎のベース電極上に調整用電極を形成し
た後にアニール等の後工程を経て両面に第一、第二のケ
ース体を被着し、その後、上記ウエハ状の水晶基板及び
第一、第二のケース体を上記振動子素片毎に分断して水
晶振動子を得る水晶振動子の製造方法であって、上記調
整用電極の形成時に、振動子素片毎の初期周波数値と目
標周波数値との相対値から所定関数による近似式に基づ
く補正値を求め、この補正値を上記相対値に加算して設
定した調整蒸着量の調整用電極を形成することを特徴と
する水晶振動子の製造方法。
1. An adjustment electrode is formed on a base electrode of each vibrator element of a wafer-shaped crystal substrate in which a plurality of vibrator elements including a vibrating part having base electrodes formed on both surfaces are arranged in a matrix. After the subsequent steps such as annealing, the first and second case bodies are adhered to both surfaces, and then the wafer-like crystal substrate and the first and second case bodies are divided into the oscillator pieces. A method of manufacturing a crystal unit for obtaining a crystal unit, comprising: a correction value based on an approximate expression based on a predetermined function from a relative value between an initial frequency value and a target frequency value for each unit when forming the adjustment electrode. Is obtained, and the correction value is added to the relative value to form an adjustment electrode having an adjusted deposition amount, which is set.
【請求項2】 近似式は対数関数、高次関数、指数関数
のいずれか、またはそれらの組み合わせであることを特
徴とする請求項1記載の水晶振動子の製造方法。
2. The method for manufacturing a crystal unit according to claim 1, wherein the approximate expression is any one of a logarithmic function, a higher-order function, an exponential function, or a combination thereof.
【請求項3】 水晶基板の振動子素片毎の初期周波数値
と目標周波数値との相対値から所定関数による近似式に
基づく補正値を求め、この補正値を上記相対値に加算し
て調整蒸着量を設定する工程を上記水晶基板の全ての振
動子素片について実行後、それらの設定値に基づき上記
水晶基板の振動子素片毎に調整用電極を形成することを
特徴とする請求項1記載の水晶振動子の製造方法。
3. A correction value based on an approximate expression by a predetermined function is calculated from a relative value between an initial frequency value and a target frequency value for each crystal element of a quartz substrate, and the correction value is added to the relative value for adjustment. After performing the step of setting the vapor deposition amount for all the vibrator elements of the crystal substrate, the adjustment electrode is formed for each vibrator element of the crystal substrate based on the set values. 1. The method for manufacturing a crystal unit according to 1.
JP33647695A 1995-12-25 1995-12-25 Manufacturing method of crystal unit Expired - Fee Related JP3453971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33647695A JP3453971B2 (en) 1995-12-25 1995-12-25 Manufacturing method of crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33647695A JP3453971B2 (en) 1995-12-25 1995-12-25 Manufacturing method of crystal unit

Publications (2)

Publication Number Publication Date
JPH09181546A true JPH09181546A (en) 1997-07-11
JP3453971B2 JP3453971B2 (en) 2003-10-06

Family

ID=18299534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33647695A Expired - Fee Related JP3453971B2 (en) 1995-12-25 1995-12-25 Manufacturing method of crystal unit

Country Status (1)

Country Link
JP (1) JP3453971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method
JP2005191988A (en) * 2003-12-26 2005-07-14 Daishinku Corp Frequency regulation method of piezoelectric oscillating device and piezoelectric oscillating device whose oscillation frequency is regulated by the same frequency regulation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164759A (en) * 2000-11-24 2002-06-07 Daishinku Corp Frequency adjusting device for tuning fork oscillator and its method and fork oscillator whose frequency is adjusted by the same method
JP2005191988A (en) * 2003-12-26 2005-07-14 Daishinku Corp Frequency regulation method of piezoelectric oscillating device and piezoelectric oscillating device whose oscillation frequency is regulated by the same frequency regulation method

Also Published As

Publication number Publication date
JP3453971B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US8928207B2 (en) Tuning-fork type quartz-crystal vibrating pieces and piezoelectric devices having low crystal impedance
US8120234B2 (en) Piezoelectric frames and piezoelectric devices comprising same
KR20080077636A (en) Frequency tuning of film bulk acoustic resonators
US8319404B2 (en) Surface-mountable quartz-crystal devices and methods for manufacturing same
JP3933195B2 (en) Piezoelectric resonator and manufacturing method thereof
JP4665849B2 (en) Method for manufacturing piezoelectric vibration device
JPH09181546A (en) Manufacture of crystal resonator
JP2014110488A (en) Piezoelectric vibration element, piezoelectric wafer, and manufacturing method of piezoelectric vibration element
JP4577041B2 (en) Method for adjusting frequency of piezoelectric vibrator
JP4600140B2 (en) Method for manufacturing piezoelectric vibrating piece
JP5031526B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP2010041109A (en) Element for crystal oscillator, crystal oscillator and electronic component
JP2007142628A (en) Manufacturing method of piezoelectric vibration chip
US5445708A (en) Method for preparing ultrathin piezoelectric resonator plates
JP4978114B2 (en) Method for manufacturing piezoelectric vibrating piece
JP3885578B2 (en) Method for manufacturing piezoelectric resonator
US20040212459A1 (en) Method for producing a layer with a predefined layer thickness profile
JP4083435B2 (en) Deposition frame for electrode formation of piezoelectric material
JP7356085B2 (en) Piezoelectric vibrator and its manufacturing method
JPH06224677A (en) Frequency adjusting method for piezoelectric resonator
CN100488042C (en) Method for manufacturing piezoelectric resonator
JP4341340B2 (en) Method and apparatus for manufacturing piezoelectric vibration device
JP2008236440A (en) Contour piezoelectric vibrating piece and manufacturing method therefor
JP2003008378A (en) Piezo-electric oscillator and manufacturing method thereof
JP2005191988A (en) Frequency regulation method of piezoelectric oscillating device and piezoelectric oscillating device whose oscillation frequency is regulated by the same frequency regulation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20070725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120725

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130725

LAPS Cancellation because of no payment of annual fees