JPH09181469A - Electronic component mounting board manufacturing method - Google Patents

Electronic component mounting board manufacturing method

Info

Publication number
JPH09181469A
JPH09181469A JP35209495A JP35209495A JPH09181469A JP H09181469 A JPH09181469 A JP H09181469A JP 35209495 A JP35209495 A JP 35209495A JP 35209495 A JP35209495 A JP 35209495A JP H09181469 A JPH09181469 A JP H09181469A
Authority
JP
Japan
Prior art keywords
heat sink
substrate
electronic component
adhesive
component mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35209495A
Other languages
Japanese (ja)
Inventor
Kazunari Suzuki
一成 鈴木
Kiyotaka Tsukada
輝代隆 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP35209495A priority Critical patent/JPH09181469A/en
Publication of JPH09181469A publication Critical patent/JPH09181469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates

Abstract

PROBLEM TO BE SOLVED: To enhance the adhesion between a heat sink and insulating board and prevent an oxide film from being formed on the heat sink. SOLUTION: To bond a Cu heat sink 10 through an adhesive agent 2 to a synthetic resin-made insulative substrate 31 having a conductor circuit 5, an Ni film 1 is formed on the surface of the heat sink, heated in a reductive atmosphere to reduce the surface of the film 1, and bonded to the substrate 31 with the adhesive agent such as epoxy adhesive agent. The film 1 is preferably 1-50 microns thick and the reductive atmosphere is preferably one contg. H2 , CO, N2 or mixture thereof as a main component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,電子部品搭載用基板の製造方法
に関し,特に,ヒートシンクを絶縁基板に接着する方法
に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a substrate for mounting electronic components, and more particularly to a method for adhering a heat sink to an insulating substrate.

【0002】[0002]

【従来技術】従来,電子部品搭載用基板としては,図4
に示すごとく,絶縁基板931の表面に設けた導体回路
95と,電子部品を搭載するための搭載部97を設けた
ものがある。搭載部97は,絶縁基板931に設けた搭
載穴930と,該搭載穴の下方開口部を被覆するヒート
シンク90とにより形成されている。ヒートシンク90
は,樹脂接着剤92により,絶縁基板931の下面に接
着されている。ヒートシンク90の表面は,ヒートシン
クの酸化防止のため,金被膜91により被覆されてい
る。
2. Description of the Related Art Conventionally, as a board for mounting electronic parts, a board shown in FIG.
As shown in FIG. 2, there are those in which a conductor circuit 95 provided on the surface of the insulating substrate 931 and a mounting portion 97 for mounting an electronic component are provided. The mounting portion 97 is formed by a mounting hole 930 provided in the insulating substrate 931 and a heat sink 90 that covers the lower opening of the mounting hole. Heat sink 90
Are adhered to the lower surface of the insulating substrate 931 with a resin adhesive 92. The surface of the heat sink 90 is covered with a gold coating 91 to prevent oxidation of the heat sink.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来の電
子部品搭載用基板99においては,ヒートシンク90を
被覆する金被膜91と絶縁基板931との間の接着力が
弱いという問題がある。そこで,金被膜91の代わりに
ニッケル被膜によりヒートシンク90の表面を被覆する
ことが考えられている(特公平6─5699号公報)。
これにより,ヒートシンクと絶縁基板との間の接着強度
が高くなる。しかし,その一方で,ヒートシンクとニッ
ケル被膜との間に酸化膜(NiOなど)が形成されてし
まい,耐腐食性に劣るという問題がある。
However, in the above-mentioned conventional electronic component mounting substrate 99, there is a problem that the adhesive force between the gold coating 91 that covers the heat sink 90 and the insulating substrate 931 is weak. Therefore, it has been considered to cover the surface of the heat sink 90 with a nickel film instead of the gold film 91 (Japanese Patent Publication No. 6-5699).
This increases the adhesive strength between the heat sink and the insulating substrate. However, on the other hand, there is a problem in that an oxide film (NiO or the like) is formed between the heat sink and the nickel film, and the corrosion resistance is poor.

【0004】本発明はかかる従来の問題点に鑑み,ヒー
トシンクと絶縁基板との間の接着力を強くし,かつヒー
トシンクの酸化膜形成を防止することができる,電子部
品搭載用基板の製造方法を提供しようとするものであ
る。
In view of the above conventional problems, the present invention provides a method for manufacturing an electronic component mounting substrate which can strengthen the adhesive force between the heat sink and the insulating substrate and prevent the formation of an oxide film on the heat sink. It is the one we are trying to provide.

【0005】[0005]

【課題の解決手段】請求項1に記載の発明は,導体回路
を設けた合成樹脂製の絶縁基板に,銅製のヒートシンク
を接着剤を介して接着するに当たり,上記ヒートシンク
の表面にニッケル被膜を形成し,次いで,これらを還元
雰囲気において加熱することにより,上記ニッケル被膜
の表面を還元処理し,次いで,上記ニッケル被膜と上記
絶縁基板との間を上記接着剤により接着することを特徴
とする電子部品搭載用基板の製造方法である。
According to a first aspect of the present invention, a nickel film is formed on the surface of the heat sink when a heat sink made of copper is adhered to an insulating substrate made of synthetic resin provided with a conductor circuit with an adhesive. Then, these are heated in a reducing atmosphere to reduce the surface of the nickel coating, and then the nickel coating and the insulating substrate are bonded by the adhesive. It is a method of manufacturing a mounting substrate.

【0006】本発明において最も注目すべきことは,ヒ
ートシンクにニッケル被膜を形成した後に,還元処理を
することである。
What is most noticeable in the present invention is that the nickel coating is formed on the heat sink and then the reduction treatment is performed.

【0007】上記還元処理を行うことにより,ニッケル
被膜の表面に形成された酸化膜を還元し,表面をニッケ
ル金属膜とすることができる。また,このように表面が
金属ニッケル膜となっているので,上記ニッケル被膜
は,接着剤を用いて絶縁基板に接着されたとき,優れた
接着強度を発揮することができる。
By performing the above-mentioned reduction treatment, the oxide film formed on the surface of the nickel coating film can be reduced to form a nickel metal film on the surface. In addition, since the surface is a metal nickel film in this way, the nickel film can exhibit excellent adhesive strength when it is adhered to the insulating substrate using an adhesive.

【0008】次に,請求項2に記載のように,上記ニッ
ケル被膜の厚みは,1〜50μmであることが好まし
い。1μm未満の場合には,ニッケル被膜を形成する際
に,ニッケル被膜とヒートシンクとの境界又はニッケル
被膜の内部に気孔が形成され易く,ヒートシンクの耐腐
食性が低下するおそれがある。一方,50μmを越える
場合には,熱抵抗が増加して本来の目的であるヒートシ
ンクの放熱性を妨げることになるおそれがある。
Next, as described in claim 2, it is preferable that the nickel coating has a thickness of 1 to 50 μm. When the thickness is less than 1 μm, when forming the nickel coating, pores are likely to be formed at the boundary between the nickel coating and the heat sink or inside the nickel coating, which may reduce the corrosion resistance of the heat sink. On the other hand, if the thickness exceeds 50 μm, the thermal resistance may increase, and the heat dissipation of the heat sink, which is the original purpose, may be hindered.

【0009】次に,請求項3に記載のように,上記還元
雰囲気は,H2 ,CO,N2 又はそれらの混合物を主と
してなる雰囲気であることが好ましい。これにより,ヒ
ートシンク表面に酸化膜が形成されるおそれがある。
Next, as described in claim 3, it is preferable that the reducing atmosphere is an atmosphere mainly containing H 2 , CO, N 2 or a mixture thereof. As a result, an oxide film may be formed on the surface of the heat sink.

【0010】次に,請求項4に記載のように,上記還元
処理の加熱温度は,300〜1000℃であることが好
ましい。300℃未満の場合には,ヒートシンク表面に
酸化膜が形成されるおそれがある。一方,1000℃を
越える場合には,ヒートシンクの材料である銅が溶融
し,ヒートシンクの変形やニッケル被膜の剥がれを生じ
るおそれがある。また,酸化膜が完全に除去されないお
それがある。
Next, as described in claim 4, it is preferable that the heating temperature of the reduction treatment is 300 to 1000 ° C. If the temperature is lower than 300 ° C., an oxide film may be formed on the heat sink surface. On the other hand, when the temperature exceeds 1000 ° C., copper, which is the material of the heat sink, is melted, which may cause deformation of the heat sink and peeling of the nickel coating. Moreover, the oxide film may not be completely removed.

【0011】次に,請求項5に記載のように,上記還元
処理は,H2 の還元雰囲気において,500〜900℃
の条件で行うことが好ましい。これにより,ヒートシン
ク表面への酸化膜の形成を更に防止することができる。
500℃未満の場合には,ヒートシンク表面に酸化膜が
形成されるおそれがある。一方,900℃を越える場合
には,酸化膜が完全に除去されないおそれがある。
Next, as described in claim 5, the reducing treatment is carried out in a reducing atmosphere of H 2 at 500 to 900 ° C.
It is preferable to carry out under the conditions of. This can further prevent the formation of an oxide film on the surface of the heat sink.
If the temperature is lower than 500 ° C., an oxide film may be formed on the heat sink surface. On the other hand, if the temperature exceeds 900 ° C, the oxide film may not be completely removed.

【0012】次に,請求項6に記載のように,上記接着
剤は,エポキシ,ビスマレイミドトリアジン,ポリイミ
ドを主とする樹脂あるいはそれらの混合物のいずれかで
あることが好ましい。これにより,ヒートシンクを絶縁
基板に対してより一層強固に接着することができる。
Next, as described in claim 6, it is preferable that the adhesive is any of epoxy, bismaleimide triazine, a resin mainly containing polyimide, or a mixture thereof. As a result, the heat sink can be more firmly adhered to the insulating substrate.

【0013】上記合成樹脂製の絶縁基板としては,例え
ば,ガラスエポキシ系基板,ガラスポリイミド基板,又
はガラスビスマレイミドトリアジン基板を用いる。上記
の製造方法は,電子部品搭載用基板がボールグリッドア
レイ,ピングリッドアレイ,リードレスチップキャリ
ア,QFP(クオードフラットパッケージ)等で,ヒー
トシンクが形成されたプラスチックパッケージのいずれ
の場合にも適用可能である。
As the insulating substrate made of synthetic resin, for example, a glass epoxy substrate, a glass polyimide substrate, or a glass bismaleimide triazine substrate is used. The above-mentioned manufacturing method can be applied to any case where the electronic component mounting substrate is a ball grid array, a pin grid array, a leadless chip carrier, a QFP (quad flat package), or a plastic package having a heat sink. is there.

【0014】[0014]

【発明の実施の形態】本発明の実施形態例にかかる電子
部品搭載用基板の製造方法について,図1,図2を用い
て説明する。本例により製造される電子部品搭載用基板
は,図1,図2に示すごとく,導体回路5を設けた合成
樹脂製の絶縁基板31,32,33からなる多層基板3
と,電子部品8を搭載するための搭載部7とを有してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing an electronic component mounting board according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, the electronic component mounting substrate manufactured by this example is a multi-layer substrate 3 made of synthetic resin insulating substrates 31, 32 and 33 provided with conductor circuits 5.
And a mounting portion 7 for mounting the electronic component 8.

【0015】搭載部7は,図2に示すごとく,絶縁基板
31〜33に設けた搭載穴30と,その下方開口部を被
覆するように接着剤2を介して接着したヒートシンク1
0とにより形成されている。搭載部7に搭載した電子部
品8は,ボンディングワイヤー81を介して導体回路5
と接続され,封止用樹脂により封止される。電子部品搭
載用基板9は,各絶縁基板に設けた導体回路5の間の導
通を図るためのスルーホール(図示略)を設けている。
As shown in FIG. 2, the mounting portion 7 has a mounting hole 30 formed in the insulating substrates 31 to 33 and a heat sink 1 bonded with an adhesive 2 so as to cover the lower opening thereof.
0. The electronic component 8 mounted on the mounting portion 7 is connected to the conductor circuit 5 via the bonding wire 81.
And is sealed with a sealing resin. The electronic component mounting board 9 is provided with through holes (not shown) for establishing conduction between the conductor circuits 5 provided on each insulating board.

【0016】また,最上層である絶縁基板33の表面に
は,半田ボール6が接合されている。上記電子部品搭載
用基板9は,半田ボール6により他部材に接合,固定さ
れるボールグリッドアレイである。
The solder balls 6 are joined to the surface of the uppermost insulating substrate 33. The electronic component mounting substrate 9 is a ball grid array that is joined and fixed to another member by the solder balls 6.

【0017】次に,上記電子部品搭載用基板を製造する
方法について説明する。まず,各絶縁基板31,32,
33に導体回路5を形成すると共に搭載穴30を穿設す
る。上記絶縁基板としてはガラスエポキシ基板を用い
る。次いで,これらを積層して,多層基板3を得る。次
に,多層基板3にスルーホール(図示略)を形成する。
Next, a method of manufacturing the electronic component mounting board will be described. First, each insulating substrate 31, 32,
The conductor circuit 5 is formed in 33 and the mounting hole 30 is formed. A glass epoxy substrate is used as the insulating substrate. Then, these are laminated to obtain the multilayer substrate 3. Next, through holes (not shown) are formed in the multilayer substrate 3.

【0018】次に,図1に示すごとく,銅製のヒートシ
ンク10の表面にニッケル被膜1を電解めっき方法によ
り形成する。ニッケル被膜1の厚みは,3μmである。
次いで,これらを還元雰囲気において加熱して,上記ニ
ッケル被膜の表面を還元処理する。還元処理条件は,1
00%H2 の還元雰囲気において,700℃,5〜10
分間である。次に,ニッケル被膜1と多層基板3との間
を,エポキシ樹脂製の接着剤2により接着する。
Next, as shown in FIG. 1, a nickel coating 1 is formed on the surface of the copper heat sink 10 by an electrolytic plating method. The nickel coating 1 has a thickness of 3 μm.
Then, these are heated in a reducing atmosphere to reduce the surface of the nickel coating. The reduction condition is 1
In a reducing atmosphere of 00% H 2 , 700 ° C., 5 to 10
Minutes. Next, the nickel coating 1 and the multilayer substrate 3 are bonded to each other with an adhesive 2 made of epoxy resin.

【0019】次に,多層基板3の上面における導体回路
5に半田ボール6を配置し,これらを加熱炉において2
00〜230℃で加熱することにより,半田ボール6を
リフローさせて導体回路5に接合する。これにより,図
2に示す電子部品搭載用基板9が得られる。
Next, the solder balls 6 are arranged on the conductor circuit 5 on the upper surface of the multilayer substrate 3, and these are placed in a heating furnace.
The solder balls 6 are reflowed and joined to the conductor circuit 5 by heating at 00 to 230 ° C. As a result, the electronic component mounting substrate 9 shown in FIG. 2 is obtained.

【0020】次に,本例の作用効果について説明する。
本例の製造方法においては,ヒートシンク10を多層基
板3に接着剤2を介して接着するに当たり,ヒートシン
ク10の表面を被覆するニッケル被膜1に対して上記の
還元処理を行っている。
Next, the function and effect of this example will be described.
In the manufacturing method of this example, when the heat sink 10 is bonded to the multilayer substrate 3 via the adhesive 2, the above-described reduction treatment is performed on the nickel coating 1 that covers the surface of the heat sink 10.

【0021】そのため,ニッケル被膜1の表面に形成さ
れた酸化膜を還元して,表面をニッケル金属膜とするこ
とができる。また,還元処理後にも,ニッケル被膜の表
面は,酸化膜が形成されにくい。そのため,ヒートシン
クの耐腐食性を向上させることができる。また,このよ
うに表面が金属ニッケル被膜となっているので,上記ニ
ッケル被膜1は,接着剤2を用いて,合成樹脂製の多層
基板3に接着されたとき,優れた接着強度を発揮するこ
とができる。
Therefore, the oxide film formed on the surface of the nickel coating 1 can be reduced to form a nickel metal film on the surface. Further, even after the reduction treatment, an oxide film is hard to be formed on the surface of the nickel coating. Therefore, the corrosion resistance of the heat sink can be improved. In addition, since the surface is a metallic nickel film in this way, the nickel film 1 exhibits excellent adhesive strength when it is adhered to the synthetic resin multilayer substrate 3 using the adhesive 2. You can

【0022】(実験例1)本例においては,ヒートシン
クの絶縁基板に対する接着強度を測定した。測定に当た
り,実施形態例で製造した電子部品搭載用基板を試料1
として用いた。また,比較のために,銅製のヒートシン
クをそのまま接着剤を用いて絶縁基板に接着した場合を
試料C1とした。また,銅製のヒートシンクに黒化処理
を施した後に絶縁基板に接着した場合を試料C2とし
た。また,銅製のヒートシンクの表面に厚み3μmのニ
ッケル被膜を形成して,還元処理を行うことなく絶縁基
板に接着した場合を試料C3とした。ここで説明した点
を除いては,上記試料C1〜C3の製造方法は,実施形
態例と同様である。
Experimental Example 1 In this example, the adhesive strength of the heat sink to the insulating substrate was measured. In the measurement, the electronic component mounting substrate manufactured in the embodiment is used as a sample 1
Used as For comparison, Sample C1 was prepared by directly bonding a copper heat sink to an insulating substrate using an adhesive. A sample C2 was prepared by blackening a copper heat sink and then bonding it to an insulating substrate. A sample C3 was prepared by forming a nickel coating having a thickness of 3 μm on the surface of a copper heat sink and adhering it to an insulating substrate without reduction treatment. Except for the points described here, the manufacturing method of the samples C1 to C3 is the same as that of the embodiment.

【0023】測定方法は,上記試料1,C1〜C3につ
いて,常温(25℃),及びプレッシャークッカーテス
ト(以下,PCTという。)における接着強度とを測定
した。測定結果を図3に示した。同図より知られるよう
に,常温及びPCTの双方において,試料1の接着強度
は28kgfであり,試料C1〜C3の接着強度15k
gf以下に対して高い値を示した。このことから,ヒー
トシンクの表面を被覆するニッケル被膜に還元処理を行
うことにより,ヒートシンクと絶縁基板の間の優れた接
着強度が得られることがわかる。
As the measuring method, the adhesive strength in the normal temperature (25 ° C.) and the pressure cooker test (hereinafter referred to as PCT) was measured for each of the samples 1 and C1 to C3. The measurement results are shown in FIG. As is known from the figure, the adhesive strength of the sample 1 is 28 kgf and the adhesive strength of the samples C1 to C3 is 15 k at both room temperature and PCT.
A high value was shown for gf or less. From this, it can be seen that by performing the reduction treatment on the nickel coating that covers the surface of the heat sink, excellent adhesion strength between the heat sink and the insulating substrate can be obtained.

【0024】(実験例2)本例においては,半田ボール
のリフロー時におけるヒートシンクの接着強度について
評価した。この評価により,半田ボールのリフロー工程
がヒートシンクの接着強度に与える影響を知ることがで
きる。
Experimental Example 2 In this example, the adhesive strength of the heat sink during reflow of the solder balls was evaluated. From this evaluation, it is possible to know the effect of the solder ball reflow process on the adhesive strength of the heat sink.

【0025】この評価にあたり,実験例1において用い
た試料1,C1〜C3のヒートシンクを用いた。これら
のヒートシンクをエポキシ樹脂製の接着剤により多層基
板に接着した。この多層基板について,85℃/85%
RHの環境下で5時間放置した。その後,多層基板表面
の導体回路上に半田ボールを配置し,215℃で加熱す
ることにより半田ボールのリフローを行った。このリフ
ローは3回繰り返した。その後,ヒートシンクの接着強
度を測定した。
In this evaluation, the heat sinks of Sample 1 and C1 to C3 used in Experimental Example 1 were used. These heat sinks were adhered to the multilayer substrate with an epoxy resin adhesive. About this multilayer board, 85 ℃ / 85%
It was left for 5 hours under the environment of RH. Then, solder balls were placed on the conductor circuits on the surface of the multilayer substrate and heated at 215 ° C. to reflow the solder balls. This reflow was repeated 3 times. Then, the adhesive strength of the heat sink was measured.

【0026】その結果,試料1の接着強度は,28kg
fで強度の変化がなかった。また,比較例としての試料
C1〜C3の接着強度は,試料C1が18kgf,試料
C2が16kgf,試料C3が11kgfであった。こ
のことから,試料1は,試料C1 〜C3に比べて高い接
着強度であることがわかる。以上の2つの測定より,ヒ
ートシンク表面のニッケル被膜に還元処理を行うことに
より,ヒートシンクの接着強度が向上することがわか
る。
As a result, the adhesive strength of sample 1 was 28 kg.
There was no change in strength at f. The adhesive strengths of the samples C1 to C3 as comparative examples were 18 kgf for the sample C1, 16 kgf for the sample C2, and 11 kgf for the sample C3. From this, it is understood that the sample 1 has higher adhesive strength than the samples C1 to C3. From the above two measurements, it can be seen that the reduction of the nickel coating on the heat sink surface improves the adhesive strength of the heat sink.

【0027】[0027]

【発明の効果】本発明によれば,ヒートシンクと絶縁基
板との間の接着力を強くし,かつヒートシンクの酸化膜
形成を防止することができる,電子部品搭載用基板の製
造方法を提供することができる。
According to the present invention, there is provided a method of manufacturing a substrate for mounting electronic parts, which can strengthen the adhesive force between the heat sink and the insulating substrate and prevent the oxide film from being formed on the heat sink. You can

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例における電子部品搭載用基板の要部
断面図。
FIG. 1 is a sectional view of an essential part of a board for mounting electronic components according to an embodiment.

【図2】実施形態例における,電子部品搭載用基板の断
面図。
FIG. 2 is a cross-sectional view of the electronic component mounting board according to the embodiment.

【図3】実験例1における,ヒートシンクと絶縁基板と
の間の接着強度を示す説明図。
FIG. 3 is an explanatory diagram showing adhesive strength between a heat sink and an insulating substrate in Experimental Example 1.

【図4】従来例における電子部品搭載用基板の要部断面
図。
FIG. 4 is a cross-sectional view of a main part of a conventional electronic component mounting board.

【符号の説明】[Explanation of symbols]

1...ニッケル被膜, 10...ヒートシンク, 2...接着剤, 3...多層基板, 31,32,33...絶縁基板, 5...導体回路, 6...半田ボール, 7...搭載部, 8...電子部品, 9...電子部品搭載用基板, 1. . . Nickel coating, 10. . . Heat sink, 2. . . Adhesive, 3. . . Multilayer substrate, 31, 32, 33. . . Insulating substrate, 5. . . Conductor circuit, 6. . . Solder balls, 7. . . 7. mounting part, . . Electronic components, 9. . . Electronic component mounting board,

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導体回路を設けた合成樹脂製の絶縁基板
に,銅製のヒートシンクを接着剤を介して接着するに当
たり,上記ヒートシンクの表面にニッケル被膜を形成
し,次いで,これらを還元雰囲気において加熱すること
により,上記ニッケル被膜の表面を還元処理し,次い
で,上記ニッケル被膜と上記絶縁基板との間を上記接着
剤により接着することを特徴とする電子部品搭載用基板
の製造方法。
1. When a copper heat sink is bonded to a synthetic resin insulating substrate provided with a conductor circuit with an adhesive, a nickel coating is formed on the surface of the heat sink and then these are heated in a reducing atmosphere. By doing so, the surface of the nickel coating is subjected to a reduction treatment, and then the nickel coating and the insulating substrate are bonded to each other with the adhesive, and a method for manufacturing an electronic component mounting substrate.
【請求項2】 請求項1において,上記ニッケル被膜の
厚みは,1〜50μmであることを特徴とする電子部品
搭載用基板の製造方法。
2. The method for manufacturing an electronic component mounting substrate according to claim 1, wherein the nickel coating has a thickness of 1 to 50 μm.
【請求項3】 請求項1又は2において,上記還元雰囲
気は,H2 ,CO,又はN2 のいずれかあるいはそれら
の混合物を主としてなる雰囲気であることを特徴とする
電子部品搭載用基板の製造方法。
3. The production of a substrate for mounting electronic parts according to claim 1 or 2, wherein the reducing atmosphere is an atmosphere mainly containing H 2 , CO, N 2 or a mixture thereof. Method.
【請求項4】 請求項1〜3のいずれか一項において,
上記還元処理の加熱温度は,300〜1000℃である
ことを特徴とする電子部品搭載用基板の製造方法。
4. The method according to claim 1, wherein
The heating temperature of the reduction treatment is 300 to 1000 ° C., The manufacturing method of the electronic component mounting substrate.
【請求項5】 請求項1〜4のいずれか一項において,
上記還元処理は,H2の還元雰囲気において,500〜
900℃の条件で行うことを特徴とする電子部品搭載用
基板の製造方法。
5. The method according to claim 1, wherein:
The above reduction treatment is performed in a reducing atmosphere of H 2 at 500 to
A method of manufacturing a substrate for mounting an electronic component, which is performed under the condition of 900 ° C.
【請求項6】 請求項1〜5のいずれか一項において,
上記接着剤は,エポキシ,ビスマレイミドトリアジン又
はポリイミドを主とする樹脂あるいはそれらの混合物の
いずれかであることを特徴とする電子部品搭載用基板の
製造方法。
6. The method according to any one of claims 1 to 5,
The method for producing a substrate for mounting electronic parts, wherein the adhesive is any one of a resin mainly containing epoxy, bismaleimide triazine or polyimide, or a mixture thereof.
【請求項7】 請求項1〜6のいずれか一項において,
上記接着剤は,H2 ,CO,又はN2 のいずれかあるい
はそれらの混合物を主とした雰囲気において硬化させる
ことを特徴とする電子部品搭載用基板の製造方法。
7. The method according to claim 1, wherein:
A method for manufacturing an electronic component mounting substrate, wherein the adhesive is cured in an atmosphere mainly containing H 2 , CO, N 2 or a mixture thereof.
JP35209495A 1995-12-26 1995-12-26 Electronic component mounting board manufacturing method Pending JPH09181469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35209495A JPH09181469A (en) 1995-12-26 1995-12-26 Electronic component mounting board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35209495A JPH09181469A (en) 1995-12-26 1995-12-26 Electronic component mounting board manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005248946A Division JP2005354114A (en) 2005-08-30 2005-08-30 Electronic component mounting substrate and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JPH09181469A true JPH09181469A (en) 1997-07-11

Family

ID=18421747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35209495A Pending JPH09181469A (en) 1995-12-26 1995-12-26 Electronic component mounting board manufacturing method

Country Status (1)

Country Link
JP (1) JPH09181469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064084A (en) * 1998-08-20 2000-02-29 Kobe Steel Ltd Plating material for heat radiating board of electronic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064084A (en) * 1998-08-20 2000-02-29 Kobe Steel Ltd Plating material for heat radiating board of electronic parts

Similar Documents

Publication Publication Date Title
US7190057B2 (en) Packaging component and semiconductor package
JP3982895B2 (en) Metal-based semiconductor circuit board
JP2001110971A (en) Lead frame for semiconductor package and its manufacturing method
JP4698708B2 (en) Package parts and semiconductor packages
US6519845B1 (en) Wire bonding to dual metal covered pad surfaces
JP3758610B2 (en) Film carrier tape for mounting electronic components
JPH07263611A (en) Lead frame for semiconductor device
JP4628263B2 (en) Package component, manufacturing method thereof, and semiconductor package
JP3392992B2 (en) Semiconductor package
JP3297177B2 (en) Method for manufacturing semiconductor device
JPH09181469A (en) Electronic component mounting board manufacturing method
JP5264939B2 (en) Package parts and semiconductor packages
JP2002016100A (en) Electronic component-mounting substrate and its manufacturing method
KR900003472B1 (en) Plating process for an electronic part
JP2005354114A (en) Electronic component mounting substrate and manufacturing method therefor
JP2003133474A (en) Mounting structure of electronic device
JPH10284821A (en) Printed wiring board
JPS59219948A (en) Lead frame for plastic seal type semiconductor device
JPH03206633A (en) Semiconductor device
JP2675077B2 (en) Lead frame for semiconductor device
JP2001338949A (en) Electronic device, mounting body of electronic component, and manufacturing method of the electronic component
JP2000054184A (en) Silver-plated material for lead frame excellent in solder wettability
JP2002252305A (en) Mounting structure for electronic device
JP2002252306A (en) Mounting structure for electronic device
JPH04340257A (en) Electronic-component mounting device and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A131 Notification of reasons for refusal

Effective date: 20050927

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110