JPH09179055A - Bearing part for optical deflector and dynamic pressure air bearing type optical deflector - Google Patents

Bearing part for optical deflector and dynamic pressure air bearing type optical deflector

Info

Publication number
JPH09179055A
JPH09179055A JP33264696A JP33264696A JPH09179055A JP H09179055 A JPH09179055 A JP H09179055A JP 33264696 A JP33264696 A JP 33264696A JP 33264696 A JP33264696 A JP 33264696A JP H09179055 A JPH09179055 A JP H09179055A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
optical deflector
dynamic
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33264696A
Other languages
Japanese (ja)
Other versions
JP2980854B2 (en
Inventor
Shigetaka Yoshimoto
成香 吉本
Akiyoshi Takahashi
明義 高橋
Rie Wakashima
理絵 若島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP33264696A priority Critical patent/JP2980854B2/en
Publication of JPH09179055A publication Critical patent/JPH09179055A/en
Application granted granted Critical
Publication of JP2980854B2 publication Critical patent/JP2980854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the bearing rigidity while reducing the windage loss at the time of the rotation of a rotary polygon mirror or rotary single-surface mirror by lowering the pressure in the optical deflector constituted by putting a motor rotation part, which is freely rotatable around the outer periphery of a dynamic pressure shaft together with the rotary polygon mirror or rotary single-surface mirror, hermetically in a case and a cover member. SOLUTION: A center hole which communicates with the outside air is bored along the length of the center part of a dynamic pressure shaft 1 having a feed herringbone groove (q) (or (r)) bored on one side of a dynamic pressure bearing M and a hole (b) is provided in the center of the herringbone groove (d) of the dynamic pressure bearing M and the feed herringbone groove (q), or a hole (c) is formed in the center of the herringbone groove (e) of the dynamic pressure bearing M and the feed herringbone groove (r).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、情報機器、画像機器、
計測機器に用いられる光偏向器用軸受部及び動圧空気軸
受型光偏向器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to information equipment, image equipment,
The present invention relates to an optical deflector bearing portion and a dynamic pressure air bearing type optical deflector used in a measuring instrument.

【0002】[0002]

【従来の技術】従来例の動圧空気軸受型光偏向器の一例
の構造と作用とを図8から図12を参照して説明する。
図8は従来例の動圧空気軸受型光偏向器の断面図であ
る。動圧軸1aはモータケース3に焼きばめ等で隙間な
く固着されている。また、動圧軸1aとカバー部材4は
Oリング20を介して、又カバー部材4とモータケース
3はOリング21を介して、隙間なく固着されている。
モータケース3の開口部に架設した支持板17にホール
素子18を設ける。動圧軸1aの外周には円筒状スリー
ブ2が嵌挿してあり、更にスリーブ2の外周にはマグネ
ット22が嵌挿固着され、このスリーブ2と対面するよ
うにモータケース3の垂直側壁内に設けたヨーク16に
はコイル15を巻回する。モータケース3の内側壁上に
は、動圧軸1aの外周に渉ってスラスト動圧軸受12を
設け、スラスト動圧軸受12上にワッシャ13を配設す
る。また符号14はマグネット22の下端に設けられ、
ワッシャ13に固着したスペーサである。カバー部材4
内には、スリーブ2の外周に固定したハブ6とこのハブ
6に水平にネジ9で固着した回転多面鏡5とを、スリー
ブ2と共に動圧軸1aの外周を回転自在に、収納する。
又スリーブ2の上端とこれに対面するカバー部材4の内
側面にそれぞれ極性の異なる一対のスラスト抑え用磁石
10,11を配設する。モータ回転部内の空間と外部と
は、動圧軸1aとスリーブ2の間の隙間を通して、後述
する動圧軸1aに設けた入口Kを具えた長手方向の中心
孔Hgと、これに連通している孔Hb,Hcの開口部に
より流通している。コイル15に通電すると、ヨーク1
6、ホール素子18、マグネット22よりなるモータ駆
動部が作動して、その外周に、マグネット22を嵌挿固
着した円筒状スリーブ2がスラスト動圧軸受12に支持
され、動圧軸1aを芯として回転する。それと同時に前
記スリーブ2の外周に設けたハブ6と共に回転多面鏡5
が回転する。この際、動圧軸1aとスリーブ2の間に動
圧が発生し、この動圧により軸受剛性が生ずる。又磁石
10、11との間には磁石の反発力により適宜な隙間が
保持されている。動圧軸1aとスリーブ2との間の隙間
内の空気の圧力分布を、図9から図12で説明する。図
9は動圧軸1aの平面図で、軸受部を示す。動圧軸1a
には互いに反対向きの吸入角βを持ったヘリングボーン
溝HdとHeと溝非加工部Hfより構成される一つの動
圧軸受Maが設けてある。図10は動圧軸1aの上半分
の断面図であり、動圧軸1aの中心部の長手方向に、大
気と連通する入口Kを具えた中央孔Hgと、この中央孔
Hgに連通してスリーブ2の方向へ開口する孔Hb,H
cが穿設してある。又入口K付近にはフィルタ23が設
けてある(図8)。孔Hb,Hcの開口部はヘリングボ
ーン溝Hd,Heの中心に位置しており、図9で図示の
従来例の動圧空気軸受型光偏向器の動圧軸受Maの境界
条件は孔Hb,Hcの開口部分での空気の圧力が大気圧
に等しいということになる。又回転安定状態では、図1
1に図示のように、空気吸い込み口では軸方向の質量流
量は0になるので、この動圧軸受Ma内の圧力分布は図
12に図示の状態となる。図12において縦軸は代表値
を大気圧にとった無次元圧力Pであり、P=1のとき空
気圧は大気圧に等しいことを示す。この従来例では図1
2に示すように、動圧軸受部Maの両端の空気吸い込み
口では大気圧よりも圧力が低くなるから、図8で示す動
圧空気軸受型光偏向器内の空気圧は大気圧よりも低くな
り、風損を小さくしているが、しかし、動圧軸受Maの
内部の最大空気圧は前記の通り大気圧となっていた。
2. Description of the Related Art The structure and operation of an example of a conventional dynamic air bearing type optical deflector will be described with reference to FIGS.
FIG. 8 is a sectional view of a conventional dynamic air bearing type optical deflector. The dynamic pressure shaft 1a is firmly fixed to the motor case 3 by shrink fit or the like. The dynamic pressure shaft 1a and the cover member 4 are fixed to each other via an O-ring 20, and the cover member 4 and the motor case 3 are fixed to each other via an O-ring 21 without any gap.
A Hall element 18 is provided on a support plate 17 that is provided over an opening of the motor case 3. A cylindrical sleeve 2 is fitted on the outer periphery of the dynamic pressure shaft 1a, and a magnet 22 is further fitted and fixed on the outer periphery of the sleeve 2 and provided in a vertical side wall of the motor case 3 so as to face the sleeve 2. The coil 15 is wound around the yoke 16. A thrust dynamic pressure bearing 12 is provided on the inner wall of the motor case 3 over the outer periphery of the dynamic pressure shaft 1 a, and a washer 13 is provided on the thrust dynamic pressure bearing 12. Reference numeral 14 is provided at the lower end of the magnet 22,
The spacer is fixed to the washer 13. Cover member 4
Inside, a hub 6 fixed to the outer periphery of the sleeve 2 and a rotary polygon mirror 5 fixed to the hub 6 horizontally with screws 9 are housed together with the sleeve 2 such that the outer periphery of the dynamic pressure shaft 1a is rotatable.
A pair of thrust suppressing magnets 10 and 11 having different polarities are disposed on the upper end of the sleeve 2 and the inner surface of the cover member 4 facing the upper end. The space inside the motor rotating part and the outside communicate with a longitudinal center hole Hg having an inlet K provided in the dynamic pressure shaft 1a, which will be described later, through a gap between the dynamic pressure shaft 1a and the sleeve 2. Flow through the openings of the holes Hb and Hc. When the coil 15 is energized, the yoke 1
6. The motor drive unit comprising the Hall element 18 and the magnet 22 is operated, and the cylindrical sleeve 2 in which the magnet 22 is inserted and fixed is supported by the thrust dynamic pressure bearing 12 on the outer periphery thereof, with the dynamic pressure shaft 1a as the core. Rotate. At the same time, the rotary polygon mirror 5 is used together with the hub 6 provided on the outer periphery of the sleeve 2.
Rotates. At this time, a dynamic pressure is generated between the dynamic pressure shaft 1a and the sleeve 2, and the dynamic pressure generates bearing rigidity. An appropriate gap is held between the magnets 10 and 11 by the repulsive force of the magnets. The pressure distribution of the air in the gap between the dynamic pressure shaft 1a and the sleeve 2 will be described with reference to FIGS. FIG. 9 is a plan view of the dynamic pressure shaft 1a and shows a bearing portion. Dynamic pressure shaft 1a
Is provided with one dynamic bearing Ma composed of herringbone grooves Hd and He having suction angles β opposite to each other and a non-grooved portion Hf. FIG. 10 is a cross-sectional view of the upper half of the dynamic pressure shaft 1a. In the longitudinal direction of the central portion of the dynamic pressure shaft 1a, a central hole Hg having an inlet K communicating with the atmosphere and a central hole Hg communicating with the central hole Hg. Holes Hb, H that open in the direction of the sleeve 2
c is drilled. A filter 23 is provided near the entrance K (FIG. 8). The openings of the holes Hb and Hc are located at the centers of the herringbone grooves Hd and He, and the boundary condition of the dynamic pressure bearing Ma of the conventional dynamic pressure air bearing type optical deflector shown in FIG. This means that the air pressure at the opening of Hc is equal to the atmospheric pressure. When the rotation is stable,
As shown in FIG. 1, the mass flow rate in the axial direction is 0 at the air suction port, so the pressure distribution in this dynamic pressure bearing Ma is as shown in FIG. In FIG. 12, the vertical axis represents the dimensionless pressure P whose representative value is atmospheric pressure, and when P = 1, the air pressure is equal to atmospheric pressure. In this conventional example, FIG.
As shown in FIG. 2, the air pressure at the air suction ports at both ends of the dynamic pressure bearing portion Ma becomes lower than the atmospheric pressure, so that the air pressure in the dynamic pressure air bearing type optical deflector shown in FIG. 8 becomes lower than the atmospheric pressure. Although the windage loss is reduced, the maximum air pressure inside the dynamic pressure bearing Ma is atmospheric pressure as described above.

【0003】[0003]

【発明の解決すべき課題】前記従来例の動圧空気軸受型
光偏向器では、モータ回転部の回転により回転多面鏡ま
たは回転単面鏡(以下単に「回転鏡」という。)を含む
モータ回転部の外周における気圧を低下させて回転鏡の
風損を少なくするために動圧軸とスリーブとの隙間の気
圧を大気圧としているので、軸受剛性が低くなるという
問題点があった。
In the conventional dynamic air bearing type optical deflector, the rotation of the motor includes a rotating polygon mirror or a rotating single-sided mirror (hereinafter simply referred to as "rotating mirror"). Since the atmospheric pressure in the gap between the dynamic pressure shaft and the sleeve is set to the atmospheric pressure in order to reduce the atmospheric pressure at the outer circumference of the portion and reduce the windage loss of the rotating mirror, there is a problem that the bearing rigidity becomes low.

【0004】[0004]

【課題を解決するための手段】本発明は前記問題を解決
するためになされたもので、動圧軸受を形成するための
動圧軸と、この動圧軸に対して回転自在なスリーブを介
して回転鏡およびそのモータ回転部とを密閉のモータケ
ース内に収容した動圧空気軸受型光偏向器において、前
記動圧軸は、その動圧軸受の一側方に同動圧軸受の方向
に空気を送る送り用ヘリングボーン溝を設け、この送り
用ヘリングボーン溝と動圧軸受との間の中心位置に開口
する孔を形成し、この孔を同動圧軸の中心部の長手方向
に穿設した中央孔を介して大気と連通することにより光
偏向器用軸受部を構成した。また、動圧軸受を形成する
ための動圧軸と、この動圧軸に対して回転自在なスリー
ブを介して回転鏡およびそのモータ回転部とを密閉のモ
ータケース内に収容した動圧空気軸受型光偏向器におい
て、前記動圧軸は1つの動圧軸受を備え、この動圧軸受
の両側方に同動圧軸受の方向に空気を送る送り用ヘリン
グボーン溝を穿設し、これら送り用ヘリングボーン溝と
上記動圧軸受との間の中心位置に開口する孔を形成し、
この孔を同動圧軸の中心部の長手方向に穿設した中央孔
を介して大気と連通することにより動圧空気軸受型光偏
向器を構成した。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and includes a dynamic pressure shaft for forming a dynamic pressure bearing and a sleeve rotatable with respect to the dynamic pressure shaft. In a dynamic pressure air bearing type optical deflector in which a rotating mirror and its motor rotating portion are housed in a closed motor case, the dynamic pressure shaft is provided on one side of the dynamic pressure bearing in the direction of the dynamic pressure bearing. A herringbone groove for feeding air is provided, and a hole is formed at the center between the herringbone groove for feeding and the dynamic pressure bearing, and this hole is drilled in the longitudinal direction of the center of the dynamic pressure shaft. The bearing portion for the optical deflector was constructed by communicating with the atmosphere through the central hole provided. Further, a dynamic pressure air bearing for forming a dynamic pressure bearing, and a rotary mirror and its motor rotating portion via a sleeve rotatable with respect to the dynamic pressure shaft are housed in a sealed motor case. Type optical deflector, the dynamic pressure shaft is provided with one dynamic pressure bearing, and herringbone grooves for sending air in the direction of the dynamic pressure bearing are formed on both sides of the dynamic pressure bearing, and these are provided for feeding. Form a hole that opens at the center position between the herringbone groove and the dynamic pressure bearing,
A dynamic pressure air bearing type optical deflector was constructed by communicating this hole with the atmosphere through a central hole formed in the longitudinal direction of the center of the dynamic pressure shaft.

【0005】[0005]

【作用】本発明の光偏向器用軸受部においては、動圧軸
に対するスリーブの回転動作により、送り用ヘリングボ
ーン溝が動圧軸の中心孔を介して大気側に空気を送り出
す一方、この動圧軸の中心孔を介して動圧軸受が大気圧
を基礎とする軸受支持力を発生する。また、ヘリングボ
ーン溝による1つの動圧軸受の両側方に大気に連通する
孔と送り用ヘリングボーン溝とを形成し、スリーブを介
して回転鏡およびそのモータ回転部とを密閉ケース内に
収容した動圧空気軸受型光偏向器を構成した場合は、軸
受支持力を損なうことなくケース内圧が低減されるの
で、回転鏡による風損を低減しつつ軸受支持剛性を高め
ることができる。
In the optical deflector bearing of the present invention, the rotation of the sleeve with respect to the dynamic pressure shaft causes the feeding herringbone groove to send out air to the atmosphere side through the central hole of the dynamic pressure shaft. Through the central hole of the shaft, the hydrodynamic bearing produces a bearing support force based on atmospheric pressure. Further, a hole for communicating with the atmosphere and a feeding herringbone groove are formed on both sides of one dynamic pressure bearing by the herringbone groove, and the rotary mirror and its motor rotating portion are housed in a hermetically sealed case via a sleeve. When the dynamic air bearing type optical deflector is configured, the internal pressure of the case is reduced without impairing the bearing supporting force, so that the bearing supporting rigidity can be increased while reducing the wind loss due to the rotating mirror.

【0006】[0006]

【実施例】以下添付図面を参照して、本発明に係る動圧
空気軸受型光偏向器の実施例について説明する。尚、本
実施例においては回転多面鏡を装着した動圧空気軸受型
光偏向器について述べているが、回転単面鏡を装着して
もよいことは勿論である。尚従来例の動圧空気軸受型光
偏向器の説明において採用した符号のうち、本実施例と
同一のものは同一部材を示す。図1は本発明による動圧
空気軸受型光偏向器の断面図である。動圧軸1はモータ
ケース3に焼きばめ等で隙間なく固着されている。又、
動圧軸1とカバー部材4はOリング20を介して、又カ
バー部材4とモータケース3とはOリング21を介して
隙間なく固着されている。モータ回転部内の空間と外部
とは、動圧軸1とスリーブ2の間の隙間を通して、後述
する動圧軸1に設けた長手方向の中心孔gと、これに連
通している孔b,cの開口部により流通している。ヨー
ク16、コイル15…、ホール素子18、マグネット2
2から構成されるモータ部を駆動すると、マグネット2
2が固着された中空円筒形のスリーブ2が回転し、更
に、スリーブ2に固着されたハブ6にネジ9で固着され
た回転多面鏡5が回転する。この際、動圧軸1とスリー
ブ2の間に動圧が発生し、この動圧により軸受剛性が生
ずる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a dynamic air bearing type optical deflector according to the present invention. In this embodiment, a dynamic pressure air bearing type optical deflector equipped with a rotating polygon mirror is described. However, a rotating single mirror may be fitted. Incidentally, among the reference numerals used in the description of the conventional dynamic pressure air bearing type optical deflector, those which are the same as those in the present embodiment indicate the same members. FIG. 1 is a sectional view of a dynamic pressure air bearing type optical deflector according to the present invention. The dynamic pressure shaft 1 is fixed to the motor case 3 by shrink fitting or the like without any gap. or,
The dynamic pressure shaft 1 and the cover member 4 are fixed to each other via an O-ring 20, and the cover member 4 and the motor case 3 are fixed to each other via an O-ring 21 without gaps. The space inside the motor rotating part and the outside are passed through a gap between the dynamic pressure shaft 1 and the sleeve 2, and a longitudinal center hole g provided on the dynamic pressure shaft 1, which will be described later, and holes b and c communicating therewith. It is distributed by the opening of. Yoke 16, coil 15,..., Hall element 18, magnet 2
When the motor unit composed of two magnets is driven, the magnet 2
The hollow cylindrical sleeve 2 to which the sleeve 2 is fixed rotates, and the rotary polygon mirror 5 fixed to the hub 6 fixed to the sleeve 2 by screws 9 further rotates. At this time, a dynamic pressure is generated between the dynamic pressure shaft 1 and the sleeve 2, and the dynamic pressure generates bearing rigidity.

【0007】動圧軸1とスリーブ2との間の隙間内の空
気の圧力分布を、図2から図7で説明する。図2は動圧
軸1の断面図で、動圧空気軸受型光偏向器の軸受部を示
す。動圧軸1には、互いに反対向きの吸入角βを持った
ヘリングボーン溝dとeと溝非加工部fより構成される
2つの動圧軸受M,Mと、この2つの動圧軸受M,Mの
両側端に位置し、隣り合うヘリングボーン溝d,eと同
U向きの吸入角βを持った送り用ヘリングボーン溝qと
rが設けてある。又動圧軸受Mは、図4に示すように溝
非加工部をなくして、全面加工を施したヘリングボーン
溝d,eのみであってもよい。図3は動圧軸1の上半分
の断面図であり、動圧軸1の中心部の長手方向に、大気
と連通する入口Kを具えた中央孔gと、この中央孔gに
連通してスリーブ2の方向へ開口する孔b,cが穿設し
てある。入口K付近にはフィルタ23が設けてある。孔
b,cの開口部は、動圧軸受M,Mとその外側に設けた
送り用ヘリングボーン溝q及びrとの、それぞれの中心
に位置しており、図1で図示の本発明に係る動圧空気軸
受型光偏向器の動圧軸1の境界条件は孔b,cの開口部
分での空気の圧力が大気圧に等しいということになる。
又回転安定状態では、図6に図示のように、空気吸い込
み口では軸方向の質量流量は0になるので、この動圧軸
1内の圧力分布は図7に図示の状態となる。図7におい
て縦軸は代表値を大気圧にとった無次元圧力Pであり、
P=1のとき空気圧は大気圧に等しいことを示す。本発
明では、前記の通り動圧軸受Mと送り用ヘリングボーン
溝q及びrとの中心に位置する孔b,cの開口部分での
空気の圧力が大気圧に等しくなるため、図7に示すよう
に空気吸い込み口における気圧は大気圧よりも低くなっ
て、図1で示す動圧空気軸受型光偏向器内の気圧も大気
圧より低くなるが、動圧軸1とスリーブ2との間の隙間
内の最大空気圧は大気圧よりも高くなり、風損を低下さ
せたまま軸受剛性を高めることができる。
The pressure distribution of air in the gap between the dynamic pressure shaft 1 and the sleeve 2 will be described with reference to FIGS. FIG. 2 is a sectional view of the dynamic pressure shaft 1, showing a bearing portion of the dynamic pressure air bearing type optical deflector. On the dynamic pressure shaft 1, two dynamic pressure bearings M, M having herringbone grooves d and e having opposite suction angles β and a groove non-machined portion f, and these two dynamic pressure bearings M are provided. , M, which are located at both ends of the feeding herringbone grooves d and e, and feeding herringbone grooves q and r having a suction angle β in the same U direction as the herringbone grooves d and e. Further, as shown in FIG. 4, the dynamic pressure bearing M may have only the herringbone grooves d and e which have been entirely processed without the groove non-processed portions. FIG. 3 is a cross-sectional view of the upper half of the dynamic pressure shaft 1, which has a central hole g having an inlet K communicating with the atmosphere in the longitudinal direction of the central portion of the dynamic pressure shaft 1 and a central hole g communicating with the central hole g. Holes b and c that open toward the sleeve 2 are provided. A filter 23 is provided near the entrance K. The openings of the holes b and c are located at the centers of the dynamic pressure bearings M and M and the feeding herringbone grooves q and r provided outside the dynamic pressure bearings M and M, respectively, according to the present invention shown in FIG. The boundary condition of the dynamic pressure shaft 1 of the dynamic pressure air bearing type optical deflector is that the pressure of the air at the openings of the holes b and c is equal to the atmospheric pressure.
In the stable rotation state, as shown in FIG. 6, the mass flow rate in the axial direction becomes 0 at the air suction port, so the pressure distribution in the dynamic pressure shaft 1 becomes the state shown in FIG. In FIG. 7, the vertical axis is the dimensionless pressure P whose representative value is atmospheric pressure,
When P = 1, it means that the air pressure is equal to the atmospheric pressure. According to the present invention, as described above, the air pressure at the opening portions of the holes b and c located at the centers of the dynamic pressure bearing M and the feeding herringbone grooves q and r becomes equal to the atmospheric pressure, so that it is shown in FIG. As described above, the air pressure in the air suction port becomes lower than the atmospheric pressure, and the air pressure in the dynamic pressure air bearing type optical deflector shown in FIG. 1 also becomes lower than the atmospheric pressure. The maximum air pressure in the gap becomes higher than the atmospheric pressure, and the bearing rigidity can be increased while reducing the wind loss.

【0008】[0008]

【効果】以上詳細に説明したように、本発明の光偏向器
用軸受部によれば、空気の送出作用と軸受支持剛性を共
に確保することができる。また、上記軸受部によって光
偏向器を構成した場合は、回転鏡の周囲圧力を下げたま
ま動圧軸受内部すなわち動圧軸とスリーブの隙間の気圧
を高めることができるので、軸受剛性を低下させること
なく風損を小さくしてモータの省力化が可能となる。
As described above in detail, according to the bearing portion for an optical deflector of the present invention, it is possible to secure both the air sending action and the bearing support rigidity. Further, in the case where the optical deflector is constituted by the above bearing portion, the air pressure inside the dynamic pressure bearing, that is, in the gap between the dynamic pressure shaft and the sleeve can be increased while reducing the ambient pressure of the rotating mirror, so that the bearing rigidity is reduced. Without increasing the wind loss, it is possible to save the labor of the motor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る動圧空気軸受型光偏向器の一実施
例の断面図。
FIG. 1 is a sectional view of an embodiment of a dynamic pressure air bearing type optical deflector according to the present invention.

【図2】本発明に係る動圧空気軸受型光偏向器の軸受部
の一実施例の平面図。
FIG. 2 is a plan view of an embodiment of a bearing portion of a dynamic pressure air bearing type optical deflector according to the present invention.

【図3】図2の軸受部の上半分断面図。3 is an upper half sectional view of the bearing portion of FIG.

【図4】本発明に係る動圧空気軸受型光偏向器の軸受部
の別の実施例の平面図。
FIG. 4 is a plan view of another embodiment of the bearing portion of the dynamic pressure air bearing type optical deflector according to the present invention.

【図5】図4の軸受部の上半分断面図。5 is an upper half sectional view of the bearing portion of FIG.

【図6】図2に図示するヘリングボーン溝を具えたスリ
ーブを含む軸受部の断面図。
6 is a cross-sectional view of a bearing portion including a sleeve having a herringbone groove illustrated in FIG.

【図7】図6に示す動圧空気軸受型光偏向器の軸受部周
辺の圧力分布の図。
FIG. 7 is a diagram showing a pressure distribution around a bearing portion of the dynamic pressure air bearing type optical deflector shown in FIG.

【図8】従来例の動圧空気軸受型光偏向器の断面図。FIG. 8 is a sectional view of a conventional dynamic pressure air bearing type optical deflector.

【図9】従来例の動圧空気軸受型光偏向器の軸受部の平
面図。
FIG. 9 is a plan view of a bearing portion of a conventional dynamic pressure air bearing type optical deflector.

【図10】図9の軸受部の上半分断面図。10 is an upper half sectional view of the bearing portion of FIG.

【図11】図9に図示するヘリングボーン溝を具えたス
リーブを含む軸受部の断面図。
11 is a cross-sectional view of a bearing portion including a sleeve having a herringbone groove illustrated in FIG.

【図12】図11に示す動圧空気軸受型光偏向器の軸受
部周辺の圧力分布の図。
12 is a diagram showing a pressure distribution around a bearing portion of the dynamic pressure air bearing type optical deflector shown in FIG.

【符号の説明】[Explanation of symbols]

1 動圧軸 2 スリーブ 3 モータケース 4 カバー部材 5 回転鏡(回転多面鏡) 10 スラスト抑え用磁石 11 スラスト抑え用磁石 12 スラスト動圧軸受 13 ワッシャ 15 コイル 16 ヨーク 20 Oリング 21 Oリング 22 マグネット 23 フィルタ b 孔 c 孔 d ヘリングボーン溝 e ヘリングボーン溝 q 送り用ヘリングボーン溝 r 送り用ヘリングボーン溝 f 溝非加工部 g 中央孔 K 入口 M 動圧軸受 1 Dynamic Pressure Shaft 2 Sleeve 3 Motor Case 4 Cover Member 5 Rotating Mirror (Rotating Polygon Mirror) 10 Thrust Suppression Magnet 11 Thrust Suppression Magnet 12 Thrust Dynamic Pressure Bearing 13 Washer 15 Coil 16 Yoke 20 O-ring 21 O-ring 22 Magnet 23 Filter b Hole c Hole d Herringbone groove e Herringbone groove q Feeding herringbone groove r Feeding herringbone groove f Groove unprocessed part g Center hole K Inlet M Dynamic bearing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若島 理絵 埼玉県入間市新久下新田110−1 コパル 電子株式会社入間事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rie Wakashima 110-1 Shinkushita Nitta, Iruma City, Saitama Copal Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 動圧軸受を形成するための動圧軸と、こ
の動圧軸に対して回転自在なスリーブを介して回転鏡お
よびそのモータ回転部とを密閉のモータケース内に収容
した動圧空気軸受型光偏向器において、前記動圧軸は、
その動圧軸受の一側方に同動圧軸受の方向に空気を送る
送り用ヘリングボーン溝を設け、この送り用ヘリングボ
ーン溝と動圧軸受との間の中心位置に開口する孔を形成
し、この孔を同動圧軸の中心部の長手方向に穿設した中
央孔を介して大気と連通することを特徴とする光偏向器
用軸受部。
1. A dynamic housing in which a dynamic pressure shaft for forming a dynamic pressure bearing, a rotary mirror and its motor rotating portion are housed in a hermetically sealed motor case via a sleeve rotatable with respect to the dynamic pressure shaft. In the compressed air bearing type optical deflector, the dynamic pressure axis is
A herringbone groove for sending air is provided on one side of the hydrodynamic bearing to send air in the direction of the hydrodynamic bearing, and a hole is formed at the center position between the herringbone groove for sending and the hydrodynamic bearing. A bearing part for an optical deflector, characterized in that the hole communicates with the atmosphere through a central hole formed in the longitudinal direction of the central part of the dynamic pressure shaft.
【請求項2】 動圧軸受を形成するための動圧軸と、こ
の動圧軸に対して回転自在なスリーブを介して回転鏡お
よびそのモータ回転部とを密閉のモータケース内に収容
した動圧空気軸受型光偏向器において、前記動圧軸は1
つの動圧軸受を備え、この動圧軸受の両側方に同動圧軸
受の方向に空気を送る送り用ヘリングボーン溝を穿設
し、これら送り用ヘリングボーン溝と上記動圧軸受との
間の中心位置に開口する孔を形成し、この孔を同動圧軸
の中心部の長手方向に穿設した中央孔を介して大気と連
通することを特徴とする動圧空気軸受型光偏向器。
2. A dynamic pressure shaft for forming a dynamic pressure bearing, a dynamic mirror in which a rotary mirror and its motor rotating portion are housed in a hermetically sealed motor case via a sleeve rotatable with respect to the dynamic pressure shaft. In the compressed air bearing type optical deflector, the dynamic pressure axis is 1
Two dynamic pressure bearings are provided, and feed herringbone grooves for sending air in the direction of the dynamic pressure bearings are formed on both sides of the dynamic pressure bearings, and between these feed herringbone grooves and the above dynamic pressure bearings. A dynamic pressure air bearing type optical deflector characterized in that a hole opening at a central position is formed, and the hole is communicated with the atmosphere through a central hole formed in a longitudinal direction of a central portion of the dynamic pressure shaft.
JP33264696A 1996-11-08 1996-11-08 Dynamic pressure air bearing type optical deflector Expired - Fee Related JP2980854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33264696A JP2980854B2 (en) 1996-11-08 1996-11-08 Dynamic pressure air bearing type optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33264696A JP2980854B2 (en) 1996-11-08 1996-11-08 Dynamic pressure air bearing type optical deflector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32695591A Division JP2645773B2 (en) 1991-11-15 1991-11-15 Dynamic pressure air bearing type optical deflector

Publications (2)

Publication Number Publication Date
JPH09179055A true JPH09179055A (en) 1997-07-11
JP2980854B2 JP2980854B2 (en) 1999-11-22

Family

ID=18257292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33264696A Expired - Fee Related JP2980854B2 (en) 1996-11-08 1996-11-08 Dynamic pressure air bearing type optical deflector

Country Status (1)

Country Link
JP (1) JP2980854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003863A (en) * 2005-06-24 2007-01-11 Nidec Copal Electronics Corp Dynamic pressure pneumatic bearing type optical deflector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003863A (en) * 2005-06-24 2007-01-11 Nidec Copal Electronics Corp Dynamic pressure pneumatic bearing type optical deflector

Also Published As

Publication number Publication date
JP2980854B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JPH05316704A (en) Spindle motor for driving magnetic disk
JP2645773B2 (en) Dynamic pressure air bearing type optical deflector
JPH09179055A (en) Bearing part for optical deflector and dynamic pressure air bearing type optical deflector
JP3084600B2 (en) Dynamic pressure air bearing type optical deflector
JPS60121955A (en) Dc brushless motor
JP2645768B2 (en) Dynamic pressure air bearing type optical deflector
JP2005160196A (en) Brushless motor
JP2918793B2 (en) Single bearing fan motor
JPH06284666A (en) Brushless motor
JPH11223196A (en) Rotor of axial fan
JPH05219708A (en) Brushless motor
JP2569859Y2 (en) Light beam scanning device
JP3872859B2 (en) Depressurized optical deflector
JPH0742214Y2 (en) Fluid bearing motor
JP2506482B2 (en) Dynamic pressure air bearing motor
JP3092026B2 (en) Dynamic pressure air bearing type optical deflector
JPH09312954A (en) Single-bearing type fan motor
JPH0560135A (en) Sealed fluid bearing motor
JPH09215294A (en) Small-diameter cylindrical brushless motor
JPH08160332A (en) Rotary polygon mirror driving device
JP3092028B2 (en) Sealed optical deflector
JP3250273B2 (en) Thin cylindrical coreless motor
JPH036138Y2 (en)
JPH0392597U (en)
JP2003061299A (en) Bearing structure of brushless dc fan motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees