JP3872859B2 - Depressurized optical deflector - Google Patents

Depressurized optical deflector Download PDF

Info

Publication number
JP3872859B2
JP3872859B2 JP4685397A JP4685397A JP3872859B2 JP 3872859 B2 JP3872859 B2 JP 3872859B2 JP 4685397 A JP4685397 A JP 4685397A JP 4685397 A JP4685397 A JP 4685397A JP 3872859 B2 JP3872859 B2 JP 3872859B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
shaft
pressure shaft
optical deflector
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4685397A
Other languages
Japanese (ja)
Other versions
JPH10206780A (en
Inventor
明義 高橋
仲蔵 有山
裕樹 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Nidec Copal Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Electronics Corp filed Critical Nidec Copal Electronics Corp
Priority to JP4685397A priority Critical patent/JP3872859B2/en
Publication of JPH10206780A publication Critical patent/JPH10206780A/en
Application granted granted Critical
Publication of JP3872859B2 publication Critical patent/JP3872859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動圧軸受を介して高速回転する回転鏡により一定角度範囲にレーザ光等を偏向反射させる光偏向器に関し、特に、減圧手段による軽負荷高速回転を確保しつつ、構成のコンパクト化を可能とする減圧式光偏向器に関する。
【0002】
【従来の技術】
図5は従来の減圧式光偏向器の縦断面図である。この光偏向器101は、ケース102内に固定した動圧軸103に動圧スリーブ104を介して多面鏡または単面鏡による回転鏡105(以下、単に「回転鏡」という。)を備える。上記動圧スリーブ104は、動圧軸103に形成したヘリングボーン溝106,106によるラジアル動圧軸受によって回転可能に支持される。また、動圧スリーブ104とケース2との間にスラスト方向を支持する磁気軸受107a、回転駆動部107bを介設する。このような構成をなす光偏向器101は、その回転鏡105を高速回転することにより、一定角度範囲にレーザ光等を偏向反射する。
【0003】
上記動圧軸103は、ラジアル動圧軸受106,106の他に、その側方に軸方向の空気送り作用をなすスパイラル溝108,108とその送り先側に開口する外気連通孔109,109とからなる排気機構を備える。この排気機構はラジアル動圧軸受106,106の両側方に対称的に構成し、動圧スリーブの両端104a,104aからケース内の空気を同時に排気することによって減圧作用を生じ、軸受剛性を確保しつつケース内を低圧化することにより回転鏡104その他の回転抵抗を抑えて軽負荷高速回転を可能とする。
【0004】
【発明が解決しようとする課題】
しかしながら、上記光偏向器101は、略30000rpmに及ぶ高速回転の回転部材を支承するために動圧軸受106,106を使用し、この動圧軸受は動圧軸103と動圧スリーブ104との間の略1〜5μmの軸線方向に連続する空隙を有することから、この空隙を挟んで動圧軸受106,106の両端部に上記排気機構を対称的に構成せざるを得ないので、光偏向器の軸方向の構成寸法の増大を招いている。
【0005】
本発明の目的は、減圧手段による軽負荷高速回転を確保しつつ、構成のコンパクト化を可能とする減圧式光偏向器を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するためにヘリングボーン溝その他の動圧発生部による動圧軸受を介して互いに回転可能に嵌合する動圧軸および動圧スリーブからなるラジアル支持部を備え、このラジアル支持部を介してケース内に回転鏡その他の回転部材を回転可能に支持する光偏向器において、
前記ケースを密閉形成するとともに、前記動圧スリーブは一端を閉じて回転部材側に取り付け、前記動圧軸は片持ちにケース側に取り付け、かつ、前記動圧軸には、動圧軸の自由端方向に送気するスパイラル溝と、動圧軸の外周面に開口する半径部とこの半径部と連通して動圧軸の中心に沿ってその外側端に開口する中空部とからなり外気と連通する外気連通孔を形成し、
前記動圧軸の自由端と動圧スリーブとの間に、動圧スリーブのスラスト変位に応じて容積が変わる軸端室を形成し、この軸端室と外気と動圧軸内部に、上記中空部と連通し、かつ上記半径部の上方に減衰部材を介設した、前記スラスト変位の急激な変化を抑える流路抵抗を有する減衰通路を形成したことを特徴とするものである。
又、上記流路抵抗を、焼結メタルからなる減衰部材によって構成したことを特徴とするものである。
【0007】
上記構成の減圧式光偏向器は、動圧軸および動圧スリーブの間の隙間は動圧軸の固定端側においてのみケース内と連通する。そして、動圧軸の自由端方向に送気するスパイラル溝と、その送り先側に開口して外気と連通する外気連通孔とを上記動圧軸受の側方のラジアル支持部に形成したことから、ケース内の空気はスパイラル溝と外気連通孔とを介して排出され、ケース内が減圧される。
また、上記流路抵抗を、焼結メタルからなる減衰部材によって構成した場合は、機械加工の困難な直径0.1mm以下の円孔に相当する流量比例抵抗を、回転部材側の質量に応じ、また、軸端室の容積に応じて精度良く設定することができる。
【0008】
【発明の実施の形態】
図1は本発明の実施の形態を示す動圧軸固定の減圧式光偏向器の縦断面図である。減圧式光偏向器1は、ケース2内に動圧によるラジアル支持部3を介して回転鏡4その他の回転部材を回転可能に支持して構成する。
【0009】
ケース2の中央部にラジアル支持部3の動圧軸5を片持ちに起立固定する。ラジアル支持部3は、図示の動圧軸5に動圧発生部6を形成し、または、動圧スリーブ7に動圧発生部6を形成して動圧軸5と動圧スリーブ7とを互いに回転可能に嵌合する。この動圧スリーブ7に回転鏡4その他の回転部材を取付け、蓋部材8を取付けてケース2内を密閉する。上記動圧発生部6は図示の一体形成または分離形成のヘリングボーン溝6、その他各種の動圧支持手段による動圧軸受をなす。
【0010】
動圧スリーブ7はその一端7aを閉じた袋状に形成し、ケース2に片持ち固定した動圧軸5と嵌合する。この動圧軸5の自由端5a方向に送気するスパイラル溝9を動圧発生部6の側方のラジアル支持部3に形成し、その送り先側に外気連通孔10を開口する。スパイラル溝9は図示の動圧軸5または動圧スリーブ7に、外気連通孔10は図示の動圧軸5に、またはこの動圧軸5を介して動圧スリーブ7に形成する。スパイラル溝9はケース2内の空気を自由端5a方向に片送りし、外気連通孔10から排出されることからスパイラル溝9と外気連通孔10は排気機構をなす。
【0011】
動圧スリーブ7はその外周のケース2との間にスラスト磁気軸受11、回転駆動部12を備える。この回転駆動部12は、マグネット13を回転側とし、コイル14、ヨーク15、および、回転センサ12a等を固定側として構成する。
【0012】
このような構成をなす減圧式光偏向器1は、回転部材4側をなす動圧スリーブ7の一端を閉じ、この動圧スリーブ7をケース2側の動圧軸5と嵌合したことから、動圧スリーブ7の開放端7b側が動圧軸5の固定端5b側に嵌合し、したがって動圧軸5および動圧スリーブ7の間の隙間は動圧スリーブの開放端7bにおいてのみケース2内と連通する。
【0013】
このケース2に固定した動圧軸5の自由端5a方向に送気するスパイラル溝9とその送り先側に開口する外気連通孔10とからなる排気機構を形成したことから、ケース2内の空気は、対称配置の排気機構を要することなく、単一の排気機構によるスパイラル溝9と外気連通孔10とを介して排出され、ケース2内が減圧される。
【0014】
したがって、本発明の減圧式光偏向器は、動圧軸上に排気機構を対称配置に要することなく、スパイラル溝と外気連通孔とによる単一の排気機構により、軽負荷高速回転を確保しつつ、構成のコンパクト化を可能とする。また、動圧軸5の動圧発生部6より固定端5b側に外気連通孔10を開口すれば、外気が軸受背圧として作用するので、排気による軸受部の低圧化を回避して軸受剛性を確保することができる。
【0015】
上記外気連通孔10は動圧軸5の外周面に開口する半径部10aとこの半径部10aと連通して動圧軸5の中心に沿ってその外側端に開口する中空部10bとからなり、この中空部10bは、さらに、他の自由端5aまで貫通し、同自由端5a側に動圧スリーブ7によって形成される軸端室16と連通する。
【0016】
この軸端室16に至る中空部17により、ヘリングボーン溝等の動圧軸受6によって軸線方向の気体流動を伴う場合、および、上記排気機構による気体流動を受ける場合でも軸端室16の圧力変動が回避されるので、軸線方向力の発生を抑えることができる。上記排気機構によってケース2内が減圧された際は、両中空部10b,17を介して軸端室16に作用する外気圧が、動圧軸5と動圧スリーブ7との間のスラスト変位に対応して作用するスラスト磁気軸受11のスラスト力とバランスする。
【0017】
この軸端室16に至る両中空部10b,17のいずれか(図示例は中空部17)に空気流通を抑制する焼結メタル等による減衰部材18を介設して減衰通路を形成し、必要に応じて図示せぬフィルタを中空部10bの開口に取付ける。
【0018】
上記軸端室16は動圧軸5に対する動圧スリーブ7のスラスト変位に応じた可変容積をなし、このスラスト変位動作に応じて減衰部材18を介する空気流動が生じることから、この減衰部材18をスラスト変位の急激な変化を抑えるに足る流路抵抗に設定することにより、衝撃等による高速のスラスト変位動作が抑えられるとともに、排気機構や動圧軸受による緩慢な空気流動に対して一定圧力の外気と連通して軸端室16の内圧が一定の外気圧に保たれるので回転の安定を図ることができる。また、焼結メタルによって減衰部材を形成することにより、機械加工の困難な直径0.1mm以下の円孔に相当する流量比例抵抗を、回転部材側の質量に応じ、また、軸端室の容積に応じて精度良く設定することができる。
【0019】
図2は図1の減圧式光偏向器のラジアル軸受の構成例である。本発明の減圧式光偏向器は、溝21,22を分離形成した分離ヘリングボーン溝による動圧軸(A)、負荷に応じて複数の軸受23,24を備えた動圧軸(B)等、ヘリングボーン溝の密接又は分離、軸受の数に関わらず、各種の動圧軸受の適用が可能である。特に、軸線方向の気体流動を伴わない周回流動による多偏弧断面形状の動圧軸25と動圧スリーブ26とによる動圧軸受(C)等の場合は、スパイラル溝9の排気作用と分離して減衰部材18の容量設定が可能となる。
【0020】
図3は他のラジアル動圧軸受の図2と同様の図である。水抜き溝31を形成した動圧スリーブ32と多偏弧断面形状の動圧軸33とによる高機能の周回流動型動圧軸受(A)の適用が可能である。その他、方向性を有する多偏弧断面形状の動圧スリーブ34と動圧軸35とによる動圧軸受(B)、方向性を有する多角辺断面形状の動圧軸36と動圧スリーブ37とによる動圧軸受(C)等、周回流動による各種の動圧軸受の適用が可能である。
【0021】
図4は動圧軸回転の減圧式光偏向器の図1と同様の図である。前記同様の部材はその符号を付して説明を省略する。
減圧式光偏向器41は、密閉したケース2内に動圧によるラジアル支持部42を介して回転鏡4等の回転部材を回転可能に収容して構成する。
【0022】
ラジアル支持部42は、ケース2の中央部に起立形成した動圧スリーブ43と、回転部材側をなす動圧軸44とを互いに回転可能に嵌合する。図示の動圧軸44に動圧発生部6を形成し、または、動圧スリーブ43に動圧発生部6を形成して動圧軸受を形成する。動圧軸44は取付け部材45に対して片持ちに一体固定し、この取付け部材45を介して回転鏡4その他の回転部材を取付け、蓋部材8を取付けてケース2を気密に構成する。
【0023】
動圧軸44の自由端44a方向に送気するスパイラル溝9を動圧発生部6の側方のラジアル支持部42に形成し、その送り先側に外気連通孔10を開口する。スパイラル溝9は図示の動圧軸44または動圧スリーブ43に、外気連通孔10は図示の動圧軸44に、またはこの動圧軸44を介して動圧スリーブ43に形成し、これらスパイラル溝9と外気連通孔10とにより排気機構を構成する。
【0024】
取付け部材45はその外周のケース2との間にスラスト磁気軸受11、回転駆動部12を備える。この回転駆動部12は、マグネット13を回転側とし、コイル14、ヨーク15、および、回転センサ12a等を固定側として構成する。
【0025】
このような構成をなす減圧式光偏向器41は、回転部材4側に動圧軸44を片持ちに取付け、ケース2側の動圧スリーブ43と嵌合したことから、動圧スリーブ43の開放端43a側が動圧軸44の固定端44b側に嵌合したことから、動圧軸44および動圧スリーブ43の間の隙間はその開放端43aにおいてのみケース2内と連通する。
【0026】
上記動圧軸44の自由端44a方向に送気するスパイラル溝9とその送り先側に開口する外気連通孔10とからなる排気機構を動圧軸受の側方に形成したことから、ケース2内の空気はスパイラル溝9と外気連通孔10とを介して排出され、ケース内が減圧される。
【0027】
したがって、本発明の減圧式光偏向器は、動圧軸上に排気機構を対称配置に要することなく、スパイラル溝と外気連通孔とによる単一の排気機構により、軽負荷高速回転を確保しつつ、構成のコンパクト化を可能とする。また、動圧軸44の動圧発生部6より固定端44b側に外気連通孔10を開口すれば、外気が軸受背圧として作用するので軸受剛性を確保することができる。
【0028】
上記排気機構によってケース2内が減圧された際は、動圧軸44に作用する外気圧が、動圧軸44と動圧スリーブ45との間のスラスト変位と対応して作用するスラスト磁気軸受11のスラスト力とバランスする。
【0029】
上記動圧軸44の自由端44a側に、その外方を閉じて軸端室46を形成する。この軸端室46を外気側と連通し、かつ、その空気流通を抑制するための減衰部材47を介設し、必要に応じて図示せぬフィルタで覆う。これにより、前記同様に減衰部材47の流路抵抗によって上記スラスト変位動作を抑えることができ、かつ、一定圧力の外気と連通して軸端室46の内圧を一定に保つことができる。
【0030】
【発明の効果】
本発明による減圧式光偏向器は以下の効果を奏する。ラジアル支持部の一側をなす動圧スリーブは一端を閉じて回転部材側に、他側をなす動圧軸は片持ちにケース側に形成し、互いに嵌合したことから、動圧スリーブの開放端側が動圧軸の固定端側に嵌合する。これにより、動圧軸および動圧スリーブの間の隙間は動圧軸の固定端側においてのみケース内と連通する。そして、動圧軸の自由端方向に送気するスパイラル溝と、その送り先側に開口して外気と連通する外気連通孔とを上記動圧軸受の側方のラジアル支持部に形成したことから、ケース内の空気はスバイラル溝と外気連通孔とを介して排出され、ケース内が減圧される。
【0031】
したがって、本発明の減圧式光偏向器は、動圧軸上に排気機構を対称配置に要することなく、スパイラル溝と外気連通孔とによる単一の排気機構により、軽不可高速回転を確保しつつ、構成のコンパクト化を可能とする。
又、前記外気連通孔が動圧軸受より動圧軸の固定端側に開口したため、外気連通孔を介して外気が軸受背圧として作用するので軸受剛性を確保することができる。
又、前記動圧軸の自由端に臨んでこの動圧軸と動圧スリーブとの間のスラスト変位に応じた容積をなす軸端室を形成し、この軸端室と外気との間に上記スラスト変位の急激な変化を抑える流路抵抗を有する減衰通路を形成したため、動圧軸と動圧スリーブとの間のスラスト変位動作による減衰通路の空気流に作用する流路抵抗によって衝撃等による高速のスラスト変位動作が抑えられ、また、減衰通路は一定圧力の外気と連通することから、排気機構は一定の背圧によって排気機能が確保され、かつ、軸端室の内圧が外気圧に保たれて回転の安定を図ることができる。
又、上記流路抵抗を、焼結メタルからなる減衰部材によって構成した場合は、機械加工の困難な直径0.1mm以下の円孔に相当する流量比例抵抗を、回転部材側の質量に応じ、また、軸端室の容積に応じて精度良く設定することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す動圧軸固定の減圧式光偏向器の縦断面図
【図2】図1の減圧式光偏向器のラジアル軸受の構成例
【図3】他のラジアル動圧軸受の図2と同様の図
【図4】動圧軸回転の減圧式光偏向器の図1と同様の図
【図5】従来の減圧式光偏向器の縦断面図
【符号の説明】
1 減圧式光偏向器
2 ケース
3 ラジアル支持部
4 回転鏡(回転部材)
5 動圧軸
5a 自由端
5b 固定端
6 ヘリングボーン溝(動圧発生部)
7 動圧スリーブ
7a 一端
7b 開放端
8 蓋部材
9 スパイラル溝(排気機構)
10 外気連通孔(排気機構)
10a 半径部
10b 中空部
16 軸端室
17 中空部
18 減衰部材(減衰通路)
41 減圧式光偏向器
42 ラジアル支持部
43 動圧スリーブ
43a 開放端
44 動圧軸
44a 自由端
44b 固定端
45 取付け部材
46 軸端室
47 減衰部材(減衰通路)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical deflector that deflects and reflects a laser beam or the like within a certain angle range by a rotating mirror that rotates at high speed via a hydrodynamic bearing, and in particular, a compact structure while ensuring light load high speed rotation by a decompression means. The present invention relates to a pressure-reducing optical deflector that enables the above.
[0002]
[Prior art]
FIG. 5 is a longitudinal sectional view of a conventional pressure-reducing optical deflector. The optical deflector 101 includes a rotating mirror 105 (hereinafter simply referred to as “rotating mirror”) using a polygonal mirror or a single-sided mirror via a dynamic pressure sleeve 104 on a dynamic pressure shaft 103 fixed in a case 102. The dynamic pressure sleeve 104 is rotatably supported by a radial dynamic pressure bearing formed by herringbone grooves 106 and 106 formed in the dynamic pressure shaft 103. In addition, a magnetic bearing 107 a and a rotation drive unit 107 b that support the thrust direction are interposed between the dynamic pressure sleeve 104 and the case 2. The optical deflector 101 having such a configuration deflects and reflects a laser beam or the like within a certain angle range by rotating the rotary mirror 105 at a high speed.
[0003]
The dynamic pressure shaft 103 includes, in addition to the radial dynamic pressure bearings 106 and 106, spiral grooves 108 and 108 that form an air feeding action in the axial direction on the sides thereof, and external air communication holes 109 and 109 that open on the destination side. An exhaust mechanism is provided. This exhaust mechanism is configured symmetrically on both sides of the radial dynamic pressure bearings 106 and 106, and the air in the case is exhausted from both ends 104a and 104a of the dynamic pressure sleeve at the same time, thereby generating a pressure reducing action and ensuring the rigidity of the bearing. However, by reducing the pressure in the case, the rotating mirror 104 and other rotational resistances can be suppressed to enable light load and high speed rotation.
[0004]
[Problems to be solved by the invention]
However, the optical deflector 101 uses dynamic pressure bearings 106 and 106 to support a rotating member rotating at a high speed of approximately 30000 rpm, and the dynamic pressure bearing is provided between the dynamic pressure shaft 103 and the dynamic pressure sleeve 104. Therefore, the exhaust mechanism must be configured symmetrically at both ends of the hydrodynamic bearings 106 and 106 with the gap interposed therebetween. As a result, an increase in the size of the component in the axial direction is incurred.
[0005]
An object of the present invention is to provide a pressure-reducing optical deflector that can achieve a compact configuration while ensuring light-load high-speed rotation by a pressure-reducing means.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a radial support portion including a dynamic pressure shaft and a dynamic pressure sleeve, which are rotatably fitted to each other via a dynamic pressure bearing by a herringbone groove or other dynamic pressure generating portion, is provided. In the optical deflector that rotatably supports the rotating mirror and other rotating members in the case,
The case is hermetically formed, the one end of the dynamic pressure sleeve is closed and attached to the rotating member side, the dynamic pressure shaft is cantilevered on the case side, and the dynamic pressure shaft is free of the dynamic pressure shaft. It consists of a spiral groove that feeds air in the end direction, a radial portion that opens to the outer peripheral surface of the dynamic pressure shaft, and a hollow portion that communicates with the radial portion and opens to the outer end along the center of the dynamic pressure shaft. Form an open air communication hole to communicate,
Between the free end of the dynamic pressure shaft and the dynamic pressure sleeve, a shaft end chamber whose volume is changed according to the thrust displacement of the dynamic pressure sleeve is formed, and the hollow space is formed in the shaft end chamber, outside air, and the dynamic pressure shaft. An attenuation passage having a flow path resistance that suppresses a rapid change in the thrust displacement and that is communicated with the portion and is provided with an attenuation member above the radius portion is formed.
Further, the flow path resistance is constituted by a damping member made of sintered metal.
[0007]
In the pressure-reducing optical deflector configured as described above, the gap between the dynamic pressure shaft and the dynamic pressure sleeve communicates with the inside of the case only on the fixed end side of the dynamic pressure shaft. And, since the spiral groove that feeds air toward the free end of the dynamic pressure shaft and the outside air communication hole that opens to the destination side and communicates with the outside air are formed in the radial support portion on the side of the dynamic pressure bearing, The air in the case is discharged through the spiral groove and the outside air communication hole, and the inside of the case is decompressed.
In addition, when the flow path resistance is constituted by a damping member made of sintered metal, a flow proportional resistance corresponding to a circular hole having a diameter of 0.1 mm or less that is difficult to machine according to the mass on the rotating member side, Further, it can be set with high accuracy according to the volume of the shaft end chamber.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view of a pressure reducing optical deflector with a dynamic pressure shaft fixed, showing an embodiment of the present invention. The decompression type optical deflector 1 is configured by rotatably supporting a rotating mirror 4 and other rotating members in a case 2 via a radial support portion 3 by dynamic pressure.
[0009]
The dynamic pressure shaft 5 of the radial support portion 3 is raised and fixed in a cantilever manner at the center portion of the case 2. The radial support portion 3 forms a dynamic pressure generating portion 6 on the illustrated dynamic pressure shaft 5 or forms a dynamic pressure generating portion 6 on the dynamic pressure sleeve 7 to connect the dynamic pressure shaft 5 and the dynamic pressure sleeve 7 to each other. Mates so that it can rotate. The rotating mirror 4 and other rotating members are attached to the dynamic pressure sleeve 7, and the lid member 8 is attached to seal the inside of the case 2. The dynamic pressure generating section 6 forms a dynamic pressure bearing by the herringbone groove 6 formed integrally or separated as shown in the drawing and other various dynamic pressure support means.
[0010]
The dynamic pressure sleeve 7 is formed in a bag shape with one end 7 a closed, and is fitted to a dynamic pressure shaft 5 that is cantilevered to the case 2. A spiral groove 9 for supplying air in the direction of the free end 5a of the dynamic pressure shaft 5 is formed in the radial support portion 3 on the side of the dynamic pressure generating portion 6, and an outside air communication hole 10 is opened on the destination side. The spiral groove 9 is formed in the illustrated dynamic pressure shaft 5 or the dynamic pressure sleeve 7, and the outside air communication hole 10 is formed in the illustrated dynamic pressure shaft 5 or through the dynamic pressure shaft 5 in the dynamic pressure sleeve 7. The spiral groove 9 feeds the air in the case 2 in the direction of the free end 5a and is discharged from the outside air communication hole 10, so that the spiral groove 9 and the outside air communication hole 10 form an exhaust mechanism.
[0011]
The dynamic pressure sleeve 7 includes a thrust magnetic bearing 11 and a rotation drive unit 12 between the outer peripheral case 2 and the outer peripheral case 2. The rotation drive unit 12 includes a magnet 13 as a rotation side, and a coil 14, a yoke 15, a rotation sensor 12a, and the like as a fixed side.
[0012]
Since the pressure-reducing optical deflector 1 having such a configuration closes one end of the dynamic pressure sleeve 7 on the rotating member 4 side and this dynamic pressure sleeve 7 is fitted to the dynamic pressure shaft 5 on the case 2 side, The open end 7b side of the dynamic pressure sleeve 7 is fitted to the fixed end 5b side of the dynamic pressure shaft 5, so that the clearance between the dynamic pressure shaft 5 and the dynamic pressure sleeve 7 is inside the case 2 only at the open end 7b of the dynamic pressure sleeve. Communicate with.
[0013]
Since the exhaust mechanism comprising the spiral groove 9 that feeds air in the direction of the free end 5a of the dynamic pressure shaft 5 fixed to the case 2 and the outside air communication hole 10 that opens to the destination side is formed, the air in the case 2 is Without exhausting the symmetrically arranged exhaust mechanism, the air is discharged through the spiral groove 9 and the outside air communication hole 10 by a single exhaust mechanism, and the inside of the case 2 is decompressed.
[0014]
Therefore, the pressure-reducing optical deflector according to the present invention does not require the exhaust mechanism to be symmetrically arranged on the dynamic pressure shaft, and ensures a light load and high-speed rotation by a single exhaust mechanism with the spiral groove and the outside air communication hole. The configuration can be made compact. Further, if the outside air communication hole 10 is opened to the fixed end 5b side from the dynamic pressure generating portion 6 of the dynamic pressure shaft 5, the outside air acts as a bearing back pressure. Can be secured.
[0015]
The outside air communication hole 10 includes a radius portion 10a that opens to the outer peripheral surface of the dynamic pressure shaft 5, and a hollow portion 10b that communicates with the radius portion 10a and opens to the outer end along the center of the dynamic pressure shaft 5. The hollow portion 10b further penetrates to the other free end 5a and communicates with a shaft end chamber 16 formed by the dynamic pressure sleeve 7 on the free end 5a side.
[0016]
The hollow portion 17 reaching the shaft end chamber 16 causes pressure fluctuations in the shaft end chamber 16 even when accompanied by gas flow in the axial direction by the dynamic pressure bearing 6 such as a herringbone groove and when receiving gas flow by the exhaust mechanism. Therefore, the generation of axial force can be suppressed. When the inside of the case 2 is depressurized by the exhaust mechanism, the external air pressure acting on the shaft end chamber 16 via both the hollow portions 10 b and 17 is changed to the thrust displacement between the dynamic pressure shaft 5 and the dynamic pressure sleeve 7. The thrust force of the corresponding thrust magnetic bearing 11 is balanced.
[0017]
A damping passage is formed by interposing a damping member 18 made of sintered metal or the like that suppresses air flow in either of the hollow portions 10b and 17 (in the illustrated example, the hollow portion 17) reaching the shaft end chamber 16. Accordingly, a filter (not shown) is attached to the opening of the hollow portion 10b.
[0018]
The shaft end chamber 16 has a variable volume corresponding to the thrust displacement of the dynamic pressure sleeve 7 with respect to the dynamic pressure shaft 5, and air flow through the attenuation member 18 is generated according to this thrust displacement operation. By setting the flow resistance to be sufficient to suppress sudden changes in thrust displacement, high-speed thrust displacement due to impact or the like can be suppressed, and at a constant pressure against the slow air flow caused by the exhaust mechanism or dynamic pressure bearing. Since the internal pressure of the shaft end chamber 16 is maintained at a constant external pressure in communication with the motor, the rotation can be stabilized. Further, by forming the damping member with sintered metal, the flow proportional resistance corresponding to a circular hole having a diameter of 0.1 mm or less, which is difficult to machine, is set according to the mass on the rotating member side, and the volume of the shaft end chamber It can be set with high accuracy according to.
[0019]
FIG. 2 is a configuration example of a radial bearing of the pressure reducing optical deflector of FIG. The pressure-reducing optical deflector of the present invention includes a dynamic pressure shaft (A) by a separated herringbone groove in which grooves 21 and 22 are separately formed, a dynamic pressure shaft (B) having a plurality of bearings 23 and 24 according to loads, and the like. Regardless of the closeness or separation of the herringbone groove and the number of bearings, various types of dynamic pressure bearings can be applied. In particular, in the case of a hydrodynamic bearing (C) or the like having a multi-arc cross-sectional dynamic pressure shaft 25 and a dynamic pressure sleeve 26 by an orbital flow without an axial gas flow, the exhaust action of the spiral groove 9 is separated. Thus, the capacity of the damping member 18 can be set.
[0020]
FIG. 3 is a view similar to FIG. 2 of another radial dynamic pressure bearing. It is possible to apply a high-performance circulating fluid dynamic bearing (A) with a dynamic pressure sleeve 32 in which a water drain groove 31 is formed and a dynamic pressure shaft 33 having a multi-arc cross section. In addition, a hydrodynamic bearing (B) having a multi-arc arc cross-sectional shape having directionality and a hydrodynamic shaft 35, and a hydrodynamic shaft 36 and hydrodynamic sleeve 37 having a polygonal cross-section having directionality. Various types of hydrodynamic bearings such as a hydrodynamic bearing (C) can be applied.
[0021]
FIG. 4 is a view similar to FIG. 1 of a pressure-reducing optical deflector rotating with a dynamic pressure shaft. The same members as those described above are denoted by the same reference numerals and description thereof is omitted.
The decompression type optical deflector 41 is configured by rotatably accommodating a rotating member such as the rotary mirror 4 in a sealed case 2 via a radial support portion 42 by dynamic pressure.
[0022]
The radial support portion 42 fits a dynamic pressure sleeve 43 erected at the center of the case 2 and a dynamic pressure shaft 44 on the rotating member side so as to be rotatable. The dynamic pressure generating portion 6 is formed on the illustrated dynamic pressure shaft 44 or the dynamic pressure generating portion 6 is formed on the dynamic pressure sleeve 43 to form a dynamic pressure bearing. The dynamic pressure shaft 44 is integrally fixed to the mounting member 45 in a cantilever manner, the rotating mirror 4 and other rotating members are mounted via the mounting member 45, and the lid member 8 is mounted to form the case 2 in an airtight manner.
[0023]
A spiral groove 9 for feeding air in the direction of the free end 44a of the dynamic pressure shaft 44 is formed in the radial support portion 42 on the side of the dynamic pressure generating portion 6, and the outside air communication hole 10 is opened on the destination side. The spiral groove 9 is formed in the illustrated dynamic pressure shaft 44 or the dynamic pressure sleeve 43, and the outside air communication hole 10 is formed in the illustrated dynamic pressure shaft 44 or through the dynamic pressure shaft 44 in the dynamic pressure sleeve 43. 9 and the outside air communication hole 10 constitute an exhaust mechanism.
[0024]
The mounting member 45 includes a thrust magnetic bearing 11 and a rotation driving unit 12 between the outer peripheral case 2 and the mounting member 45. The rotation drive unit 12 includes a magnet 13 as a rotation side, and a coil 14, a yoke 15, a rotation sensor 12a, and the like as a fixed side.
[0025]
In the pressure reducing optical deflector 41 having such a configuration, the dynamic pressure shaft 44 is attached to the rotating member 4 side in a cantilever manner and is fitted to the dynamic pressure sleeve 43 on the case 2 side. Since the end 43a side is fitted to the fixed end 44b side of the dynamic pressure shaft 44, the gap between the dynamic pressure shaft 44 and the dynamic pressure sleeve 43 communicates with the inside of the case 2 only at the open end 43a.
[0026]
Since the exhaust mechanism comprising the spiral groove 9 that feeds air in the direction of the free end 44a of the dynamic pressure shaft 44 and the outside air communication hole 10 that opens to the destination side is formed on the side of the dynamic pressure bearing, The air is discharged through the spiral groove 9 and the outside air communication hole 10, and the inside of the case is decompressed.
[0027]
Therefore, the pressure-reducing optical deflector according to the present invention does not require the exhaust mechanism to be symmetrically arranged on the dynamic pressure shaft, and ensures a light load and high-speed rotation by a single exhaust mechanism with the spiral groove and the outside air communication hole. The configuration can be made compact. Further, if the outside air communication hole 10 is opened from the dynamic pressure generating portion 6 of the dynamic pressure shaft 44 to the fixed end 44b side, the outside air acts as a bearing back pressure, so that the bearing rigidity can be ensured.
[0028]
When the inside of the case 2 is depressurized by the exhaust mechanism, the external magnetic pressure acting on the dynamic pressure shaft 44 acts in accordance with the thrust displacement between the dynamic pressure shaft 44 and the dynamic pressure sleeve 45. Balance with the thrust force.
[0029]
A shaft end chamber 46 is formed on the free end 44 a side of the dynamic pressure shaft 44 by closing the outside thereof. The shaft end chamber 46 communicates with the outside air side, and an attenuation member 47 for suppressing the air flow is interposed, and is covered with a filter (not shown) as necessary. Thus, the thrust displacement operation can be suppressed by the flow path resistance of the damping member 47 as described above, and the internal pressure of the shaft end chamber 46 can be kept constant by communicating with the outside air at a constant pressure.
[0030]
【The invention's effect】
The reduced pressure optical deflector according to the present invention has the following effects. The hydrodynamic sleeve that forms one side of the radial support part is closed on one end and formed on the rotating member side, and the hydrodynamic shaft that forms the other side is cantilevered on the case side and fitted together. The end side is fitted to the fixed end side of the dynamic pressure shaft. As a result, the gap between the dynamic pressure shaft and the dynamic pressure sleeve communicates with the inside of the case only on the fixed end side of the dynamic pressure shaft. And, since the spiral groove that feeds air toward the free end of the dynamic pressure shaft and the outside air communication hole that opens to the destination side and communicates with the outside air are formed in the radial support portion on the side of the dynamic pressure bearing, The air in the case is discharged through the spiral groove and the outside air communication hole, and the inside of the case is decompressed.
[0031]
Therefore, the pressure-reducing optical deflector of the present invention does not require the exhaust mechanism to be symmetrically arranged on the dynamic pressure axis, and ensures a light and high speed rotation by a single exhaust mechanism with the spiral groove and the outside air communication hole. The configuration can be made compact.
Further, since the outside air communication hole is opened to the fixed end side of the dynamic pressure shaft from the dynamic pressure bearing, the outside air acts as a bearing back pressure through the outside air communication hole, so that the bearing rigidity can be ensured.
Further, a shaft end chamber having a volume corresponding to the thrust displacement between the dynamic pressure shaft and the dynamic pressure sleeve is formed facing the free end of the dynamic pressure shaft, and the above-described shaft is formed between the shaft end chamber and the outside air. Since a damping passage having flow resistance that suppresses sudden changes in thrust displacement is formed, high speed due to impact or the like is caused by flow resistance acting on the air flow in the damping passage due to thrust displacement operation between the dynamic pressure shaft and the dynamic pressure sleeve. The thrust displacement operation is suppressed, and the damping passage communicates with the outside air at a constant pressure. Therefore, the exhaust mechanism is secured by a constant back pressure, and the inner pressure of the shaft end chamber is maintained at the outside air pressure. To stabilize the rotation.
Further, when the flow path resistance is constituted by a damping member made of sintered metal, the flow proportional resistance corresponding to a circular hole having a diameter of 0.1 mm or less, which is difficult to machine, is set according to the mass on the rotating member side. Further, it can be set with high accuracy according to the volume of the shaft end chamber.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a pressure reducing optical deflector having a dynamic pressure shaft fixed according to an embodiment of the present invention. FIG. 2 is a configuration example of a radial bearing of the pressure reducing optical deflector shown in FIG. Fig. 4 is a view similar to Fig. 2 of a radial dynamic pressure bearing. Fig. 4 is a view similar to Fig. 1 of a pressure reducing optical deflector rotating a dynamic pressure shaft. Fig. 5 is a longitudinal sectional view of a conventional pressure reducing optical deflector. Explanation】
1 Depressurizing optical deflector 2 Case 3 Radial support 4 Rotating mirror (rotating member)
5 Dynamic pressure shaft 5a Free end 5b Fixed end 6 Herringbone groove (dynamic pressure generating part)
7 Dynamic pressure sleeve 7a One end 7b Open end 8 Lid member 9 Spiral groove (exhaust mechanism)
10 Outside air communication hole (exhaust mechanism)
10a Radial part 10b Hollow part 16 Shaft end chamber 17 Hollow part 18 Damping member (damping passage)
41 Depressurization type optical deflector 42 Radial support portion 43 Dynamic pressure sleeve 43a Open end 44 Dynamic pressure shaft 44a Free end 44b Fixed end 45 Mounting member 46 Shaft end chamber 47 Damping member (damping passage)

Claims (2)

ヘリングボーン溝その他の動圧発生部による動圧軸受を介して互いに回転可能に嵌合する動圧軸および動圧スリーブからなるラジアル支持部を備え、このラジアル支持部を介してケース内に回転鏡その他の回転部材を回転可能に支持する光偏向器において、
前記ケースを密閉形成するとともに、前記動圧スリーブは一端を閉じて回転部材側に取り付け、前記動圧軸は片持ちにケース側に取り付け、かつ、前記動圧軸には、動圧軸の自由端方向に送気するスパイラル溝と、動圧軸の外周面に開口する半径部とこの半径部と連通して動圧軸の中心に沿ってその外側端に開口する中空部とからなり外気と連通する外気連通孔を形成し、
前記動圧軸の自由端と動圧スリーブとの間に、動圧スリーブのスラスト変位に応じて容積が変わる軸端室を形成し、この軸端室と外気との間の動圧軸内部に、上記中空部と連通し、かつ上記半径部の上方に減衰部材を介設した、前記スラスト変位の急激な変化を抑える流路抵抗を有する減衰通路を形成した減圧式光偏向器。
A radial support part comprising a dynamic pressure shaft and a dynamic pressure sleeve, which are rotatably fitted to each other via a dynamic pressure bearing by a herringbone groove or other dynamic pressure generating part, is provided, and a rotating mirror is provided in the case via the radial support part. In an optical deflector that rotatably supports other rotating members,
The case is hermetically formed, the one end of the dynamic pressure sleeve is closed and attached to the rotating member side, the dynamic pressure shaft is cantilevered on the case side, and the dynamic pressure shaft is free of the dynamic pressure shaft. It consists of a spiral groove that feeds air in the end direction, a radial portion that opens to the outer peripheral surface of the dynamic pressure shaft, and a hollow portion that communicates with the radial portion and opens to the outer end along the center of the dynamic pressure shaft. Form an open air communication hole to communicate,
Between the free end of the dynamic pressure shaft and the dynamic pressure sleeve, a shaft end chamber whose volume is changed according to the thrust displacement of the dynamic pressure sleeve is formed, and inside the dynamic pressure shaft between the shaft end chamber and the outside air. A pressure-reducing optical deflector in which an attenuation passage having a flow path resistance that suppresses an abrupt change in the thrust displacement is formed by communicating with the hollow portion and interposing an attenuation member above the radius portion .
上記流路抵抗を、焼結メタルからなる減衰部材によって構成したことを特徴とする請求項1記載の減圧式光偏向器。  2. The reduced pressure optical deflector according to claim 1, wherein the flow path resistance is constituted by a damping member made of sintered metal.
JP4685397A 1997-01-24 1997-01-24 Depressurized optical deflector Expired - Fee Related JP3872859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4685397A JP3872859B2 (en) 1997-01-24 1997-01-24 Depressurized optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4685397A JP3872859B2 (en) 1997-01-24 1997-01-24 Depressurized optical deflector

Publications (2)

Publication Number Publication Date
JPH10206780A JPH10206780A (en) 1998-08-07
JP3872859B2 true JP3872859B2 (en) 2007-01-24

Family

ID=12758910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4685397A Expired - Fee Related JP3872859B2 (en) 1997-01-24 1997-01-24 Depressurized optical deflector

Country Status (1)

Country Link
JP (1) JP3872859B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514931B2 (en) * 2000-10-02 2010-07-28 日本電産コパル電子株式会社 Dynamic pressure air bearing type optical deflector

Also Published As

Publication number Publication date
JPH10206780A (en) 1998-08-07

Similar Documents

Publication Publication Date Title
US5370463A (en) Hydrodynamic gas bearing
JP2006097894A (en) Fluid dynamic bearing device
JP3010174B2 (en) Scroll type fluid machine
JP3872859B2 (en) Depressurized optical deflector
JPH03179192A (en) Rotary compressor
JP2001020945A (en) Dynamic pressure bearing
JP3458048B2 (en) Hydrodynamic bearing device
JPH0914262A (en) Dynamic pressure gas journal bearing
JPH10206779A (en) Dynamic pressure support part for optical deflector
JP3574266B2 (en) Shaft bearing structure of small motor
JPH08335366A (en) Dynamic pressure bearing motor
JP3095601B2 (en) Rotating body support device
JPH08277835A (en) Hydrodynamic pressure bearing
JPH07217656A (en) Spindle with gas bearing
JP3095792B2 (en) Spindle motor
JPH06207590A (en) Fluid compressor
JP3822385B2 (en) Sleeve-fixed optical deflector
JP2000215590A (en) Disk drive device
JP4510136B2 (en) Scroll type fluid machine
JPH08160332A (en) Rotary polygon mirror driving device
JP2000050568A (en) Disk drive
JPH1130194A (en) Balance disc structure of centrifugal pump
JPH0327747A (en) Rotational driving gear for polygon mirror
JP3095650B2 (en) Bearing metal variable phase type bearing
JP3016501B2 (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees