JP4514931B2 - Dynamic pressure air bearing type optical deflector - Google Patents

Dynamic pressure air bearing type optical deflector Download PDF

Info

Publication number
JP4514931B2
JP4514931B2 JP2000302716A JP2000302716A JP4514931B2 JP 4514931 B2 JP4514931 B2 JP 4514931B2 JP 2000302716 A JP2000302716 A JP 2000302716A JP 2000302716 A JP2000302716 A JP 2000302716A JP 4514931 B2 JP4514931 B2 JP 4514931B2
Authority
JP
Japan
Prior art keywords
air bearing
dynamic pressure
case
fixed shaft
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000302716A
Other languages
Japanese (ja)
Other versions
JP2002106567A (en
Inventor
明義 高橋
俊哉 内田
海鳴 戴
剛史 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Nidec Copal Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Electronics Corp filed Critical Nidec Copal Electronics Corp
Priority to JP2000302716A priority Critical patent/JP4514931B2/en
Publication of JP2002106567A publication Critical patent/JP2002106567A/en
Application granted granted Critical
Publication of JP4514931B2 publication Critical patent/JP4514931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、情報機器、画像機器、計測機器等に搭載される動圧空気軸受型光偏向器に関し、特にケース内を略真空化することのできるポンプ機構を備え、低消費電力化、低騒音化を計り得る高性能な動圧空気軸受型光偏向器に関するものである。
【0002】
【従来の技術】
本出願人は、ロータ部を回転させることにより、ケースとカバ部材により密閉されたケース内の空気をケース外部へと排出し、このケース内を減圧あるいは真空化することのできるポンプ機構を備えた動圧空気軸受型光偏向器について、特開平09−061742号、特開平10−206780号、特許第2645768号、特許第2645773号、特願平11−159539号等により提案している。
このポンプ機構を備える動圧空気軸受型光偏向器を図15乃至図23を参照して説明する。
【0003】
図15はポンプ機構を備える動圧空気軸受型光偏向器の一例を示す縦断面図であり、図16は図15の動圧空気軸受型光偏向器のポンプ機構周辺部を示す半断面図である。
【0004】
11hは略中央部に固定軸21hが立設された基台で、ステータコイル63が固着されたハウジング13hで、その周囲を取り囲むことによりケース15hが構成されている。
固定軸21hの外周には、ラジアル動圧空気軸受31hにより回転自在に支持された回転軸23hが係合されており、この回転軸23hに回転多面鏡61、ロータヨーク65等が取り付けられることによりロータ部が構成されている。
このロータ部を、基台11h、ハウジング13hからなるケース15hと、レーザ光透過窓(図示せず)の形成されたカバ部材17hとにより密閉したケース内に収容することにより、実質的に密閉されたミラー室19hにおいて、回転多面鏡61を含むロータ部が高速で回転することとなる。
【0005】
ここで、ポンプ機構を備える動圧空気軸受型光偏向器にあっては、図16に示すように、ロータ部が回転することにより、ラジアル動圧空気軸受31hに動圧が発生するとともに、このラジアル動圧空気軸受31hの両端部に刻設されたヘリングボーン溝からなる上部、下部のポンプ機構41h,43hによって、図中矢印で示したように、ケース内(ミラー室19h)の空気が固定軸21hの略中心部へと向けて形成された大気連通路49j,49kから吸引され、固定軸21hの略中心部に形成された大気連通路49i、フィルタ53hを介してケース外部へと排出され、時間の経過とともにケース内を略真空状態まで減圧することができる。
【0006】
このようにケース内(ミラー室19h)の圧力を減圧あるいは真空化することにより、ロータ部が回転する際の空気抵抗を大幅に低減することができるため、モータの損失を抑えることができるとともに、回転多面鏡61が高速回転することにより発生する風切り音を大幅に抑えることができる。
【0007】
図17乃至図23は、ポンプ機構を備える動圧空気軸受型光偏向器の他の構成例を示すものであり、図17乃至図18の動圧空気軸受型光偏向器は、ラジアル動圧空気軸受31iの両端部に別途吸引用のヘリングボーン溝を刻設することにより、ラジアル動圧空気軸受31iの軸受剛性を高めることができるものであり、図19乃至図20の動圧空気軸受型光偏向器は、スラスト軸受33j,33iにポンプ機能を持たせることにより、軸方向の寸法を抑えることができるものである。
また、図21はラジアル動圧空気軸受31gの一方の端部のみにポンプ機構43gを設けることにより、同様に軸方向の寸法を抑えることができるものであり、図23は中空のスリーブを固定軸21eとしたものであるが、基本的には、図13乃至図14に示した動圧空気軸受型光偏向器と同様の効果を得ることができる。
なお、図22の(A)乃至(C)は、ラジアル動圧空気軸受の他の構成例を示したものであるが、ヘリングボーン溝に限らず、種々の形式の動圧空気軸受が適用可能である。
【0008】
このように、ポンプ機構を備える動圧空気軸受型光偏向器は、その使用回転速度において、ケースとカバ部材により密閉されたケース内の圧力を大気圧に比べてかなり低い圧力に減圧あるいは真空化することができるため、回転多面鏡等による風損や風切り音を大幅に低減することができ、消費電力も低く抑えることができる。
【0009】
【発明が解決しようとする課題】
しかし、ケース内に空気が存在する場合には、ラジアル動圧空気軸受等における流体摩擦により生じた熱は、固定軸等を介してケースやカバ部材に熱伝導される以外に、ケース内の空気を媒体としてケースやカバ部材に伝達(対流)されるため、軸受部周辺の温度は概ね均一になるが、ケース内が減圧あるいは真空化されている場合には、ケース内の対流はほとんど発生せず、特にポンプ機構を備える動圧空気軸受型光偏向器にあっては、ケース内の空気を外部に排出するために、少なくとも固定軸の一部に排出孔が設けられており、この近傍はケース外部に露出するか、外気と接触することになるため、他の部分に比べて放熱がしやすくなる。
このため、ポンプ機構を含む軸受部周辺の温度にばらつきを生じ、この温度の差が熱膨張量の差となって表れることから、発熱部であるラジアル動圧空気軸受やポンプ機構等の回転軸と固定軸とのギャップが、軸受部全体を通じて均一でなくなり、クリアランスが確保できなくなることによって軸受性能が低下したり、最悪の場合には回転軸の焼き付きが生じるなどの問題がある。
【0010】
本発明は、軸受部全体を通じて温度差を生じた場合においても、軸受性能の低下を引き起こすことがなく、あるいは軸受部全体を通じて温度差を生じにくくすることにより、安定した回転状態を得られる動圧空気軸受型光偏向器を得ることを目的としている。
【0011】
本発明の目的と新規な特徴は、次の説明を添付図面と照らし合わせて読むことにより、より完全に明らかになるであろう。ただし、図面はもっぱら解説のためのものであって、本発明の技術的範囲を限定するものではない。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明はケースに立設した中空の固定軸と、前記固定軸の外周あるいは内周をヘリングボーン溝その他の動圧発生部からなるラジアル動圧空気軸受により回転自在に支持された回転軸とを備え、前記回転軸と一体的に回転する回転多面鏡その他のロータ部をケースとカバ部材により密閉したケース内に収容するとともに、前記ロータ部を回転させることにより前記ケース内の空気をケース外部へと排出し、該ケース内を減圧あるいは真空化するポンプ機構を備える動圧空気軸受型光偏向器において、ケース外部に露出した前記固定軸の近傍に設けられたポンプ機構の固定軸と回転軸とのギャップがモータの駆動前後でもほぼ一定となるように前記固定軸の露出部近傍で前記ポンプ機構と対向する該固定軸の厚みが変化するように、前記回転軸の下方に向けて隙間が大きくなる切欠部を設けることにより動圧空気軸受型光偏向器を構成している。
【0013】
【0014】
【0015】
【0016】
【0017】
【0018】
【実施の形態】
以下、添付図面を参照して本発明者が考えた動圧空気軸受型光偏向器および本発明の実施の形態を詳細に説明する。
【0019】
図1は、本発明者が考えた第1の動圧空気軸受型光偏向器の縦断面図であり、図2は図1の動圧空気軸受型光偏向器の要部を拡大した半断面図である。
【0020】
15aは略中央部に中空の固定軸21aが立設されたケースで、その内側面にはステータコイル63が固着されている。
中空の固定軸21aの内周には、ラジアル動圧空気軸受31aにより回転自在に支持された回転軸23aのシャフトが係合されており、このシャフトと一体的に形成されたハブによって、前記固定軸21a上方の開口端を覆い被すとともに、このハブの外周に回転多面鏡61、ロータヨーク65等が取り付けられることによりロータ部が構成されている。
このロータ部は、スラスト軸受33aによりスラスト方向の支持がなされた状態で、ケース15aとレーザ光透過窓(図示せず)の形成されたカバ部材17aにより密閉されたケース内に収容され、実質的に密閉されたミラー室19a内を高速で回転することとなる。
【0021】
ここで、図1を参照してケース内(ミラー室19a)を減圧あるいは略真空化するポンプ機構について詳細に説明すると、回転軸23aのシャフト外周と固定軸21a内周とは、所定のクリアランスが設けられた状態で対向しており、その略中央部に設けられたラジアル動圧空気軸受31aにより、ロータ部が回転自在に支持されている。
このラジアル動圧空気軸受31aの両端部には、ヘリングボーン溝等の刻設されたポンプ機構41a,43aが設けられており、回転軸23aのハブ内周と固定軸21a外周とが対向する微少隙間と、固定軸21aのフランジ部に形成された、固定軸21aの下端部とケース内とを連通する連通路51aを介して、ロータ部の回転に伴って、ミラー室19aの空気を吸引する。
この吸引されたミラー室19aの空気は、図中の矢印で示すように、回転軸23aのシャフト内部に形成された大気連通路49a,49b,49cや、下部ポンプ機構43aとラジアル動圧空気軸受31aとの境界部近傍と外部とを連通する、固定軸21aのフランジ部に形成された排出口45a、フィルタ53aを介して、ケース外部へと排出され、時間の経過とともに、ミラー室19a内部を減圧あるいは略真空化することができる。
一方、ラジアル動圧空気軸受31aの両端部は、大気連通路49a,49b,49c、排出口45a等を介してケース外部と連通しており、この両端部は大気圧となることから、ミラー室19a内部の圧力とは無関係に、常に安定した軸受剛性を得ることができる。
【0022】
しかし、ここで問題となるのは、ミラー室19a内部が略真空化されていることから、ラジアル動圧空気軸受で発生する熱は、対流による放熱がほとんど期待できず、もっぱら固定軸21aや回転軸23aの熱伝導によりケース外部へと放熱されることになる。
【0023】
これを図13を用いて詳細に説明すると、固定軸21eのフランジ部は外部に露出していることから放熱が良好であり、この露出部近傍とそれ以外の部分とでは温度差を生じることになり、熱膨張量に差異を生じてしまう。
すなわち、ラジアル動圧空気軸受31aの流体摩擦に起因する熱膨張で、回転軸23aと固定軸21eとが、各々破線で示すように変形することになり、回転軸23aと固定軸21eとが対向する当初のギャップCL1は、各々CL2,CL3のように変化することになる。
回転軸23aと固定軸21eとの温度がほぼ同じ場合には、CL1とCL2のように、そのギャップはほとんど同じとなるが、これらに温度差が生じる場合には、CL3のように、そのギャップはCL1に比べて狭くなり、所定のクリアランスを確保できなくなることから、軸受性能の低下や、最悪の場合には回転軸の
焼き付きを引き起こしてしまうことになる。
【0024】
これに対して、本発明者が考えた第1の動圧空気軸受型光偏向器にあっては、図2に示すように、外部に露出する固定軸21aのフランジ部近傍に設けられたポンプ機構43aの固定軸21aと回転軸23aとのギャップを、ラジアル動圧空気軸受31aの固定軸21aと回転軸23aとのギャップよりもGだけ広くなるように設定しているため、軸受部全体を通じて温度差を生じた場合においても、軸受性能の低下や回転軸の焼き付き等を生じることのない、安定した回転状態を得ることができる。
【0025】
ちなみに、ラジアル動圧空気軸受周辺の温度は55℃程度上昇(室温が25℃の場合、80℃程度になる)し、回転軸と固定軸との温度差は20℃程度にも達することが実験により確認されており、回転軸と固定軸をともにアルミで形成した場合に20℃の温度差が生じると、アルミの線膨張係数が23〜29E−6/℃(ここでの「E−6」は、10のマイナス6乗の意、すなわち、0.000023〜0.000029/℃、以下同様に表記する。)であることから、ギャップが約3μm変化すると考えられるので、ここでは、Gを3μmに設定している。
ただし、これらのデータは、モータの仕様や動作環境等により異なると考えられるため、仕様に応じてGの値を設定することが望ましい。
また、Gの最大値は、温度差によりポンプ機構の固定軸と回転軸とのギャップが最小となった時点で、ポンプ機能が得られる程度に設定されていればよい。
【0026】
次に、本発明者が考えた他の動圧空気軸受型光偏向器について図3乃至図12を参照して説明する。
なお、本発明者が考えた第1の動圧空気軸受型光偏向器と同一の構成については同一の符号を付与することにより、その説明を省略する。
【0027】
図3は本発明者が考えた第2の動圧空気軸受型光偏向器の要部を拡大した半断面図である。
【0028】
本発明者が考えた第2の動圧空気軸受型光偏向が、本発明者が考えた第1の動圧空気軸受型光偏向器と主に異なる点は、下部のポンプ機構の固定軸と回転軸とのギャップを、ラジアル動圧空気軸受の固定軸と回転軸とのギャップよりも一律にGだけ広く設定するのではなく、図3に示すように、熱膨張によるギャップの変化分に対応させて、0からGの範囲内で勾配をつけて広く設定したことにある。
【0029】
このように、0からGの範囲内で勾配をつけて設定することにより、熱膨張により回転軸と固定軸とのギャップが変化した後の状態で、最適なクリアランスを得られるように構成することができるため、さらに安定した軸受性能、ポンプ機能を得ることができる。
【0030】
図4乃至図5は、本発明者が考えた第3、第4の動圧空気軸受型光偏向器の縦断面図である。
【0031】
本発明者が考えた第3、第4の動圧空気軸受型光偏向器が、本発明者が考えた第1、第2の動圧空気軸受型光偏向と主に異なる点は、下部のポンプ機構の固定軸と回転軸とのギャップを、ラジアル動圧空気軸受の固定軸と回転軸とのギャップよりも広く設定するのではなく、ラジアル動圧空気軸受に軸流を発生する軸流発生機構を、ラジアル動圧空気軸受の近傍あるいはラジアル動圧空気軸受と一体的に設け、この軸流発生機構に供給する空気を、ケース外部へと排出する排出口を介して冷却したことにある。
【0032】
図4は軸流発生機構67aをラジアル動圧空気軸受31bの下端部近傍に設けたものであり、図5は軸流発生機構67bをラジアル動圧空気軸受31cと一体的に設けたものであるが、これらの軸流発生機構67a,67bに供給される空気は、固定軸21eのフランジ部に形成された排出口45aを介して冷却され、この冷却された空気がラジアル動圧空気軸受31b,31cを流れる際に、ラジアル動圧空気軸受31b,31c全体を通じての温度分布を均一化することができるため、本発明者が考えた第1、第2の動圧空気軸受型光偏向器と同様の効果を得ることができるとともに、ラジアル動圧空気軸受31b,31cの発熱を抑制することができるため、最大回転速度を10%程度引き上げることができる。
【0033】
図6乃至図7は、本発明者が考えた第5、第6の動圧空気軸受型光偏向器の縦断面図である。
【0034】
本発明者が考えた第5、第6の動圧空気軸受型光偏向が、本発明者が考えた第3、第4の動圧空気軸受型光偏向と主に異なる点は、ケース外部の空気を軸流発生機構に供給する流入口と、ラジアル動圧空気軸受を通り、ケース外部へと排出する排出口とを、各々別個に設けたことにある。
【0035】
図6は下部のポンプ機構を設ける代わりに、内部を貫通する大気連通路49aを備えるシリンダ状の端部を回転軸23dに設け、軸流発生機構を一体的に設けたラジアル動圧空気軸受31cの吸引作用により、図中の矢印で示すように、固定軸21cの下端面に設けられた底板57bの略中央部に設けられた、吸入口47aのフィルタ53bを介して、ケース外部から空気を吸入し、大気連通路49a、ラジアル動圧空気軸受31c、排出口45a、フィルタ53aを介してケース外部へと排出している。
【0036】
図7は下部のポンプ機構43c等はそのままに、固定軸21dのフランジ部に吸入口47bと排出口45bと、上部のポンプ機構41aとラジアル動圧空気軸受31cの上部端面との境界近傍に開口部を有し、排出口45bへと連通する第2の連通路51cを設けたもので、軸流発生機構を一体的に設けたラジアル動圧空気軸受31cの吸引作用により、図中の矢印で示すように、フィルタ53c、吸入口47bを介して、ケース外部から空気を吸入し、ラジアル動圧空気軸受31c、第2の連通路51c、排出口45b、フィルタ53cを介してケース外部へと排出している。
【0037】
このように、ラジアル動圧空気軸受に供給する空気を、吸入口を介してケース外部から吸入し、ラジアル動圧空気軸受を冷却した後の暖められた空気は、排出口を介してケース外部へと排出することにより、ラジアル動圧空気軸受等の冷却効率を高めることができるので、本発明者が考えた第3、第4の動圧空気軸受型光偏向器と同様の効果を得ることができるとともに、さらなる回転速度の向上が期待できる。
【0038】
図8乃至図9は、本発明者が考えた第7、第8の動圧空気軸受型光偏向器の縦断面図、要部拡大図である。
【0039】
本発明者が考えた第7、第8の動圧空気軸受型光偏向が、本発明者が考えた第1乃至第6の動圧空気軸受型光偏向と主に異なる点は、固定軸のケース外部への露出部をポンプ機構の機能を妨げない範囲で断熱部材により覆ったことにある。
【0040】
図8は、固定軸21eのケース外部への露出部であるフランジ部を、発砲スチロール等の断熱部材で覆ったものであり、ポンプ機構41a、43dにより、ミラー室19a内部の空気を排出する排出口45aの開口部を完全に塞がないことにより、ポンプ機構41a、43dの機能は損なわないようにしている。
【0041】
図9は、固定軸21eのフランジ部とともに、ケース15aの下部も断熱部材で覆ったものであり、図8同様ポンプ機構41a、43dの機能を妨げないように、排出口45aの開口部は完全には塞いでいない。
【0042】
このように、固定軸のケース外部への露出部を、ポンプ機構の機能を妨げない範囲で断熱部材で覆うことにより、ポンプ機構やラジアル動圧空気軸受等の軸受部全体を通じて、温度差を生じないように構成することができるため、起動時から定常回転時に亘って所定のクリアランスを得ることができ、本発明者が考えた第1の動圧空気軸受型光偏向器と同様の効果を得ることができる。
【0043】
図10乃至図11は、本発明者が考えた第9、第10の動圧空気軸受型光偏向器の縦断面図である。
【0044】
本発明者が考えた第9、第10の動圧空気軸受型光偏向が、本発明者が考えた第1乃至第8の動圧空気軸受型光偏向と主に異なる点は、ケース外部に露出した固定軸近傍に設けられたポンプ機構の固定軸と回転軸とのギャップが、モータの駆動前後でもほぼ一定となるように、固定軸あるいは回転軸の線膨張係数を最適化したことにある。
【0045】
アルミの線膨張係数が23〜29E−6/℃で、この時の固定軸と回転軸との温度差が20℃であった場合に、温度差により熱膨張量が異なる回転軸の線膨張係数を15〜18E−6/℃の範囲で設定すると、固定軸と回転軸との熱膨張量がほぼ等しくなる。
そこで、このような線膨張係数を有するAl−Cu−Zn合金(アルミニウムブロンズ)、Cu−Ni合金(コンスタンタン)、Fe−Cr−Ni合金(ステンレス綱)等の合金材料を使用して、図10乃至図11に示すように、回転軸に合金部73a,73bを一体的に形成することにより、該ポンプ機構の固定軸と回転軸とのギャップを、モータの駆動前後でほぼ一定にすることができるため、起動時から定常回転時に亘って、安定した軸受性能を得ることができる。
【0046】
また、これとは逆に、温度差により熱膨張量が異なる固定軸の線膨張係数を36〜44E−6/℃の範囲で設定することによっても、同様の効果を得ることができる。
【0047】
図12は、本発明の第1の実施の形態の動圧空気軸受型光偏向器の縦断面図である。
【0048】
本発明の第1の実施の形態の動圧空気軸受型光偏向が、本発明者が考えた第1乃至第10の動圧空気軸受型光偏向と主に異なる点は、ケース外部に露出した固定軸近傍に設けられたポンプ機構の固定軸と回転軸とのギャップが、モータの駆動前後でもほぼ一定となるように、固定軸の露出部近傍の形状を最適化したことにある。
【0049】
固定軸21fの露出部近傍である、下部のポンプ機構43dが形成された箇所には、ちょうどポンプ機構43dのみを残すように切欠部69aが形成されている。この切欠部69aが形成されていることにより、固定軸21fの露出部であるフランジ部外周と、ポンプ機構43d等が設けられているフランジ部内周とは、僅かな接続部71を介して熱伝導が行われるため、接続部の断面積等に応じて、熱伝導特性が悪くなり、フランジ部内周とフランジ部外周とでは温度の熱伝導が悪くなる。
このため、下部のポンプ機構43d周辺の温度は、ラジアル動圧空気軸受31aの温度とほとんど同じとなり、ポンプ機構やラジアル動圧空気軸受の軸受部全体を通じて温度差を生じなくなるため、起動時から定常回転時に亘って、安定した軸受性能を得ることができる。
【0050】
なお、これまでは図13に示したような、軸回転型の動圧空気軸受型光偏向器について説明してきたが、スリーブ回転型の動圧空気軸受型光偏向器についても、図14に示すように、温度差に起因して固定軸と回転軸とのギャップに変化が生じる。軸回転型の場合には、図13のCL3に示したようにギャップが狭くなり、最悪の場合には回転軸の焼き付きが生じる危険性があるが、スリーブ回転型の場合には、図14のCL6に示すようにギャップが広くなることにより、軸受性能が低下する危険性がある。
【0051】
しかし、軸流発生機構により、ラジアル動圧空気軸受に軸流を発生させ、ラジアル動圧空気軸受の温度上昇を抑制したり、固定軸のケース外部への露出部を断熱部材で覆うことにより、ポンプ機構やラジアル動圧空気軸受等の軸受部全体を通じて温度差を生じないように構成したり、固定軸あるいは回転軸の線膨張係数を最適化する、固定軸の露出部近傍の形状を最適化する等により、ポンプ機構の固定軸と回転軸とのギャップが、モータの駆動前後でもほぼ一定となるように構成することは、スリーブ回転型の動圧空気軸受型光偏向器にも適用可能であることが明らかであるため、スリーブ回転型の動圧空気軸受型光偏向器についての詳細な説明は省略した。
【0052】
また、外部に露出する固定軸のフランジ部近傍に設けられたポンプ機構の固定軸と回転軸とのギャップを、ラジアル動圧空気軸受の固定軸と回転軸とのギャップよりもGだけ広くなるように設定したり、ラジアル動圧空気軸受に軸流を発生する軸流発生機構を、ラジアル動圧空気軸受の近傍あるいはラジアル動圧空気軸受と一体的に設け、この軸流発生機構に供給する空気を、ケース外部へと排出する排出口を介して冷却したり、固定軸のケース外部への露出部をポンプ機構の機能を妨げない範囲で断熱部材により覆うことなど、各々個別に説明してきたが、これらを適宜組み合わせて採用してもよいことは言うまでもない。
【0053】
【発明の効果】
以上、詳細に説明したように本発明にあっては次に列挙する効果を得ることができる。
【0054】
(1)ケースに立設した中空の固定軸と、前記固定軸の外周あるいは内周をヘリングボーン溝その他の動圧発生部からなるラジアル動圧空気軸受により回転自在に支持された回転軸とを備え、前記回転軸と一体的に回転する回転多面鏡その他のロータ部をケースとカバ部材により密閉したケース内に収容するとともに、前記ロータ部を回転させることにより前記ケース内の空気をケース外部へと排出し、該ケース内を減圧あるいは真空化するポンプ機構を備える動圧空気軸受型光偏向器において、ケース外部に露出した前記固定軸の近傍に設けられたポンプ機構の固定軸と回転軸とのギャップがモータの駆動前後でもほぼ一定となるように、前記固定軸の露出部近傍で前記ポンプ機構と対向する該固定軸の厚みが変化するように、前記回転軸の下方に向けて隙間が大きくなる切欠部を設けることにより動圧空気軸受型光偏向器を構成しているので、軸受部全体を通じて温度差を生じないようにすることができるため、起動時から定常回転時に亘って所定のクリアランスを得ることができ、軸受性能の低下や回転軸の焼き付き等を生じることのない、安定した回転状態を得ることができる。
【0055】
【0056】
【0057】
【0058】
【0059】
【図面の簡単な説明】
【図1】 本発明者が考えた第1の動圧空気軸受型光偏向器の縦断面図。
【図2】 図1の動圧空気軸受型光偏向器の要部拡大半断面図。
【図3】 本発明者が考えた第2の動圧空気軸受型光偏向器の要部拡大半断面図。
【図4】 本発明者が考えた第3の動圧空気軸受型光偏向器の縦断面図。
【図5】 本発明者が考えた第4の動圧空気軸受型光偏向器の縦断面図。
【図6】 本発明者が考えた第5の形態の動圧空気軸受型光偏向器の縦断面図。
【図7】 本発明者が考えた第6の動圧空気軸受型光偏向器の縦断面図。
【図8】 本発明者が考えた第7の動圧空気軸受型光偏向器の縦断面図。
【図9】 本発明者が考えた第8の動圧空気軸受型光偏向器の要部拡大断面図。
【図10】 本発明者が考えた第9の動圧空気軸受型光偏向器の縦断面図。
【図11】 本発明者が考えた第10の動圧空気軸受型光偏向器の縦断面図。
【図12】 本発明の第1の実施の形態の動圧空気軸受型光偏向器の縦断面図。
【図13】 図23のA部を拡大した要部半断面図。
【図14】 図21のB部を拡大した要部半断面図。
【図15】 従来の動圧空気軸受型光偏向器の一例を示す縦断面図。
【図16】 図15の動圧空気軸受型光偏向器のポンプ機構周辺部を示す半断面図。
【図17】 従来の動圧空気軸受型光偏向器の他の構成例を示す縦断面図。
【図18】 図17の動圧空気軸受型光偏向器のポンプ機構周辺部を示す半断面図。
【図19】 従来の動圧空気軸受型光偏向器の他の構成例を示す縦断面図。
【図20】 図19の動圧空気軸受型光偏向器のポンプ機構周辺部を示す平面図。
【図21】 従来の動圧空気軸受型光偏向器の他の構成例を示す縦断面図。
【図22】 ラジアル動圧空気軸受の他の構成例を示す横断面図。
【図23】 従来の動圧空気軸受型光偏向器の他の構成例を示す縦断面図。
【符号の説明】
15a,15g,15h,15i:ケース、
17a,17h,17i:カバ部材、
19a,19b,19h,19i:ミラー室、
21a〜21j,21m,21n,21p:固定軸、
23a〜23e,23g〜23i,23m,23n,23p〜23r:回転軸、
31a,31b,31c,31g,31h,31i:ラジアル動圧空気軸受、
33a,33h,33i,33j:スラスト軸受、
41a,41h,41i,43a〜43d,43g〜43j:ポンプ機構、
45a,45b,45i,45j:排出口、
47a,47b:吸入口、
49a〜49c,49f〜49k,49m,49n,49p:大気連通路、
51a,51b,51c:連通路、
53a,53b,53c,53g,53h:フィルタ、
55a,,55b:封止部材、
57a,57b:底板、
59a,59b:断熱部材、
61:回転多面鏡、
63:ステータコイル、
65:ロータヨーク、
67a,67b:軸流発生機構、
69a:切欠部、
71:接続部、
73a,73b:合金部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic air bearing type optical deflector mounted on information equipment, imaging equipment, measuring equipment, etc., and in particular, includes a pump mechanism that can evacuate the inside of a case, and achieves low power consumption and low noise. The present invention relates to a high-performance hydrodynamic air bearing type optical deflector that can be made into a simple structure.
[0002]
[Prior art]
The present applicant is provided with a pump mechanism capable of discharging the air in the case sealed by the case and the cover member to the outside of the case by rotating the rotor portion, and reducing or evacuating the inside of the case. Japanese Patent Application Laid-Open No. 09-061742, Japanese Patent Application Laid-Open No. 10-206780, Japanese Patent No. 2645768, Japanese Patent No. 2645773, Japanese Patent Application No. 11-159539, and the like have been proposed.
A hydrodynamic air bearing type optical deflector including this pump mechanism will be described with reference to FIGS.
[0003]
15 is a longitudinal sectional view showing an example of a hydrodynamic air bearing type optical deflector having a pump mechanism, and FIG. 16 is a half sectional view showing a peripheral portion of the pump mechanism of the hydrodynamic air bearing type optical deflector of FIG. is there.
[0004]
Reference numeral 11h denotes a base having a fixed shaft 21h standing substantially at the center, and a housing 13h to which a stator coil 63 is fixed. A case 15h is formed by surrounding the periphery of the housing 13h.
A rotating shaft 23h rotatably supported by a radial dynamic pressure air bearing 31h is engaged with the outer periphery of the fixed shaft 21h, and a rotary polygon mirror 61, a rotor yoke 65, and the like are attached to the rotating shaft 23h. The part is composed.
By housing this rotor portion in a case sealed by a case 15h comprising a base 11h and a housing 13h and a cover member 17h formed with a laser light transmission window (not shown), the rotor portion is substantially sealed. In the mirror chamber 19h, the rotor portion including the rotary polygon mirror 61 rotates at a high speed.
[0005]
Here, in the dynamic pressure air bearing type optical deflector provided with the pump mechanism, as shown in FIG. 16, the rotor portion rotates to generate dynamic pressure in the radial dynamic pressure air bearing 31h. As shown by the arrows in the figure, the air in the case (mirror chamber 19h) is fixed by the upper and lower pump mechanisms 41h and 43h formed by herringbone grooves carved at both ends of the radial dynamic pressure air bearing 31h. The air is sucked from the atmospheric communication passages 49j and 49k formed toward the substantially central portion of the shaft 21h, and discharged to the outside of the case through the atmospheric communication passage 49i and the filter 53h formed in the approximate central portion of the fixed shaft 21h. As the time elapses, the inside of the case can be decompressed to a substantially vacuum state.
[0006]
Thus, by reducing or evacuating the pressure in the case (mirror chamber 19h), it is possible to greatly reduce the air resistance when the rotor portion rotates, so that it is possible to suppress the loss of the motor, Wind noise generated when the rotating polygonal mirror 61 rotates at high speed can be greatly suppressed.
[0007]
17 to 23 show another configuration example of a dynamic pressure air bearing type optical deflector including a pump mechanism. The dynamic pressure air bearing type optical deflector of FIGS. 17 to 18 is a radial dynamic pressure air. By separately forming a herringbone groove for suction at both ends of the bearing 31i, the bearing rigidity of the radial dynamic pressure air bearing 31i can be increased. The dynamic pressure air bearing type light shown in FIGS. The deflector can suppress the axial dimension by providing the thrust bearings 33j and 33i with a pump function.
Further, FIG. 21 shows that the pump mechanism 43g is provided only at one end of the radial dynamic pressure air bearing 31g, so that the axial dimension can be similarly suppressed. FIG. 23 shows that the hollow sleeve is fixed to the fixed shaft. Although it is 21e, basically the same effect as the dynamic pressure air bearing type optical deflector shown in FIGS. 13 to 14 can be obtained.
22A to 22C show other configuration examples of the radial dynamic pressure air bearing, but not limited to the herringbone groove, various types of dynamic pressure air bearings can be applied. It is.
[0008]
As described above, the dynamic pressure air bearing type optical deflector including the pump mechanism reduces or evacuates the pressure in the case sealed by the case and the cover member to a considerably lower pressure than the atmospheric pressure at the rotation speed of use. Therefore, it is possible to greatly reduce windage loss and wind noise caused by a rotating polygon mirror, and to reduce power consumption.
[0009]
[Problems to be solved by the invention]
However, when air is present in the case, the heat generated by the fluid friction in the radial dynamic pressure air bearing or the like is not conducted to the case or the cover member via the fixed shaft or the like. The temperature around the bearing is almost uniform because it is transmitted (convection) to the case and the cover member as a medium, but almost no convection occurs in the case when the case is depressurized or evacuated. In particular, in a hydrodynamic air bearing type optical deflector equipped with a pump mechanism, a discharge hole is provided in at least a part of the fixed shaft in order to discharge the air in the case to the outside. Since it is exposed to the outside of the case or comes into contact with the outside air, it is easier to radiate heat than other parts.
For this reason, the temperature around the bearing part including the pump mechanism varies, and the difference in temperature appears as a difference in thermal expansion amount. Therefore, the rotary shaft of the radial dynamic pressure air bearing or pump mechanism as the heat generating part The gap between the fixed shaft and the fixed shaft is not uniform throughout the entire bearing portion, and the clearance cannot be ensured, resulting in a decrease in bearing performance, and in the worst case, seizure of the rotating shaft occurs.
[0010]
The present invention provides a dynamic pressure that does not cause a decrease in bearing performance even when a temperature difference occurs across the entire bearing portion, or that makes it difficult to cause a temperature difference throughout the bearing portion, thereby obtaining a stable rotational state. The object is to obtain an air bearing type optical deflector.
[0011]
The objects and novel features of the present invention will become more fully apparent when the following description is read in conjunction with the accompanying drawings. However, the drawings are for explanation only and do not limit the technical scope of the present invention.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is capable of rotating freely with a hollow fixed shaft standing on a case and a radial dynamic pressure air bearing comprising an outer periphery or an inner periphery of the fixed shaft including a herringbone groove and other dynamic pressure generating portions. A rotary polygon mirror or other rotor part that rotates integrally with the rotary shaft, and accommodates the rotor part in a case sealed by a case and a cover member, and the rotor part is rotated by rotating the rotor part. A dynamic pressure air bearing type optical deflector having a pump mechanism for discharging air in a case to the outside of the case and reducing or evacuating the inside of the case, a pump provided in the vicinity of the fixed shaft exposed to the outside of the case The gap between the fixed shaft and rotating shaft of the mechanism is almost constant before and after driving the motor. , Near the exposed part of the fixed shaft In order to change the thickness of the fixed shaft facing the pump mechanism, a notch is provided in which the gap increases toward the lower side of the rotating shaft. Thus, a dynamic pressure air bearing type optical deflector is configured.
[0013]
[0014]
[0015]
[0016]
[0017]
[0018]
Embodiment
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the hydrodynamic air bearing type optical deflector and the present invention, which the present inventors have considered, will be described below in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is a longitudinal sectional view of a first hydrodynamic air bearing type optical deflector considered by the present inventor, and FIG. 2 is an enlarged half section of a main part of the hydrodynamic air bearing type optical deflector of FIG. FIG.
[0020]
Reference numeral 15a denotes a case in which a hollow fixed shaft 21a is erected at a substantially central portion, and a stator coil 63 is fixed to an inner surface thereof.
A shaft of a rotary shaft 23a rotatably supported by a radial dynamic pressure air bearing 31a is engaged with the inner periphery of the hollow fixed shaft 21a. The hub is formed integrally with the shaft to fix the fixed shaft 21a. The rotor portion is configured by covering the open end above the shaft 21a and attaching the rotary polygon mirror 61, the rotor yoke 65, and the like to the outer periphery of the hub.
The rotor portion is housed in a case sealed by a cover member 17a formed with a case 15a and a laser light transmission window (not shown), with the thrust bearing 33a being supported in the thrust direction. Thus, the inside of the mirror chamber 19a sealed at a high speed is rotated at high speed.
[0021]
Here, referring to FIG. 1, the pump mechanism for reducing the pressure in the case (mirror chamber 19a) or making it substantially vacuum will be described in detail. A predetermined clearance is provided between the outer periphery of the rotating shaft 23a and the inner periphery of the fixed shaft 21a. The rotor portion is rotatably supported by a radial dynamic pressure air bearing 31a provided substantially at the center thereof.
Pump mechanisms 41a and 43a, such as herringbone grooves, are provided at both ends of the radial dynamic pressure air bearing 31a, and the inner diameter of the hub of the rotating shaft 23a and the outer diameter of the fixed shaft 21a are opposed to each other. The air in the mirror chamber 19a is sucked in accordance with the rotation of the rotor portion through a communication path 51a that communicates between the gap and the lower end portion of the fixed shaft 21a and the inside of the case formed in the flange portion of the fixed shaft 21a. .
As shown by the arrows in the figure, the sucked air in the mirror chamber 19a is connected to the atmospheric communication passages 49a, 49b, 49c formed in the shaft of the rotary shaft 23a, the lower pump mechanism 43a, and the radial dynamic pressure air bearing. 31a is discharged to the outside of the case through a discharge port 45a formed in the flange portion of the fixed shaft 21a and the filter 53a, which communicates the vicinity of the boundary with the outside, and the interior of the mirror chamber 19a as time passes. The pressure can be reduced or substantially evacuated.
On the other hand, both ends of the radial dynamic pressure air bearing 31a communicate with the outside of the case through the atmosphere communication passages 49a, 49b, 49c, the discharge port 45a, and the like, and these both ends are at atmospheric pressure. Regardless of the pressure inside 19a, a stable bearing rigidity can always be obtained.
[0022]
However, the problem here is that since the inside of the mirror chamber 19a is substantially evacuated, the heat generated by the radial dynamic pressure air bearing can hardly be expected to be radiated by convection, and the fixed shaft 21a and the rotation are exclusively used. The heat is transferred to the outside of the case by the heat conduction of the shaft 23a.
[0023]
This will be described in detail with reference to FIG. 13. Since the flange portion of the fixed shaft 21e is exposed to the outside, heat dissipation is good, and a temperature difference is generated between the vicinity of the exposed portion and the other portions. Thus, a difference in the amount of thermal expansion occurs.
That is, due to thermal expansion caused by fluid friction of the radial dynamic pressure air bearing 31a, the rotary shaft 23a and the fixed shaft 21e are deformed as indicated by broken lines, and the rotary shaft 23a and the fixed shaft 21e face each other. Thus, the initial gap CL1 changes like CL2 and CL3, respectively.
When the temperature of the rotating shaft 23a and the fixed shaft 21e is substantially the same, the gap is almost the same as CL1 and CL2, but when there is a temperature difference between them, the gap is CL3. Is narrower than CL1 and it becomes impossible to secure a predetermined clearance.
It will cause burn-in.
[0024]
On the other hand, in the first hydrodynamic air bearing type optical deflector considered by the present inventor, as shown in FIG. 2, a pump provided near the flange portion of the fixed shaft 21a exposed to the outside. Since the gap between the fixed shaft 21a of the mechanism 43a and the rotary shaft 23a is set to be larger by G than the gap between the fixed shaft 21a and the rotary shaft 23a of the radial dynamic pressure air bearing 31a, the entire bearing portion is used. Even when a temperature difference occurs, it is possible to obtain a stable rotation state without causing deterioration in bearing performance or seizure of the rotating shaft.
[0025]
By the way, the temperature around the radial dynamic pressure air bearing rises by about 55 ° C (when the room temperature is 25 ° C, it becomes about 80 ° C), and the temperature difference between the rotating shaft and the fixed shaft reaches about 20 ° C. When a temperature difference of 20 ° C. occurs when both the rotating shaft and the fixed shaft are formed of aluminum, the linear expansion coefficient of aluminum is 23 to 29E-6 / ° C. (here, “E-6”) Is the meaning of minus 6 to the power, that is, 0.000023 to 0.000029 / ° C., hereinafter the same notation). Therefore, since the gap is considered to change by about 3 μm, G here is 3 μm. Is set.
However, since these data are considered to vary depending on the motor specifications, operating environment, etc., it is desirable to set the G value according to the specifications.
Further, the maximum value of G may be set to such an extent that the pump function can be obtained when the gap between the fixed shaft and the rotating shaft of the pump mechanism is minimized due to the temperature difference.
[0026]
Next, another hydrodynamic air bearing type optical deflector considered by the present inventor will be described with reference to FIGS.
In addition, about the structure same as the 1st dynamic pressure air bearing type | mold optical deflector which this inventor considered, the description is abbreviate | omitted by providing the same code | symbol.
[0027]
FIG. 3 is an enlarged half-sectional view of the main part of the second hydrodynamic air bearing type optical deflector considered by the present inventor.
[0028]
The second hydrodynamic air bearing type optical deflection considered by the present inventor differs from the first hydrodynamic air bearing type optical deflector considered by the present inventor mainly in that the fixed shaft of the lower pump mechanism is The gap with the rotating shaft is not set to be G wider than the gap between the fixed shaft and the rotating shaft of the radial dynamic pressure air bearing, but as shown in Fig. 3, it corresponds to the gap change due to thermal expansion. In other words, it is set wide with a gradient in the range of 0 to G.
[0029]
In this way, by setting the gradient within the range from 0 to G, the optimum clearance can be obtained after the gap between the rotating shaft and the fixed shaft is changed due to thermal expansion. Therefore, more stable bearing performance and pump function can be obtained.
[0030]
4 to 5 are longitudinal sectional views of third and fourth dynamic pressure air bearing type optical deflectors considered by the present inventors.
[0031]
The third and fourth dynamic pressure air bearing type optical deflectors considered by the present inventor are mainly different from the first and second dynamic pressure air bearing type optical deflectors considered by the present inventor in the lower part. Rather than setting the gap between the fixed shaft and the rotary shaft of the pump mechanism wider than the gap between the fixed shaft and the rotary shaft of the radial dynamic pressure air bearing, axial flow generation that generates axial flow in the radial dynamic pressure air bearing The mechanism is provided in the vicinity of the radial dynamic pressure air bearing or integrally with the radial dynamic pressure air bearing, and the air supplied to the axial flow generating mechanism is cooled through a discharge port that discharges it to the outside of the case.
[0032]
4 shows an axial flow generating mechanism 67a provided near the lower end of the radial dynamic pressure air bearing 31b, and FIG. 5 shows an axial flow generating mechanism 67b provided integrally with the radial dynamic pressure air bearing 31c. However, the air supplied to these axial flow generation mechanisms 67a and 67b is cooled through the discharge port 45a formed in the flange portion of the fixed shaft 21e, and this cooled air is cooled by the radial dynamic pressure air bearing 31b, Since the temperature distribution throughout the radial dynamic pressure air bearings 31b and 31c can be equalized when flowing through the 31c, it is the same as the first and second dynamic pressure air bearing type optical deflectors considered by the present inventors. In addition, since the heat generation of the radial dynamic pressure air bearings 31b and 31c can be suppressed, the maximum rotation speed can be increased by about 10%.
[0033]
6 to 7 are longitudinal sectional views of fifth and sixth dynamic pressure air bearing type optical deflectors considered by the present inventors.
[0034]
The fifth and sixth dynamic pressure air bearing type optical deflections considered by the present inventors are mainly different from the third and fourth dynamic pressure air bearing type optical deflections considered by the present inventors. This is because the inlet for supplying air to the axial flow generating mechanism and the outlet for discharging the air to the outside of the case through the radial dynamic pressure air bearing are provided separately.
[0035]
FIG. 6 shows a radial dynamic pressure air bearing 31c in which, instead of providing a lower pump mechanism, a cylindrical end provided with an atmospheric communication passage 49a penetrating the inside is provided on the rotary shaft 23d, and an axial flow generating mechanism is provided integrally. As shown by the arrows in the figure, air is drawn from the outside of the case through the filter 53b of the suction port 47a provided at the substantially central portion of the bottom plate 57b provided at the lower end surface of the fixed shaft 21c. The air is sucked and discharged to the outside of the case through the air communication passage 49a, the radial dynamic pressure air bearing 31c, the discharge port 45a, and the filter 53a.
[0036]
In FIG. 7, the lower pump mechanism 43c and the like remain unchanged, and the flange portion of the fixed shaft 21d opens near the boundary between the suction port 47b and the discharge port 45b, and the upper end surface of the upper pump mechanism 41a and the radial dynamic pressure air bearing 31c. Provided with a second communication passage 51c that communicates with the discharge port 45b, and by the suction action of the radial dynamic pressure air bearing 31c integrally provided with the axial flow generation mechanism, As shown, air is sucked in from the outside of the case through the filter 53c and the suction port 47b, and is discharged to the outside of the case through the radial dynamic pressure air bearing 31c, the second communication passage 51c, the discharge port 45b, and the filter 53c. is doing.
[0037]
In this way, the air supplied to the radial dynamic pressure air bearing is sucked from the outside of the case through the suction port, and the warmed air after cooling the radial dynamic pressure air bearing is discharged to the outside of the case through the discharge port. Since the cooling efficiency of the radial dynamic pressure air bearing or the like can be increased by discharging the same, it is possible to obtain the same effect as the third and fourth dynamic pressure air bearing type optical deflector considered by the present inventor. In addition, it can be expected to further improve the rotational speed.
[0038]
8 to 9 are a longitudinal sectional view and an enlarged view of a main part of seventh and eighth dynamic pressure air bearing type optical deflectors considered by the present inventors.
[0039]
The seventh and eighth dynamic pressure air bearing type optical deflections considered by the present inventors are mainly different from the first to sixth dynamic pressure air bearing type optical deflections considered by the present inventor. The exposed part to the outside of the case is covered with a heat insulating member as long as the function of the pump mechanism is not hindered.
[0040]
In FIG. 8, the flange portion, which is the exposed portion of the fixed shaft 21e to the outside of the case, is covered with a heat insulating member such as foamed polystyrene, and the exhaust inside the mirror chamber 19a is discharged by the pump mechanisms 41a and 43d. By not completely blocking the opening of the outlet 45a, the functions of the pump mechanisms 41a and 43d are not impaired.
[0041]
In FIG. 9, the lower portion of the case 15a is covered with a heat insulating member together with the flange portion of the fixed shaft 21e, and the opening of the discharge port 45a is completely provided so as not to hinder the functions of the pump mechanisms 41a and 43d as in FIG. It is not closed.
[0042]
In this way, by covering the exposed portion of the fixed shaft to the outside of the case with the heat insulating member as long as the function of the pump mechanism is not hindered, a temperature difference is generated throughout the bearing portion such as the pump mechanism and the radial dynamic pressure air bearing. Therefore, a predetermined clearance can be obtained from the start-up to the steady rotation, and the same effect as the first hydrodynamic air bearing type optical deflector considered by the present inventor can be obtained. be able to.
[0043]
10 to 11 are longitudinal sectional views of ninth and tenth hydrodynamic air bearing type optical deflectors considered by the present inventors.
[0044]
The ninth and tenth hydrodynamic air bearing type optical deflections considered by the present inventor are mainly different from the first to eighth dynamic pressure air bearing type optical deflections considered by the present inventor. The linear expansion coefficient of the fixed shaft or the rotating shaft is optimized so that the gap between the fixed shaft and the rotating shaft of the pump mechanism provided near the exposed fixed shaft is substantially constant before and after the motor is driven. .
[0045]
When the linear expansion coefficient of aluminum is 23 to 29E-6 / ° C., and the temperature difference between the fixed shaft and the rotating shaft is 20 ° C., the linear expansion coefficient of the rotating shaft whose thermal expansion amount varies depending on the temperature difference. Is set in the range of 15 to 18E-6 / ° C., the thermal expansion amounts of the fixed shaft and the rotating shaft become substantially equal.
Therefore, using an alloy material such as an Al—Cu—Zn alloy (aluminum bronze), Cu—Ni alloy (constantan), Fe—Cr—Ni alloy (stainless steel) having such a linear expansion coefficient, FIG. As shown in FIG. 11, by forming the alloy portions 73a and 73b integrally on the rotating shaft, the gap between the fixed shaft and the rotating shaft of the pump mechanism can be made substantially constant before and after driving the motor. Therefore, stable bearing performance can be obtained from startup to steady rotation.
[0046]
On the other hand, the same effect can be obtained by setting the linear expansion coefficient of the fixed shaft having a different amount of thermal expansion depending on the temperature difference in the range of 36 to 44E-6 / ° C.
[0047]
FIG. 12 is a longitudinal sectional view of the hydrodynamic air bearing type optical deflector according to the first embodiment of the present invention.
[0048]
The main difference between the dynamic pressure air bearing type optical deflection of the first embodiment of the present invention and the first to tenth dynamic pressure air bearing type optical deflection considered by the present inventor is that it is exposed to the outside of the case. This is because the shape near the exposed portion of the fixed shaft is optimized so that the gap between the fixed shaft and the rotating shaft of the pump mechanism provided in the vicinity of the fixed shaft is substantially constant before and after the motor is driven.
[0049]
A notch 69a is formed in the vicinity of the exposed portion of the fixed shaft 21f where the lower pump mechanism 43d is formed so that only the pump mechanism 43d remains. By forming the notch 69a, the outer periphery of the flange, which is an exposed portion of the fixed shaft 21f, and the inner periphery of the flange, where the pump mechanism 43d and the like are provided, conduct heat through a slight connection 71. Therefore, depending on the cross-sectional area of the connection portion, etc., the heat conduction characteristics are deteriorated, and the heat conduction of the temperature is deteriorated at the flange portion inner periphery and the flange portion outer periphery.
For this reason, the temperature around the lower pump mechanism 43d is almost the same as the temperature of the radial dynamic pressure air bearing 31a, and no temperature difference occurs throughout the bearings of the pump mechanism and the radial dynamic pressure air bearing. Stable bearing performance can be obtained over rotation.
[0050]
The shaft rotation type hydrodynamic air bearing type optical deflector as shown in FIG. 13 has been described so far, but the sleeve rotation type hydrodynamic air bearing type optical deflector is also shown in FIG. As described above, the gap between the fixed shaft and the rotating shaft changes due to the temperature difference. In the case of the shaft rotation type, the gap is narrowed as shown by CL3 in FIG. 13, and in the worst case, there is a risk of the seizure of the rotation shaft, but in the case of the sleeve rotation type, in FIG. As shown by CL6, there is a risk that the bearing performance is lowered due to the wide gap.
[0051]
However, the axial flow generation mechanism generates an axial flow in the radial dynamic pressure air bearing, suppresses the temperature rise of the radial dynamic pressure air bearing, or covers the exposed portion of the fixed shaft outside the case with a heat insulating member, Optimized shape near the exposed part of the fixed shaft, configured to prevent temperature differences throughout the bearings such as the pump mechanism and radial dynamic pressure air bearing, and to optimize the linear expansion coefficient of the fixed shaft or rotating shaft Therefore, it is also applicable to a sleeve rotating type hydrodynamic air bearing type optical deflector so that the gap between the fixed shaft and the rotating shaft of the pump mechanism is substantially constant before and after the motor is driven. Since it is apparent, detailed description of the sleeve rotating type hydrodynamic air bearing type optical deflector is omitted.
[0052]
Further, the gap between the fixed shaft of the pump mechanism provided in the vicinity of the flange portion of the fixed shaft exposed to the outside and the rotating shaft is made G wider than the gap between the fixed shaft and the rotating shaft of the radial dynamic pressure air bearing. Or an axial flow generating mechanism for generating an axial flow in the radial dynamic pressure air bearing is provided in the vicinity of the radial dynamic pressure air bearing or integrally with the radial dynamic pressure air bearing, and the air supplied to this axial flow generation mechanism Have been individually described, such as cooling through a discharge port that discharges to the outside of the case, or covering the exposed portion of the fixed shaft to the outside of the case with a heat insulating member as long as it does not interfere with the function of the pump mechanism. Needless to say, these may be used in appropriate combination.
[0053]
【The invention's effect】
As described above in detail, in the present invention, the following effects can be obtained.
[0054]
(1) A hollow fixed shaft erected on the case, and a rotary shaft rotatably supported by a radial dynamic pressure air bearing comprising a herringbone groove and other dynamic pressure generating portions on the outer periphery or inner periphery of the fixed shaft. A rotary polygon mirror or other rotor part that rotates integrally with the rotating shaft is housed in a case sealed by a case and a cover member, and the air in the case is moved outside the case by rotating the rotor part. In the hydrodynamic air bearing type optical deflector having a pump mechanism for reducing or evacuating the inside of the case, a fixed shaft and a rotating shaft of the pump mechanism provided in the vicinity of the fixed shaft exposed to the outside of the case So that the thickness of the fixed shaft facing the pump mechanism changes in the vicinity of the exposed portion of the fixed shaft so that the gap of the fixed shaft is substantially constant before and after driving the motor. Since a dynamic pressure air bearing type optical deflector is configured by providing a notch part with a gap that increases downward, it is possible to prevent a temperature difference from occurring throughout the bearing part. A predetermined clearance can be obtained during rotation, and a stable rotation state can be obtained without causing deterioration in bearing performance and seizure of the rotating shaft.
[0055]
[0056]
[0057]
[0058]
[0059]
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first dynamic pressure air bearing type optical deflector considered by the present inventors.
FIG. 2 is an enlarged half sectional view of the main part of the dynamic pressure air bearing type optical deflector of FIG. 1;
FIG. 3 is an enlarged half sectional view of a main part of a second dynamic pressure air bearing type optical deflector considered by the present inventor.
FIG. 4 is a longitudinal sectional view of a third hydrodynamic air bearing type optical deflector considered by the present inventors.
FIG. 5 is a longitudinal sectional view of a fourth dynamic pressure air bearing type optical deflector considered by the inventors.
FIG. 6 is a longitudinal sectional view of a fifth embodiment of a hydrodynamic air bearing type optical deflector considered by the present inventors.
FIG. 7 is a longitudinal sectional view of a sixth hydrodynamic air bearing type optical deflector considered by the inventors.
FIG. 8 is a longitudinal sectional view of a seventh hydrodynamic air bearing type optical deflector considered by the inventors.
FIG. 9 is an enlarged cross-sectional view of a main part of an eighth hydrodynamic air bearing type optical deflector considered by the inventors.
FIG. 10 is a longitudinal sectional view of a ninth hydrodynamic air bearing type optical deflector considered by the inventors.
FIG. 11 is a longitudinal sectional view of a tenth dynamic pressure air bearing type optical deflector considered by the inventors.
FIG. 12 is a longitudinal sectional view of the hydrodynamic air bearing type optical deflector according to the first embodiment of the present invention.
13 is an enlarged half-sectional view of a main part of the A part in FIG. 23. FIG.
14 is an enlarged half-sectional view of a main part of the B part in FIG. 21. FIG.
FIG. 15 is a longitudinal sectional view showing an example of a conventional hydrodynamic air bearing type optical deflector.
16 is a half sectional view showing the periphery of the pump mechanism of the dynamic pressure air bearing type optical deflector of FIG. 15;
FIG. 17 is a longitudinal sectional view showing another configuration example of a conventional dynamic pressure air bearing type optical deflector.
18 is a half sectional view showing the periphery of the pump mechanism of the dynamic pressure air bearing type optical deflector of FIG. 17;
FIG. 19 is a longitudinal sectional view showing another configuration example of a conventional dynamic pressure air bearing type optical deflector.
20 is a plan view showing the periphery of the pump mechanism of the dynamic pressure air bearing type optical deflector of FIG. 19;
FIG. 21 is a longitudinal sectional view showing another configuration example of a conventional dynamic pressure air bearing type optical deflector.
FIG. 22 is a cross-sectional view showing another configuration example of the radial dynamic pressure air bearing.
FIG. 23 is a longitudinal sectional view showing another configuration example of a conventional hydrodynamic air bearing type optical deflector.
[Explanation of symbols]
15a, 15g, 15h, 15i: case,
17a, 17h, 17i: cover member,
19a, 19b, 19h, 19i: mirror room,
21a to 21j, 21m, 21n, 21p: fixed shaft,
23a-23e, 23g-23i, 23m, 23n, 23p-23r: rotating shaft,
31a, 31b, 31c, 31g, 31h, 31i: radial dynamic pressure air bearings,
33a, 33h, 33i, 33j: thrust bearings,
41a, 41h, 41i, 43a to 43d, 43g to 43j: pump mechanism,
45a, 45b, 45i, 45j: outlet,
47a, 47b: inlet,
49a-49c, 49f-49k, 49m, 49n, 49p: atmospheric communication passage,
51a, 51b, 51c: communication path,
53a, 53b, 53c, 53g, 53h: filter,
55a, 55b: sealing member,
57a, 57b: bottom plate,
59a, 59b: heat insulating members,
61: Rotating polygon mirror,
63: stator coil,
65: Rotor yoke,
67a, 67b: axial flow generation mechanism,
69a: notch,
71: connection part,
73a, 73b: Alloy parts.

Claims (1)

ケースに立設した中空の固定軸と、前記固定軸の外周あるいは内周をヘリングボーン溝その他の動圧発生部からなるラジアル動圧空気軸受により回転自在に支持された回転軸とを備え、前記回転軸と一体的に回転する回転多面鏡その他のロータ部をケースとカバ部材により密閉したケース内に収容するとともに、前記ロータ部を回転させることにより前記ケース内の空気をケース外部へと排出し、該ケース内を減圧あるいは真空化するポンプ機構を備える動圧空気軸受型光偏向器において、
ケース外部に露出した前記固定軸の近傍に設けられたポンプ機構の固定軸と回転軸とのギャップがモータの駆動前後でもほぼ一定となるように前記固定軸の露出部近傍で前記ポンプ機構と対向する該固定軸の厚みが変化するように、前記回転軸の下方に向けて隙間が大きくなる切欠部を設けたことを特徴とする動圧空気軸受型光偏向器。
A hollow fixed shaft erected on the case, and a rotating shaft rotatably supported by a radial dynamic pressure air bearing comprising a herringbone groove or other dynamic pressure generating portion on the outer periphery or inner periphery of the fixed shaft, The rotary polygon mirror and other rotor parts that rotate integrally with the rotary shaft are accommodated in a case sealed with a case and a cover member, and the air in the case is discharged to the outside of the case by rotating the rotor part. In the hydrodynamic air bearing type optical deflector provided with a pump mechanism for reducing or evacuating the inside of the case,
As the gap between the fixed shaft and the rotating shaft of the pump mechanism provided in the vicinity of the fixed shaft which is exposed to the outside of the case is substantially constant, even before and after the driving of the motor, and the pump mechanism at the exposed portion near the fixed shaft A hydrodynamic air bearing type optical deflector characterized in that a notch portion in which a gap increases toward the lower side of the rotating shaft is provided so that the thickness of the opposed fixed shaft changes .
JP2000302716A 2000-10-02 2000-10-02 Dynamic pressure air bearing type optical deflector Expired - Fee Related JP4514931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302716A JP4514931B2 (en) 2000-10-02 2000-10-02 Dynamic pressure air bearing type optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302716A JP4514931B2 (en) 2000-10-02 2000-10-02 Dynamic pressure air bearing type optical deflector

Publications (2)

Publication Number Publication Date
JP2002106567A JP2002106567A (en) 2002-04-10
JP4514931B2 true JP4514931B2 (en) 2010-07-28

Family

ID=18784025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302716A Expired - Fee Related JP4514931B2 (en) 2000-10-02 2000-10-02 Dynamic pressure air bearing type optical deflector

Country Status (1)

Country Link
JP (1) JP4514931B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480633B1 (en) 2002-11-19 2005-03-31 삼성전자주식회사 A spindle motor of the hard disk drive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575519U (en) * 1992-03-16 1993-10-15 三菱重工業株式会社 Thrust color of rotating shaft
JPH07170740A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Electric motor
JPH084750A (en) * 1994-06-21 1996-01-09 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JPH08205460A (en) * 1995-01-26 1996-08-09 Toshiba Corp Hydrodynamic bearing type motor and scanner motor for driving polygon mirror
JPH10206780A (en) * 1997-01-24 1998-08-07 Copal Electron Co Ltd Pressure reduction type light deflector
JP2000220640A (en) * 1999-01-29 2000-08-08 Ibiden Co Ltd Motor and turbo-molecular pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575519U (en) * 1992-03-16 1993-10-15 三菱重工業株式会社 Thrust color of rotating shaft
JPH07170740A (en) * 1993-12-15 1995-07-04 Matsushita Electric Ind Co Ltd Electric motor
JPH084750A (en) * 1994-06-21 1996-01-09 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JPH08205460A (en) * 1995-01-26 1996-08-09 Toshiba Corp Hydrodynamic bearing type motor and scanner motor for driving polygon mirror
JPH10206780A (en) * 1997-01-24 1998-08-07 Copal Electron Co Ltd Pressure reduction type light deflector
JP2000220640A (en) * 1999-01-29 2000-08-08 Ibiden Co Ltd Motor and turbo-molecular pump

Also Published As

Publication number Publication date
JP2002106567A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
US7745967B2 (en) Cooling fan
KR100572849B1 (en) Turbo blower enabling efficient motor-cooling
JPH10252412A (en) Gas turbine sealing device
KR100814169B1 (en) Torque tube bearing assembly
KR20030051227A (en) Vacuum pump
KR20090111085A (en) Oil-free turbocharger assembly
CN110431310B (en) Support structure for a drive shaft of a turbomachine and turbomachine comprising such a support structure
JP4040773B2 (en) Gas turbine plant
JP4514931B2 (en) Dynamic pressure air bearing type optical deflector
JP2010112202A (en) Turbo-molecular pump
KR20230070170A (en) compressor
JPH11343996A (en) Labyrinth seal structure of fluid machinery
JP3829416B2 (en) Turbo machine
JPH1113687A (en) Turbo machinery
TW201837321A (en) Rotating machine and rotors for use therein
JPH1113696A (en) Turbomachinery
JP2546174Y2 (en) Compound vacuum pump
JP2001132682A (en) Turbo-molecular pump
JPH10212966A (en) Unison ring support structure of variable nozzle turbo charger
CN215566891U (en) Air compressor
JP3829415B2 (en) Turbo machine
KR20030029231A (en) Structure for cooling bearing in turbo compressor
JP3710509B2 (en) Hydrodynamic bearing type motor and polygon mirror drive scanner motor
JP7435382B2 (en) turbo compressor
JPS61132797A (en) Bearing unit for turbo molecular pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4514931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees