JPH0327747A - Rotational driving gear for polygon mirror - Google Patents

Rotational driving gear for polygon mirror

Info

Publication number
JPH0327747A
JPH0327747A JP2123774A JP12377490A JPH0327747A JP H0327747 A JPH0327747 A JP H0327747A JP 2123774 A JP2123774 A JP 2123774A JP 12377490 A JP12377490 A JP 12377490A JP H0327747 A JPH0327747 A JP H0327747A
Authority
JP
Japan
Prior art keywords
fixed
magnet
polygon mirror
bearing
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2123774A
Other languages
Japanese (ja)
Other versions
JPH0644110B2 (en
Inventor
Ryukichi Tsuno
柳吉 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2123774A priority Critical patent/JPH0644110B2/en
Publication of JPH0327747A publication Critical patent/JPH0327747A/en
Publication of JPH0644110B2 publication Critical patent/JPH0644110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the miniaturization so as to suppress swivel motion by securing a magnet to the cylindrical internal peripheral surface of a rotary unit and arranging a driving coil opposedly to this magnet while constituting a dynamic pressure bearing in an opposed surface part between the peripheral of the before described rotary unit and a fixed bearing. CONSTITUTION:A rotor 7 is secured to a stepped part in an end plate 8 to form a closed part, and after a mirror mounting part is constituted in this closed part, a magnet 9 is fixed to the internal peripheral surface of the rotor 7. Next a magnet 10 is mounted to the periphery of the end plate 8, and a thrust adjusting screw 13 is screwed to the center part of the end plate 8. While a magnet 14 is mounted to the lower surface center part of the end plate 8, and a polygon mirror is fixed to an upper surface of the end plate 8. The base end part of a fixed bearing 11 is secured to a stepped part in a base 17. A stator core 21 and a driving coil 22 correspond to a fixed part in a rotational driving gear for the before described polygon mirror.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、動圧空気軸受を用いたポリゴンミラーの回転
駆動装置に関し、より詳細には、ポリゴンミラーの駈動
源として適用しうるポリゴンミラーの回転駆動装置に関
するものである.(従来の技術) 従来技術1. 従来、光走査用のポリゴンミラーを回転させるポリゴン
ミラーの回転岨動装置として、動圧空気軸受を用いたも
のがあり、その構成は例えば第4図に示す如くなってい
る. 図において、符号1は回転体を示し、その下端側には環
状のマグネット2がステータ5及びコイル6の内側に配
置され、上端側には動圧軸愛用としてグルーブ(空気W
)Gを形威された円板状のスラスト軸受3及び光走査用
のポリゴンミラーMがそれぞれ取付けてある.図は回転
体1が回転状態にある場合を示し,回転体工の回転によ
りスラスト軸受3は回転体lを包囲している固定軸受4
より間隙tだけ浮上してスラスト荷重とバランスしてい
る。この種の回転馳動装置は、図示されたもの以外に固
定軸受の外周面にグルーブを形成して軸受となし、その
外周面に回転体を間隙をおいて嵌合し、該外周に沿って
回転体を回転させるか、或いは図示の如くグルーブを形
威した回転体lの中央ないしは端部にマグネットを取り
付け、固定軸受4の内周に沿って回転体1を回転させる
構成となっている. これらの構造は何れも軸受面に空気層の動圧を発生させ
て軸受機能を果たしているが、動圧力はグルーブを設け
た回転体局面の周速と関係があり、大きな動圧力を得る
には大きな軸径を必要とする.このため所要の動圧空気
軸受機能を得るには或る程度の大きさの固定軸受径ある
いは回転軸径が必要である.そのため、その部分に占め
るスペースロスも大きく、必然的に通常の回転能動装置
と同じ軸受特性を得るためには、回転駆動装置の外形寸
法を大きくしなければならない. 従来技術2. また、特開昭55−139051号公報には、ローター
外周部に動圧気体軸受として作用する螺旋溝を設け,そ
の内部にモータ馳動部を配置したモータ構造が示されて
いる. (本発明が解決しようとする課題) 前記、従来技術1では、回転体の軸径や固定軸受の径部
は所謂、デッドスペースとなっていて何ら活用されてお
らず、従って、大きな動圧力を得ようとすれば益々、空
間の活用効率が低下してしまうこととなる. また,前記従来技術2では、モータ構造を開示するのみ
であり、ミラーとの取り付けに関しては何ら記載されて
いないが、仮りにミラーとの組合せを想定したとして、
単にモータ軸にミラーを固定することは、回転軸線に対
する直角度が出ないから、ミラー取り付け用の取付座を
先ずモータ軸に固定し、この取付座にポリゴンミラーを
固着することが必要となる。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a polygon mirror rotation drive device using a hydrodynamic air bearing, and more particularly, to a polygon mirror that can be applied as a cantering source for a polygon mirror. This relates to a rotary drive device. (Conventional technology) Conventional technology 1. Conventionally, there is a polygon mirror rotation device for rotating a polygon mirror for optical scanning that uses a dynamic pressure air bearing, and its configuration is shown in FIG. 4, for example. In the figure, reference numeral 1 indicates a rotating body, on the lower end side of which an annular magnet 2 is arranged inside the stator 5 and coil 6, and on the upper end side there is a groove (air W
) A disk-shaped thrust bearing 3 in the shape of G and a polygon mirror M for optical scanning are respectively attached. The figure shows a case where the rotating body 1 is in a rotating state, and due to the rotation of the rotating body, the thrust bearing 3 is moved to the fixed bearing 4 surrounding the rotating body l.
It floats up by the gap t and is balanced with the thrust load. In addition to the one shown in the drawings, this type of rotary motion device forms a groove on the outer circumferential surface of a fixed bearing to form a bearing, and a rotating body is fitted onto the outer circumferential surface with a gap, and a groove is formed on the outer circumferential surface of the fixed bearing. The rotary body 1 is rotated along the inner periphery of the fixed bearing 4 by either rotating the rotary body or attaching a magnet to the center or end of the rotary body l having a groove as shown in the figure. All of these structures perform the bearing function by generating dynamic pressure in the air layer on the bearing surface, but the dynamic pressure is related to the circumferential speed of the rotating body surface with grooves, so in order to obtain a large dynamic pressure, it is necessary to Requires a large shaft diameter. Therefore, in order to obtain the required hydrodynamic air bearing function, a fixed bearing diameter or rotating shaft diameter of a certain size is required. Therefore, there is a large space loss in this area, and in order to obtain the same bearing characteristics as a normal rotary active device, the external dimensions of the rotary drive device must be increased. Conventional technology 2. Furthermore, Japanese Patent Application Laid-Open No. 55-139051 discloses a motor structure in which a spiral groove is provided on the outer periphery of the rotor and acts as a dynamic pressure gas bearing, and a motor moving part is disposed inside the spiral groove. (Problems to be Solved by the Present Invention) In the above-mentioned prior art 1, the shaft diameter of the rotating body and the diameter part of the fixed bearing are so-called dead spaces and are not utilized at all, and therefore a large dynamic pressure is applied. The more you try to achieve this, the more the efficiency of space utilization will decline. Further, in the prior art 2, only the motor structure is disclosed, and there is no description regarding attachment with a mirror, but assuming that the combination with a mirror is assumed,
Simply fixing the mirror to the motor shaft does not provide perpendicularity to the axis of rotation, so it is necessary to first fix a mounting seat for attaching the mirror to the motor shaft, and then fix the polygon mirror to this mounting seat.

しかし,このような構成としたとしても、モータの軸受
部と、取付座を含むポリゴンミラ一部分とは、軸方向に
離間した状態で回転することになるので、モータのロー
ターと上記取付座を食むポリゴンミラ一部分とを合わせ
た回転体の重心点は、軸受部の中心から取付座を含むミ
ラー側に寄ってしまい、回転体はスリコギ運動をするこ
とになる.そして、このような回転体のスリコギ運動は
、軸受部での回転フレを発生し、動圧軸受面の両端部が
固定側の軸受面と接触して焼き付け現象を生ずる危険を
有するとの問題がある. 而して、本発明の目的は,空間の有効利用を図って一層
の小型化を図ることと同時に、スリコギ運動を抑えるこ
とのできるポリゴンミラーの回転關動装置を提供するこ
とにある. (課題を解決するための手段) かかる目的を達成するため、本発明では、一端側が開放
された内部に円筒状内周面が形成された固定軸受と、該
固定軸受の円筒状内周面によって形成される空間内に配
置され、一端側が開放され内部に円筒状内周面が形成さ
れると共に上記開放された一端側とは逆側の閉塞部がミ
ラー取り付け部となされた円筒状回転体と、該円筒状回
転体の閉塞部に、上記固定軸受の円筒状内周面によって
形戊される空間よりも突出するよう固定されたポリゴン
ミラーとを有し、上記円筒状回転体の円筒状外周面又は
該円筒状回転体の円筒状外周面を回転自在に嵌合支承す
る上記固定軸受の円筒状内周面のいずれか一方にグルー
ブを設けて動圧軸受を形成する一方、上記円筒状回転体
の円筒状内周面にマグネットを固着し,該マグネットに
対向して岨動用コイルを配して上記円筒状回転体の内部
にモータ部を構成し、該モータ部によって上記円筒状回
転体を回転させることにより上記円筒状回転体の閉塞部
に固定された上記ポリゴンミラーを回転させるように構
威している.すなわち、従来、デッドスペースとして活
用されることのなかった回転体の内側部分に回転馳動装
置の邸動源を配設すべく、回転体の円筒状内周面にマグ
ネットを固着し,該マグネットに対向して駆動用コイル
を配設すると共に、回転体の外周と固定軸受の内周との
対向面部に動圧軸受を構成したことを特徴とする. (構  成) 以下,本発明の一実施例に基づいて具体的に説明する. 本発明に係るポリゴンミラーの回転駆動装置の構成を第
1図に示す. 図において、符号7は円筒状回転体たるローターを示し
,軟鋼等の軟磁性材料から成り、外周面を面粗さ0.2
S以下,円筒度0.5μm以下,真円度0.5μm以下
に仕上げた後,エッチング等の工法にて外周面にグルー
ブG(第2図参照)を形威し、さらに耐摩性を向上させ
るための表面処理を施したものである. このローター7は、その上端をフランジ状の端板8の段
部に嵌合させた上で固着することにより閉塞部とし、こ
の閉塞部にミラー取付部を構成している.かかる構成と
した後、端板8とローター7との直角度等についての精
度を確保するための追加工が行なわれる.然る後、この
ローター7の内周面に円筒形のマグネット9を嵌入固定
する.なお、ローター7が非磁性体材料で製作されてい
る場合は、マグネット9の外周にヨークを構成するもの
とする.本例ではローター7が磁性材料であるのでこれ
がヨークとして機能し、上記の如く格別のヨーク材料を
用いる必要はない.次に、端板8の外周には、多極着磁
した環状のマグネット10が取付られる.このマグネッ
トIOは後述の固定軸受11の上端に設けられて検出用
コイル12と対向配置されて、ローター7等の回転体の
回転速度制御のための回転速度検出信号発生用として機
能する.こうして組立られたローター組を第2図に示す
.図においてローター7の外周面に動圧軸受用の多数の
グルーブGが形成されている.なお,このグルーブGは
ローター7の外周面でなく、固定軸受11の内周面に形
成しても所要の動圧軸受機能を得ることもできる. 端板8の中心部には、先端が曲面状に形成されたスラス
ト調整ねじ13が螺合されている.また、この端板8の
下面中心部には環状のマグネットl4がその中心を合わ
せて取付けてある.さらに、端板8の上面にはポリゴン
ミラーMが取付用のねじ15. 16等により締め付け
固定されている.ここで、ポリゴンミラーMは固定軸受
11の円筒状内周面によって形成される空間よりも上方
に突出した位置に固定されている. このようにして構成されたローター組立部は、ローター
7が,固定軸受1lの中空部に嵌装されてポリゴンミラ
ーの回転酩動装置が構成される.固定軸受11は,円筒
形をしており、一端側が開放された内部に円筒状内周面
が形戊され、その基端部がベース17の段部に嵌入され
た上で固着されている.ローター7は上記固定軸受l1
の内周面によって形成される空間内に配置され、一端側
か開放された内部に円筒状内周面が形成されると共に、
上記開放された一端側とは逆側の閉塞部がミラー取付部
とされている.固定軸受11の内周面、つまりローター
7の外周面と対向する周面部分はローター7の外周と同
様の精度で仕上げられており、かつ耐摩耗のための表面
処理が施されている.ちなみに、ローター7を嵌装した
ときの固定軸受l1との軸受隙間は片面2〜7μm程度
に設定される.内周に設けられた帯状の溝17aはロー
ター7の外周に形威された帯状の溝7aと対向しており
、これらの溝は、ローター7の内外を連通している穴1
7bとともに動圧軸受の空気流通に供される.ベースl
7の中心部には、支柱18の下端が挿通された上でナッ
トNで締め付けて取り付けてあり、この支柱18の先端
には円板状のスラスト板19が固着されている.さらに
、スラスト板19の外周部には,上記マグネットl4の
磁極と同極が対向するようにして環状のマグネット20
が嵌装固着されている. 支柱18には磁性材からなる板を多層に重ねて形成した
ステータコア21が取り付けてあり、その外周部に巻線
で馳動用コイル22が施されている.この騨動用コイル
22はマグネット9に対向している.これらのステータ
コア21及び馳動用コイル22等は当該ポリゴンミラー
の回転廓動装置の固定部分に相当し、回転部分としての
ローターやマグネット9と共に当該ポリゴンミラーの回
転廓動装置の回転駆動源を構成する.ここで、固定軸受
11は不動であり、かつ回転体を覆っているので回転岨
動装置の外殻フレームとしての機能を兼ねている.かか
る構成において、ローター組立部は、同極対向のマグネ
ット14. 20間の磁気的反発力により浮上する力が
作用して接触部における摩擦力の軽減が図られる.なお
、ステータコア21とマグネット9との吸引力を利用す
ることにより、マグネット14. 20に代えることも
できる.スラスト方向の位置はスラスト調整ねじ13を
回転することによりマグネット14とマグネット20の
間隔を変えて調整する. 次に、ベース17の上面には,磁気センサー及び回路部
品の一部をマウントした回路基板23が配置され、リー
ド線は溝24. 25等を介して外部に引き出されてい
る.ベースに形成されたねじ穴26. 27等は当該ポ
リゴンミラーの回転能動装置の取付け用に供される。
However, even with this configuration, the motor bearing and the part of the polygon mirror including the mounting seat rotate while being separated in the axial direction, so the motor rotor and the mounting seat are interfering with each other. The center of gravity of the rotating body, including a portion of the polygon mirror, moves from the center of the bearing toward the mirror side that includes the mounting seat, causing the rotating body to perform a sliding motion. This sliding motion of the rotating body causes rotational deflection in the bearing, and there is a risk that both ends of the dynamic pressure bearing surface may come into contact with the stationary bearing surface, resulting in a seizure phenomenon. be. SUMMARY OF THE INVENTION An object of the present invention is to provide a polygon mirror rotational movement device that can effectively utilize space and further reduce the size of the device, while at the same time suppressing slicing motion. (Means for Solving the Problems) In order to achieve the above object, the present invention provides a fixed bearing having an open end and a cylindrical inner circumferential surface formed inside the fixed bearing, and a fixed bearing having a cylindrical inner circumferential surface. a cylindrical rotating body disposed in the space formed, one end side being open and a cylindrical inner circumferential surface being formed inside, and a closed part on the opposite side from the open one end side serving as a mirror mounting part; , a polygon mirror fixed to the closed portion of the cylindrical rotating body so as to protrude beyond the space formed by the cylindrical inner circumferential surface of the fixed bearing; A hydrodynamic bearing is formed by providing a groove on either the surface or the cylindrical inner circumferential surface of the fixed bearing that rotatably fits and supports the cylindrical outer circumferential surface of the cylindrical rotating body, while the cylindrical rotating body A magnet is fixed to the cylindrical inner peripheral surface of the body, and a driving coil is arranged opposite to the magnet to constitute a motor section inside the cylindrical rotating body, and the motor section drives the cylindrical rotating body. By rotating it, the polygon mirror fixed to the closed part of the cylindrical rotating body is rotated. That is, in order to locate the power source of the rotary motion device in the inner part of the rotary body, which has conventionally not been used as a dead space, a magnet is fixed to the cylindrical inner peripheral surface of the rotary body, and the magnet The present invention is characterized in that a driving coil is disposed facing the rotating body, and a dynamic pressure bearing is constructed on the opposing surface between the outer periphery of the rotating body and the inner periphery of the fixed bearing. (Structure) A detailed description will be given below based on an embodiment of the present invention. The configuration of the polygon mirror rotation drive device according to the present invention is shown in Fig. 1. In the figure, reference numeral 7 indicates a rotor which is a cylindrical rotating body, and is made of a soft magnetic material such as mild steel, and has an outer peripheral surface with a surface roughness of 0.2.
After finishing with S or less, cylindricity of 0.5μm or less, and roundness of 0.5μm or less, grooves G (see Figure 2) are formed on the outer circumferential surface using methods such as etching to further improve wear resistance. The surface has been treated for this purpose. This rotor 7 has its upper end fitted into a stepped portion of a flange-like end plate 8 and fixed thereto to form a closed portion, and a mirror mounting portion is formed in this closed portion. After having such a configuration, additional machining is performed to ensure the accuracy of the perpendicularity between the end plate 8 and the rotor 7, etc. Thereafter, a cylindrical magnet 9 is fitted and fixed onto the inner peripheral surface of the rotor 7. Note that if the rotor 7 is made of a non-magnetic material, a yoke is constructed around the outer periphery of the magnet 9. In this example, since the rotor 7 is made of a magnetic material, it functions as a yoke, and there is no need to use a special yoke material as described above. Next, a multi-pole magnetized annular magnet 10 is attached to the outer periphery of the end plate 8. This magnet IO is provided at the upper end of a fixed bearing 11, which will be described later, and is arranged to face a detection coil 12, and functions to generate a rotation speed detection signal for controlling the rotation speed of a rotating body such as the rotor 7. Figure 2 shows the rotor assembly assembled in this way. In the figure, a large number of grooves G for dynamic pressure bearings are formed on the outer peripheral surface of the rotor 7. Note that even if the groove G is formed not on the outer circumferential surface of the rotor 7 but on the inner circumferential surface of the fixed bearing 11, the required dynamic pressure bearing function can also be obtained. A thrust adjustment screw 13 having a curved tip is screwed into the center of the end plate 8. Further, an annular magnet l4 is attached to the center of the lower surface of the end plate 8 with its center aligned. Further, on the upper surface of the end plate 8, a polygon mirror M is mounted with screws 15. It is tightened and fixed with 16 etc. Here, the polygon mirror M is fixed at a position projecting upward from the space formed by the cylindrical inner peripheral surface of the fixed bearing 11. In the rotor assembly section constructed in this way, the rotor 7 is fitted into the hollow portion of the fixed bearing 1l, thereby constructing a polygon mirror rotating device. The fixed bearing 11 has a cylindrical shape, has a cylindrical inner circumferential surface formed inside with one end open, and its base end is fitted into and fixed to the stepped portion of the base 17. The rotor 7 is mounted on the fixed bearing l1
A cylindrical inner circumferential surface is formed in the interior with one end side open, and
The closed part on the opposite side to the open end mentioned above is the mirror mounting part. The inner circumferential surface of the fixed bearing 11, that is, the circumferential surface portion facing the outer circumferential surface of the rotor 7, is finished with the same precision as the outer circumferential surface of the rotor 7, and is subjected to a surface treatment for wear resistance. Incidentally, when the rotor 7 is fitted, the bearing clearance with the fixed bearing l1 is set to about 2 to 7 μm on one side. The band-shaped groove 17a provided on the inner periphery faces the band-shaped groove 7a formed on the outer periphery of the rotor 7, and these grooves are connected to the hole 1 that communicates the inside and outside of the rotor 7.
Together with 7b, it is used for air circulation in the hydrodynamic bearing. base l
The lower end of a column 18 is inserted through the center of the column 7 and is attached by tightening with a nut N, and a disk-shaped thrust plate 19 is fixed to the tip of this column 18. Furthermore, an annular magnet 20 is disposed on the outer circumferential portion of the thrust plate 19 so that the same magnetic pole as the magnet l4 faces.
is fitted and fixed. A stator core 21 formed by laminating multiple layers of plates made of magnetic material is attached to the support column 18, and a pulsation coil 22 is provided around the outer periphery of the stator core 21 by winding. This driving coil 22 faces the magnet 9. The stator core 21, the moving coil 22, etc. correspond to the fixed part of the rotational movement device for the polygon mirror, and together with the rotor and magnet 9 as rotating parts, constitute the rotational drive source of the rotational movement device for the polygon mirror. .. Here, the fixed bearing 11 is stationary and covers the rotating body, so it also functions as an outer frame of the rotary moving device. In such a configuration, the rotor assembly includes like-polarity opposing magnets 14. A levitation force is exerted by the magnetic repulsion between the two parts, and the frictional force at the contact area is reduced. Note that by utilizing the attraction force between the stator core 21 and the magnet 9, the magnet 14. It can also be replaced with 20. The position in the thrust direction is adjusted by rotating the thrust adjustment screw 13 to change the distance between the magnets 14 and 20. Next, a circuit board 23 on which a magnetic sensor and some circuit components are mounted is placed on the upper surface of the base 17, and the lead wires are connected to the grooves 24. 25 etc. to the outside. Screw hole 26 formed in the base. 27 and the like are provided for attaching a rotating active device for the polygon mirror.

以上の装置全体は、塵埃から保護するためにカバー28
にて密閉されている. かかる構成では、ポリゴンミラーの回転廓動装置の回転
岨動部がローター7の内側に構威されているので、従来
技術と比較して中心軸周りのスペースロスが大幅に改善
されることとなる.さらに、例えば、支柱18の占める
スペースは、支柱そのものが,ラジアル負荷を受けるよ
うな構造でない故、小径の軸でも十分であり、或いは支
柱そのものを無くすることも可能である. また,第4図の従来技術と比較した場合に、ポリゴンミ
ラーの回転廓動装置の回転趣動部としてのマグネット9
の軸方向の長さが大きくとれるので、その有効面樟が従
来の同大の回転岨動装置に比べて大幅に改善されており
、同一の回転駆動装置出力で比較した場合に、大幅な小
型化が可能である. 本例では、同一トルク、同一回転速度で従来例と比較し
た場合に、動圧軸受部の直径が大きいので軸受の負荷が
大幅に改善され、また、比較的低速の回転速度でも動圧
効果を得ることができる。
The entire device is covered with a cover 28 to protect it from dust.
It is sealed. In this configuration, since the rotating part of the polygon mirror rotating device is located inside the rotor 7, the space loss around the central axis is significantly improved compared to the conventional technology. .. Furthermore, for example, the space occupied by the support column 18 is not structured such that the support column itself receives a radial load, so a shaft with a small diameter is sufficient, or it is possible to eliminate the support column itself. Moreover, when compared with the prior art shown in FIG.
Since the length in the axial direction can be increased, the effective surface area is greatly improved compared to conventional rotary drive devices of the same size, and when compared with the same rotary drive device output, it is significantly smaller. It is possible to In this example, when compared with the conventional example at the same torque and rotational speed, the diameter of the hydrodynamic bearing part is larger, so the load on the bearing is significantly improved, and the hydrodynamic effect is maintained even at a relatively low rotational speed. Obtainable.

また、ローター7が軸受とマグネットヨークを兼ねてい
るので、コスト低減上有利である.その他、ステータコ
ア21.マグネット9、ローター7、軸受部等が単純な
円筒状部品の嵌合で構戊できるので全体構造が極めて簡
単となり、組立が容易である等、コストダウンを図るこ
とができ、強固な軸受部が回転馳動装置の外周部に配置
されているので、回転岨動装置全体の剛性が増し、振動
の影響も受け難い利点がある.上記実施例において、ロ
ーター7と端板8とは各々別体で製作されたものを組合
せて構成しており、組立時に,両者間の直角度の精度を
出し難い場合がある.この精度は端板8上に搭載される
ポリゴンミラーの精度に影響する.そこで、上記直角度
の精度出し難い場合は、これらの部品を一体的に製作す
るのが有効である.その例を第3図に示す. 図において,符号70は、上記例におけるローター7と
端板8とを一体の材料から機械加工して製作した円筒状
回転体たるローターを示す.このようなローター70で
は,円筒状回転体の底部、つまり閉塞部にポリゴンミラ
ーMを設けるもので,ローター側面aと搭載物を受ける
面bとの直角度の精度をあげることができ、極めて高精
度を要するポリゴンミラーMの取付けに最適である。
Furthermore, since the rotor 7 serves as both a bearing and a magnetic yoke, it is advantageous in terms of cost reduction. Others, stator core 21. Since the magnet 9, rotor 7, bearing section, etc. can be configured by simply fitting cylindrical parts, the overall structure is extremely simple, and assembly is easy, reducing costs. Since it is placed on the outer periphery of the rotary motion device, the rigidity of the entire rotary motion device is increased and it has the advantage of being less susceptible to vibrations. In the above embodiment, the rotor 7 and the end plate 8 are constructed by combining separately manufactured parts, and it may be difficult to maintain the accuracy of the perpendicularity between them during assembly. This accuracy affects the accuracy of the polygon mirror mounted on the end plate 8. Therefore, if it is difficult to achieve the precision of the above-mentioned perpendicularity, it is effective to manufacture these parts as one piece. An example is shown in Figure 3. In the figure, the reference numeral 70 indicates a rotor which is a cylindrical rotating body manufactured by machining the rotor 7 and end plate 8 in the above example from a single piece of material. In such a rotor 70, a polygon mirror M is provided at the bottom of the cylindrical rotating body, that is, at the closed part, and it is possible to improve the accuracy of the perpendicularity between the rotor side surface a and the surface b that receives the loaded object. Ideal for mounting polygon mirrors M that require precision.

なお、この例では回転速度検出信号発生用のマグネット
400及び同検出用コイル120はローター70の内側
に各々配置している. この例ではさらに、ポリゴンミラーMの高さ位置の調整
を可能にする工夫がなされている.その工夫というのは
,調整ねじ130の先端を,支柱180の上端に螺合さ
れた第2tA整ねじ30の頭部30aで受けるようにし
たことである.このようにすれば、マグネット14. 
20間の反発力とローター70及びその搭載物の重力と
がバランスする最適のマグネット14. 20間の間隔
を変えることなく、単に第2調整ねじ30を回転してそ
の高さ位置を変えるだけで調整することができる。
In this example, the magnet 400 for generating a rotational speed detection signal and the detection coil 120 are respectively arranged inside the rotor 70. In this example, a further device is used to enable adjustment of the height position of the polygon mirror M. The idea is that the tip of the adjustment screw 130 is received by the head 30a of the second tA adjustment screw 30 screwed into the upper end of the support column 180. If you do this, magnet 14.
14. Optimal magnet that balances the repulsive force between the rotor 70 and the gravity of the rotor 70 and its loaded objects. Adjustment can be made by simply rotating the second adjustment screw 30 and changing its height position without changing the interval between the two.

この例における上記以外の構成は、第1図の構成に準じ
、煩雑さを避けるため、第l図におけると同一機能の部
品については同一の符号を付し、説明に代える. (作 用) 本発明では、円筒状のローターの内面にマグネットを装
着してポリゴンミラーの回転能動装置の駆動源の構成を
ローター内部に実装したので,ポリゴンミラーの回転駆
動装置中心軸周りのスペースロスが大幅に改善される. (発明の効果) このように本発明では、利用されていないローター内部
空間を有効に活用すべく、ポリゴンミラーの回転罠動装
置の駆動源を配置したので、その分ポリゴンミラーの回
転酩動装置の小型化を図ることができる. さらに、本発明では、外周面が動圧軸受部となされると
共に、内周部にモータ部を配置される円筒状回転体の閉
塞部にポリゴンミラーを設けたものであるから、動圧軸
受部とミラーとを最大限に近接させることができ、軸受
部の焼付現象の原因となる回転体のスリコギ運動を抑え
ることができる. また、本発明では,外周面が動圧軸受部となされると共
に、内周部にモータ部が配置される円筒状回転体の閉塞
部にミラーを取り付けるものであるから,別個のミラー
取付座を設ける必要もない.さらに,本発明の円筒状回
転体は、内部にモータ部が組み込まれ、その外周面を軸
受面としたものであるから円筒状回転体の径を相対的に
大きくとることができ、その結果、円筒状回転体の閉塞
部、すなわち、ミラー取付面が大きくとれる.従って、
モータの回転軸線に対するミラー取付面の直角度も精度
良く構成することができ、ミラーの振れも抑えることが
でき好都合である.
The configuration other than the above in this example is similar to the configuration shown in FIG. 1, and to avoid complication, parts with the same functions as in FIG. (Function) In the present invention, a magnet is attached to the inner surface of the cylindrical rotor, and the drive source configuration of the rotation active device of the polygon mirror is implemented inside the rotor, so that the space around the center axis of the rotation drive device of the polygon mirror is reduced. Loss is greatly improved. (Effects of the Invention) In this way, in the present invention, in order to effectively utilize the unused internal space of the rotor, the drive source of the polygon mirror rotation trapping device is arranged, so that the polygon mirror rotation trapping device can be adjusted accordingly. It is possible to reduce the size of the Furthermore, in the present invention, the polygon mirror is provided in the closed part of the cylindrical rotating body whose outer peripheral surface is used as a dynamic pressure bearing part and the motor part is arranged in the inner peripheral part, so that the dynamic pressure bearing part This allows the mirror to be brought as close as possible to the maximum, thereby suppressing the sliding motion of the rotating body that causes seizure of the bearing. Furthermore, in the present invention, since the mirror is attached to the closed part of the cylindrical rotating body whose outer peripheral surface is used as a dynamic pressure bearing part and whose inner peripheral part is arranged with a motor part, a separate mirror mounting seat is required. There is no need to provide one. Furthermore, since the cylindrical rotating body of the present invention has a motor section incorporated therein and its outer peripheral surface is used as a bearing surface, the diameter of the cylindrical rotating body can be made relatively large, and as a result, The closed part of the cylindrical rotating body, that is, the mirror mounting surface, can be made larger. Therefore,
The perpendicularity of the mirror mounting surface to the rotational axis of the motor can also be configured with high precision, which is advantageous because deflection of the mirror can also be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は各々本発明の実施例を説明したポリゴ
ンミラーの回転酩動装置の断面図、第2図はローターの
正面図,第4図は従来のポリゴンミラーの回転岨動装置
の主要部断面図である.7,70・・・ローター、9・
・・マグネット,11・・・固定軸受,22・・・駆動
用コイル,G・・・グルーブ、M・・・ポリゴンミラー
FIGS. 1 and 3 are cross-sectional views of a polygon mirror rotary motion device illustrating embodiments of the present invention, FIG. 2 is a front view of a rotor, and FIG. 4 is a conventional polygon mirror rotary motion device. This is a sectional view of the main parts. 7,70... rotor, 9.
... Magnet, 11... Fixed bearing, 22... Drive coil, G... Groove, M... Polygon mirror

Claims (1)

【特許請求の範囲】 一端側が開放された内部に円筒状内周面が形成された固
定軸受と、 該固定軸受の円筒状内周面によって形成される空間内に
配置され、一端側が開放され内部に円筒状内周面が形成
されると共に上記開放された一端側とは逆側の閉塞部が
ミラー取り付け部となされた円筒状回転体と、 該円筒状回転体の閉塞部に、上記固定軸受の円筒状内周
面によって形成される空間よりも突出するよう固定され
たポリゴンミラーと、 を有し、 上記円筒状回転体の円筒状外周面又は該円筒状回転体の
円筒状外周面を回転自在に嵌合支承する上記固定軸受の
円筒状内周面のいずれか一方にグルーブを設けて動圧軸
受を形成する一方、 上記円筒状回転体の円筒状内周面にマグネットを固着し
、 該マグネットに対向して駆動用コイルを配して上記円筒
状回転体の内部にモータ部を構成し、該モータ部によっ
て上記円筒状回転体を回転させることにより上記円筒状
回転体の閉塞部に固定された上記ポリゴンミラーを回転
させるように構成してなるポリゴンミラーの回転駆動装
置。
[Scope of Claims] A fixed bearing having a cylindrical inner circumferential surface formed inside with an open end, and a fixed bearing disposed in a space formed by the cylindrical inner circumferential surface of the fixed bearing, with an open end and an inner a cylindrical rotating body in which a cylindrical inner circumferential surface is formed, and a closed part opposite to the open end side serves as a mirror mounting part; and the fixed bearing is attached to the closed part of the cylindrical rotary body a polygon mirror fixed to protrude beyond the space formed by the cylindrical inner circumferential surface of the cylindrical rotating body; A groove is provided on either one of the cylindrical inner circumferential surfaces of the fixed bearing that is freely fitted and supported to form a hydrodynamic bearing, while a magnet is fixed to the cylindrical inner circumferential surface of the cylindrical rotating body, A motor section is configured inside the cylindrical rotating body by arranging a driving coil facing the magnet, and the motor section rotates the cylindrical rotating body to be fixed to the closed part of the cylindrical rotating body. A polygon mirror rotation drive device configured to rotate the polygon mirror.
JP2123774A 1990-05-14 1990-05-14 Rotation drive device for polygon mirror Expired - Fee Related JPH0644110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123774A JPH0644110B2 (en) 1990-05-14 1990-05-14 Rotation drive device for polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123774A JPH0644110B2 (en) 1990-05-14 1990-05-14 Rotation drive device for polygon mirror

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3264407A Division JPH0785634B2 (en) 1991-10-14 1991-10-14 Rotation drive device for polygon mirror

Publications (2)

Publication Number Publication Date
JPH0327747A true JPH0327747A (en) 1991-02-06
JPH0644110B2 JPH0644110B2 (en) 1994-06-08

Family

ID=14868953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123774A Expired - Fee Related JPH0644110B2 (en) 1990-05-14 1990-05-14 Rotation drive device for polygon mirror

Country Status (1)

Country Link
JP (1) JPH0644110B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556339U (en) * 1992-01-16 1993-07-27 帝人製機株式会社 Machining spindle device with built-in motor
JP2020137358A (en) * 2019-02-25 2020-08-31 日本電産サーボ株式会社 motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139051A (en) * 1979-04-13 1980-10-30 Sony Corp Motor
JPS5933021U (en) * 1982-08-23 1984-02-29 日本精工株式会社 rotating unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139051A (en) * 1979-04-13 1980-10-30 Sony Corp Motor
JPS5933021U (en) * 1982-08-23 1984-02-29 日本精工株式会社 rotating unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556339U (en) * 1992-01-16 1993-07-27 帝人製機株式会社 Machining spindle device with built-in motor
JP2020137358A (en) * 2019-02-25 2020-08-31 日本電産サーボ株式会社 motor

Also Published As

Publication number Publication date
JPH0644110B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US5157295A (en) Under-the-hub disk drive spin motor
JPH03140915A (en) Optical deflector
JP3400632B2 (en) Spindle motor
JPH0956110A (en) Motor with composite bearing unit
JPH0327747A (en) Rotational driving gear for polygon mirror
JPS5972973A (en) Ultrafine rotary actuator
US5820273A (en) Hard disc drive with a compound bearing assembly
US5793135A (en) Flat type brushless motor
JPH0478315A (en) Bearing device
US5450261A (en) Magnetic disc drive motor having disc securely fixed to loading surface to abut upper bearing outer ring
JPH11341734A (en) Disk type motor
JPH07238924A (en) Dynamic pressure air bearing
JPH05219708A (en) Brushless motor
JPS6260458A (en) Bearing mechanism of rotary body
JP3170856B2 (en) Rotating polygon mirror device
JPH0560135A (en) Sealed fluid bearing motor
JPH03261359A (en) Motor for disk driving equipment
JPH0787679B2 (en) Toroidal motor
JPH0348216A (en) Motor
JP2560507Y2 (en) Dynamic pressure bearing device
JPS6223354A (en) Flattened motor
JPH08130851A (en) Axial gap motor
JP2001157407A (en) Small-sized motor provided with helicoidal pre-load adjusting mechanism
JPH03256547A (en) Spindle motor
JP3218795B2 (en) Motor bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees