JPH09178669A - Surface inspection device - Google Patents

Surface inspection device

Info

Publication number
JPH09178669A
JPH09178669A JP29789796A JP29789796A JPH09178669A JP H09178669 A JPH09178669 A JP H09178669A JP 29789796 A JP29789796 A JP 29789796A JP 29789796 A JP29789796 A JP 29789796A JP H09178669 A JPH09178669 A JP H09178669A
Authority
JP
Japan
Prior art keywords
light
flaw
pattern
light intensity
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29789796A
Other languages
Japanese (ja)
Other versions
JP3275737B2 (en
Inventor
Yuji Matoba
有治 的場
Akira Kazama
彰 風間
Tsutomu Kawamura
努 河村
Takahiko Oshige
貴彦 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29789796A priority Critical patent/JP3275737B2/en
Publication of JPH09178669A publication Critical patent/JPH09178669A/en
Application granted granted Critical
Publication of JP3275737B2 publication Critical patent/JP3275737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8918Metal

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To discriminate kind and degree of a flaw by continuously detecting a patterned flaw and unevenly shaped flaws on a moving steel plate surface on line. SOLUTION: The different polarized light of the reflected light from a steel plate is measured with a linear array camera. A signal process part 12 shading- corrects three species of image signals measured, and so normalizes a normal part as to be central concentration of the entire gradation for flattening, and converts into the light intensity signal indicating relative change to a normal part. The variation polarity and the variation amount of distribution of three species light intensity signals indicating relative change to the normal part are compared with a pattern set in advance, for detecting change of polarized light, and, based on the variation polarity and the variation amount to the normal part, the type of a flaw whose physical properties on the surface is different from a base material is decided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば薄鋼板等
の表面疵等を光学的に検出する表面検査装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection device for optically detecting surface defects such as thin steel plates.

【0002】[0002]

【従来の技術】例えば鋼板の表面疵を光学的に検出する
装置としては、レ−ザ光の散乱又は回折パタ−ンの変化
を利用して疵を検出する方法が多く用いられている。こ
の方法は鋼板の表面に明らかな凹凸を形成している疵を
検出する場合には有効な方法である。
2. Description of the Related Art For example, as an apparatus for optically detecting a surface flaw of a steel sheet, a method of detecting a flaw by utilizing the scattering of laser light or the change of a diffraction pattern is often used. This method is an effective method for detecting flaws that form apparent irregularities on the surface of a steel sheet.

【0003】一方、鋼板等の疵には、表面の凹凸はな
く、物性値のむら,ミクロな粗さのむら,薄い酸化膜等
の局所的な存在あるいはコ−ティング膜厚の厚さむらと
いった模様状疵といわれるものがある。このような模様
状疵はレ−ザ光の散乱や回折パタ−ンの変化では検出が
困難である。例えば正常部で100Å程度の酸化膜が付い
ている鋼板表面に、局所的に400Å程度の酸化膜が厚く
付いている異常部がある場合、このような異常部の領域
は表面処理工程において塗装不良が生じるため、疵とし
て検出して除去したい要請がある。しかしながら、異常
部と正常部の酸化膜厚の差は鋼板表面の粗さに埋もれて
しまい、光の散乱や回折を利用した方法では全く検出が
不可能である。
On the other hand, a flaw of a steel plate or the like does not have surface irregularities and has a pattern such as unevenness of physical properties, unevenness of microscopic roughness, local existence of thin oxide film or unevenness of coating film thickness. There is something called a flaw. Such pattern flaws are difficult to detect by scattering of laser light or changes in the diffraction pattern. For example, if there is an abnormal area with a thick oxide film of about 400Å locally on the surface of a steel sheet with an oxide film of about 100Å in the normal area, such an abnormal area will cause coating failure during the surface treatment process. Therefore, there is a request to detect and remove defects. However, the difference in the oxide film thickness between the abnormal portion and the normal portion is buried in the roughness of the steel sheet surface, and cannot be detected at all by the method utilizing light scattering or diffraction.

【0004】このように光の散乱や回折を利用した方法
では検出できない疵を検出するために、偏光を用いた疵
検査方法が例えば特開昭52−138183号公報や特開昭58−
204356号公報等に開示されている。特開昭52−138183号
公報に示された検査方法は被検査体の表面から反射した
P偏光とS偏光の比があらかじめ定めた比較レベルより
高いか否可によって欠陥の有無を検知するものである。
また、特開昭58−204356号公報に示された検出方法は被
検査体の表面に特定角度の入射角で光を照射して、表面
欠陥を検出するときのS/N比を向上するようにしたも
のである。また、疵検査方法ではないが、偏光を用いた
膜厚,表面物性の測定方法が例えば特開昭62−293104号
公報や特開平4−58138号公報等に開示されている。特
開昭62−293104号公報に示された検査方法は、試料から
反射した偏光を方位角の異なる3個の検光子を通して受
光し、異なる3種類の偏光の光強度から各位置のエリプ
ソパラメ−タすなわち反射光の電気ベクトルのうち入射
面方向の成分であるP偏光と入射面に垂直方向の成分で
あるS偏光との振幅反射率比tanΨと位相差Δを演算し
て、被検査面上の酸化膜やコ−ティング厚さあるいは物
性値を制度良く測定する方法である。特開平4−58138
号公報に示された検出方法は、試料から反射した偏光を
1/4波長板からなる移相子と検光子とを介してイメ−
ジセンサに導くときに、移相子の透過軸の位置を所定角
度変え、各角度毎に検光子を回転させてイメ−ジセンサ
の画素毎に偏光パラメ−タを求めて複屈折分布を精度良
く測定する方法である。
In order to detect a flaw that cannot be detected by a method utilizing light scattering or diffraction, a flaw inspection method using polarized light is disclosed in, for example, JP-A-52-138183 and JP-A-58-58.
No. 204356 is disclosed. The inspection method disclosed in Japanese Unexamined Patent Publication No. 52-138183 is to detect the presence or absence of a defect by determining whether or not the ratio of P-polarized light and S-polarized light reflected from the surface of the object to be inspected is higher than a predetermined comparison level. is there.
Further, the detection method disclosed in JP-A-58-204356 aims to improve the S / N ratio when detecting a surface defect by irradiating the surface of the inspection object with light at an incident angle of a specific angle. It is the one. Although not a flaw inspection method, a method of measuring the film thickness and surface physical properties using polarized light is disclosed in, for example, JP-A-62-293104 and JP-A-4-58138. The inspection method disclosed in Japanese Patent Application Laid-Open No. 62-293104 receives polarized light reflected from a sample through three analyzers having different azimuth angles, and determines the ellipso parameter at each position from the light intensities of three different kinds of polarized light. That is, the amplitude reflectance ratio tan Ψ and the phase difference Δ between the P-polarized light, which is a component of the reflected light in the direction of the incident surface, and the S-polarized light, which is a component in the direction perpendicular to the incident surface, are calculated and calculated on the surface to be inspected. It is a method to measure the oxide film, coating thickness or physical property values of the above with good accuracy. JP 4-58138
In the detection method disclosed in Japanese Patent Laid-Open Publication No. 2003-242242, the polarized light reflected from the sample is imaged through a phase shifter composed of a quarter wavelength plate and an analyzer.
When the light is guided to the image sensor, the position of the transmission axis of the retarder is changed by a predetermined angle, and the analyzer is rotated at each angle to obtain the polarization parameter for each pixel of the image sensor and accurately measure the birefringence distribution. Is the way to do it.

【0005】[0005]

【発明が解決しようとする課題】特開昭52−138183号公
報や特開昭58−204356号公報に示された検査方法は、偏
光を用いて正常部と異常部とを弁別しているが、測定し
ている偏光方向は2方向のみである。鋼板等の表面の疵
部は光学的物性が正常部と異なった部分であることが多
く、その種類や形態は様々であるため鋼板で反射された
光の偏光状態も様々である。このような場合、3方向以
上の偏光を測定しないと、測定対象の偏光特性を一意に
表すことができないため、例えば検査結果として異常部
が検出できたとしても、それが油のしみか、酸化膜のむ
らか、又は何らかしらの異常な付着物が付着したのであ
るか等、多数の疵種を弁別するこができず、適用できる
疵種は制限されていた。また、偏光を用いたどのような
方法,装置を使用すれば多種多様の疵を弁別できるかに
ついても明らかにされていなかった。
The inspection methods disclosed in JP-A-52-138183 and JP-A-58-204356 use polarized light to discriminate between a normal part and an abnormal part. Only two polarization directions are measured. A flaw on the surface of a steel sheet or the like is often a portion whose optical properties are different from those of the normal portion, and since the types and forms thereof are various, the polarization state of light reflected by the steel sheet is also various. In such a case, the polarization characteristics of the measurement target cannot be uniquely expressed unless polarizations in three or more directions are measured. Therefore, even if an abnormal portion can be detected as an inspection result, it may be oil stains or oxidation. It was not possible to discriminate a large number of flaw species such as unevenness of the membrane or the attachment of some abnormal deposit, and the flaw species that could be applied were limited. Moreover, it has not been clarified what kind of method and apparatus using polarized light can discriminate a wide variety of flaws.

【0006】これに対して特開昭62−293104号公報に示
された検査方法は、エリプソパラメ−タの振幅反射率比
tanΨと位相差Δを使用しているから、油のしみや酸化
膜のむら,異物の付着を弁別できる可能性がある。しか
しながら、この方法は基本的に点測定であり、鋼板等の
表面全体の検査に適さない。仮に、特開昭62−293104号
公報に示されている装置を鋼板の幅方向に多数並べた
り、幅方向に高速に移動可能な機構を持った手段によっ
て1台の装置を走査したり、何らかの工夫により全面走
査が可能になったとしても、信号処理部は全測定点につ
いて偏光強度信号からエリプソパラメ−タの振幅反射率
比tanΨと位相差Δを演算し、画像処理装置などを用い
て疵種と疵の等級を判定する必要がある。しかし、幅方
向1ラインで1000点以上の偏光強度信号を処理しなけら
ばならず、特にエリプソパラメ−タ演算はソフトウェア
演算で行った場合、約数10秒の演算時間がかかるため、
例えば毎分数100mの速度で通過する鋼板等のシ−ト状
製品の表面をオンラインで連続的に検査することは不可
能であった。このために専用の偏光パラメ−タ等の演算
処理装置が必要となり、装置が高価になってしまう。
On the other hand, the inspection method disclosed in Japanese Unexamined Patent Publication No. 62-293104 uses the elliptic parameter amplitude reflectance ratio.
Since tan Ψ and phase difference Δ are used, there is a possibility that it is possible to discriminate oil stains, oxide film unevenness, and foreign matter adhesion. However, this method is basically point measurement and is not suitable for inspection of the entire surface of a steel plate or the like. If, for example, a large number of the devices disclosed in Japanese Patent Laid-Open No. 62-293104 are arranged in the width direction of the steel plate, or one device is scanned by means having a mechanism capable of moving at high speed in the width direction, Even if the whole surface can be scanned by the device, the signal processing unit calculates the amplitude reflectance ratio tan Ψ and phase difference Δ of the ellipsometer from the polarization intensity signal at all measurement points, and uses the image processing device to detect the defects. It is necessary to judge the grade of seeds and defects. However, it is necessary to process polarization intensity signals of 1000 points or more in one line in the width direction, and especially when the ellipso parameter calculation is performed by software, it takes about 10 seconds for calculation.
For example, it was not possible to continuously inspect online the surface of a sheet-like product such as a steel plate passing at a speed of several 100 m / min. For this reason, an arithmetic processing device such as a dedicated polarization parameter is required, and the device becomes expensive.

【0007】しかしながら、この方法は検査手法として
は非常に敏感であり、他の種類の疵や汚れ,油むら,ス
ケ−ルなどから相対的に微弱な検出強度した与えない模
様状の表面疵の情報のみを弁別して検出することは困難
であった。特に、表面に油膜が塗布されて製造ライン上
を移動する鋼板を検査する場合には、その油膜むらと本
来検出すべき表面疵の両方を含んだ偏光パラメ−タを検
出してしまい、表面疵の情報だけを弁別して検出するこ
とはできなかった。このため、特に防錆のために表面に
油膜が塗布されていることが多い冷延鋼板等の通常の鋼
板の表面疵の検出に使える可能性がないと考えられてお
り、鋼板の模様状疵を光学的手段で検出すること、さら
に表面疵の種類や等級までを判定することは不可能とさ
れていた。
However, this method is very sensitive as an inspection method, and relatively weak detection strength from other kinds of flaws, stains, oil spots, scales, and the like, which does not give a pattern-like surface flaw. It was difficult to discriminate and detect only the information. In particular, when inspecting a steel sheet that has an oil film applied to the surface and moves on the production line, a polarization parameter that includes both the oil film unevenness and the surface defect that should be detected should be detected. It was not possible to discriminate and detect only the information of. For this reason, it is considered that there is no possibility that it can be used to detect surface flaws of ordinary steel sheets such as cold-rolled steel sheets, which often have an oil film applied to the surface for rust prevention. It has been considered impossible to detect such defects by optical means, and further to determine the type and grade of surface defects.

【0008】また、この方法は元々膜厚あるいは物性値
を測定する方法であり、そのためにはエリプソパラメ−
タの振幅反射率比tanΨと位相差Δを測定すれば十分で
あった、しかしながら、これらのパラメ−タは必ずしも
人の目で見た状態と一致するものではなく、人が疵と認
識できてもエリプソパラメ−タは変化しない疵について
は検出することができなかった。
Further, this method is originally a method for measuring the film thickness or the physical property value, and for that purpose, ellipso parameters are used.
It was sufficient to measure the amplitude reflectance ratio tan Ψ and the phase difference Δ of the parameter.However, these parameters do not always correspond to the condition as seen by the human eye, and the human can recognize it as a flaw. However, the ellipsoparameter could not detect a flaw that did not change.

【0009】また、特開平4−58138号公報に示された
検査方法は、薄膜評価等に使用されているエリプソメ−
タを2次元に拡大したものであり、この場合は、各画素
毎に複屈折率が求められるため、正常部と異常部とでは
異なる値として複屈折率が測定され、その違いにより正
常部と異常部を弁別できる可能性がある。しかしなが
ら、移相子と検光子を機械的に回転させて測定している
ため、被検査体の各位置の複屈折率を測定するには、少
なくとも1回の測定中は被検査体を停止させている必要
があった。このため、例えば鋼板等のように連続的に製
造されて送られるシ−ト状製品の表面をオンラインで連
続的に検査することは不可能であった。
The inspection method disclosed in Japanese Unexamined Patent Publication No. 4-58138 is an ellipsometer used for thin film evaluation and the like.
In this case, the birefringence index is obtained for each pixel, and therefore the birefringence index is measured as different values between the normal part and the abnormal part, and the difference between the normal part and the normal part is determined. There is a possibility that the abnormal part can be discriminated. However, since the retarder and the analyzer are mechanically rotated for measurement, in order to measure the birefringence of each position of the inspection object, the inspection object should be stopped during at least one measurement. Had to be. For this reason, it is impossible to continuously inspect the surface of a sheet-like product continuously manufactured and sent, such as a steel plate, online.

【0010】この発明はかかる短所を改善するためにな
されたものであり、簡単な構成でシ−ト状製品の表面に
ある模様状疵や凹凸状の疵をオンラインで連続的に検出
して、その種別や程度を弁別することができる表面検査
装置を得ることを目的とするものである。
The present invention has been made to solve the above-mentioned disadvantages, and it is possible to continuously detect online the pattern-like flaws and the uneven flaws on the surface of the sheet-like product with a simple structure, It is an object of the present invention to obtain a surface inspection device capable of discriminating its type and degree.

【0011】[0011]

【課題を解決するための手段】この発明に係る表面検査
装置は、投光部と受光部と信号処理部とを有し、投光部
は被検査面に偏光を入射し、受光部は少なくとも3方向
の異なる角度の偏光を受光する複数の受光光学系を有
し、被検査面で反射した反射光を検出して画像信号に変
換し、信号処理部は各受光光学系から出力された光強度
分布を平均値があらかじめ定めた基準値となるように規
格化し、規格化した複数の光強度分布の変化極性と変化
量とをあらかじめ定めたパタ−ンと比較し疵種を判定す
ることを特徴とする
A surface inspection apparatus according to the present invention has a light projecting section, a light receiving section, and a signal processing section. The light projecting section makes polarized light incident on a surface to be inspected, and at least the light receiving section. It has a plurality of light receiving optical systems that receive polarized light of different angles in three directions, detects the reflected light reflected on the surface to be inspected and converts it into an image signal, and the signal processing unit outputs the light output from each light receiving optical system. Normalize the intensity distribution so that the average value becomes a predetermined reference value, and compare the standardized change polarity and change amount of multiple light intensity distributions with a predetermined pattern to determine the defect type. Characterizing

【0012】また、上記信号処理部は各受光光学系から
出力された光強度分布を平均値があらかじめ定めた基準
値となるように規格化し、規格化した複数の光強度分布
の変化極性と変化量とをあらかじめ定めたパタ−ンと比
較し疵種を判定し、各受光光学系から出力された光強度
分布から目視相当の光量変化を演算し、演算した光量変
化をあらかじめ定めたパタ−ンと比較し疵の等級を判定
することが望ましい。
Further, the signal processing unit normalizes the light intensity distribution output from each light receiving optical system so that the average value becomes a predetermined reference value, and changes the polarities and changes of the normalized plurality of light intensity distributions. The amount of light is compared with a predetermined pattern to determine the type of flaw, the light intensity change equivalent to visual observation is calculated from the light intensity distribution output from each light receiving optical system, and the calculated light intensity change is determined by the predetermined pattern. It is desirable to judge the grade of the flaw by comparing with.

【0013】[0013]

【発明の実施の形態】偏光は反射表面の物性、特に薄膜
に対して敏感である。また反射表面の物性により最大強
度の偏光方向も変化する。金属表面の疵部は正常部と異
なる表面特性を有し、表面の物性が母材と異なるため疵
となったり、あるいは例えば凹凸のように正常部と表面
幾何学形状が異なるために疵となるものがある。前者は
偏光を用いることにより検出でき、後者は反射率の相違
となって現れるため反射光量変化により検出できる。
DETAILED DESCRIPTION OF THE INVENTION Polarized light is sensitive to the physical properties of reflective surfaces, especially thin films. In addition, the polarization direction of maximum intensity changes depending on the physical properties of the reflecting surface. The flaws on the metal surface have different surface characteristics from those of the normal portion, and the physical properties of the surface are different from those of the base material, resulting in flaws. There is something. The former can be detected by using polarized light, and the latter can be detected by a change in the amount of reflected light because the difference appears in reflectance.

【0014】そこで、この発明においては、被検査面に
対して一定入射角で被検査面の幅方向全体に偏光を入射
するように投光部を配置し、被検査面からの反射光を受
光する受光部を所定の位置に配置する。受光部は入射し
た光を例えば3本のビ−ムに分離するビ−ムスプリッタ
と、分離した3本のビ−ムを別々に入射して画像信号を
出力する例えばCCDセンサを有する3組のリニアアレ
イカメラと、ビ−ムスプリッタと各リニアアレイカメラ
の間に設けられ、被検査面からの反射光を異なる振動面
の偏光にする検光子とが設けられている。3個の検光子
はそれぞれ異なる方位角、すなわち透過軸が被検査面の
入射面となす角が、例えば0,π/4,−π/4になる
ように配置されている。
Therefore, in the present invention, the light projecting portion is arranged so that polarized light is incident on the surface to be inspected at a constant incident angle over the entire width direction of the surface to be inspected, and the reflected light from the surface to be inspected is received. The light receiving section to be operated is arranged at a predetermined position. The light-receiving portion has three sets of, for example, a beam splitter that splits incident light into three beams and a CCD sensor that separately outputs the separated three beams and outputs an image signal. A linear array camera and an analyzer provided between the beam splitter and each linear array camera to convert the reflected light from the surface to be inspected into polarized light of different vibration planes are provided. The three analyzers are arranged so that the respective azimuth angles, that is, the angles formed by the transmission axis and the incident surface of the surface to be inspected are 0, π / 4 and −π / 4, for example.

【0015】信号処理部は各リニアアレイカメラからの
出力画像信号をシェ−ディング補正して正常部が全階調
の中心濃度になるように正規化して平坦化し、正常部に
対する相対的な変化を示す光強度信号に変換する。この
正常部に対する相対的な変化を示す3種類の光強度信号
の分布の変化極性と変化量とをそれぞれあらかじめ定め
たパタ−ンと比較して偏光の変化を検出する。この3種
類の光強度信号の正常部に対する変化極性と変化量の大
小から表面の物性が母材と異なる疵の疵種を判定する。
The signal processing unit performs shading correction on the output image signal from each linear array camera to normalize and flatten the normal portion so that the normal portion has the central density of all the gradations, and changes relative to the normal portion. It is converted into the light intensity signal shown. A change in polarization is detected by comparing the change polarity and the change amount of the distribution of the three types of light intensity signals indicating the relative change with respect to the normal part with a predetermined pattern. Based on the change polarity of the three kinds of light intensity signals with respect to the normal part and the magnitude of the change amount, the flaw type of the flaw whose surface physical properties are different from those of the base material is determined.

【0016】また、信号処理部は上記処理とともに各受
光光学系から出力された光強度分布から目視相当の光量
変化すなわち表面反射強度を演算し、演算した光量変化
をあらかじめ定めたパタ−ンと比較し、光量変化の変化
極性と変化量の大小から例えば凹凸のように正常部と表
面幾何学形状が異なるために疵の等級を判定する。
In addition to the above processing, the signal processing unit also calculates a light amount change corresponding to visual observation, that is, the surface reflection intensity from the light intensity distribution output from each light receiving optical system, and compares the calculated light amount change with a predetermined pattern. Then, since the surface geometric shape is different from the normal portion such as unevenness based on the change polarity of the light amount change and the magnitude of the change amount, the flaw grade is determined.

【0017】[0017]

【実施例】図1はこの発明の一実施例の光学系を示す配
置図である。図に示すように、光学系1は投光部2と3
板式偏光リニアアレイカメラ3を有する。投光部2は被
検査体例えば鋼板4の表面に一定の入射角で偏光を入射
するものであり、光源5と光源5の前面に設けられた偏
光子6とを有する。光源5は鋼板4の幅方向に伸びた棒
状発光装置からなり、鋼板4の幅方向全体に一様な強度
分布を有する光を照射する。偏光子6は例えば偏光板又
は偏光フィルタからなり、図2の配置説明図に示すよう
に、透過軸Pが鋼板4の入射面となす角α1がπ/4に
なるように配置されている。3板式偏光リニアアレイカ
メラ3は、図3の構成図に示すように、ビ−ムスプリッ
タ7と3個の検光子8a,8b,8cと3個のリニアア
レイセンサ9a,9b,9cとを有する。ビ−ムスプリ
ッタ7は3個のプリズムからなり、入射面に誘電体多層
膜を蒸着した半透過性を有する反射面が2面設けられ、
鋼板4からの反射光を入射する第1の反射面7aは透過
率と反射率が2対1の割合になっており、第1の反射面
7aを透過した光を入射する第2の反射面7bは透過率
と反射率が1対1の割合になっており、鋼板4からの反
射光を同じ光量の3本のビ−ムに分離する。また、ビ−
ムスプリッタ7の入射面から分離した3本のビ−ムの出
射面までの光路長は同じにしてある。検光子8aは第2
の反射面10bの透過光の光路に設けられ、図2に示す
ように、方位角すなわち透過軸が鋼板4の入射面となす
角α2が0度になるように配置され、検光子8bは第2
の反射面7bの反射光の光路に設けられ、方位角α2
π/4度になるように配置され、検光子8cは第1の反
射面7aの反射光の光路に設けられ、方位角α2が−π/
4になるように配置されている。リニアアレイセンサ9
a,9b,9cは例えばCCDセンサからなり、それぞ
れ検光子8a,8b,8cの後段に配置されている。ま
た、ビ−ムスプリッタ7と検光子8a,8b,8cの間
にはビ−ムスプリッタ7内の多重反射光や不必要な散乱
光をカットするスリット10a,10b,10cが設け
られ、ビ−ムスプリッタ7の前段にはレンズ群11が設
けられている。また、リニアアレイセンサ9a,9b,
9cは同じ光強度の光が入射したときに同じ信号を出力
するように利得が調整してある。
1 is a layout view showing an optical system according to an embodiment of the present invention. As shown in the figure, the optical system 1 includes the light projecting units 2 and 3.
It has a plate-type polarization linear array camera 3. The light projecting unit 2 is for injecting polarized light on the surface of the inspection object, for example, the steel plate 4, at a constant incident angle, and includes a light source 5 and a polarizer 6 provided in front of the light source 5. The light source 5 is composed of a rod-shaped light emitting device extending in the width direction of the steel plate 4, and emits light having a uniform intensity distribution over the width direction of the steel plate 4. The polarizer 6 is composed of, for example, a polarizing plate or a polarizing filter, and is arranged such that an angle α 1 formed by the transmission axis P and the incident surface of the steel plate 4 is π / 4, as shown in the layout explanatory view of FIG. . The three-plate polarization linear array camera 3 has a beam splitter 7, three analyzers 8a, 8b and 8c, and three linear array sensors 9a, 9b and 9c, as shown in the configuration diagram of FIG. . The beam splitter 7 is composed of three prisms, and is provided with two semi-transmissive reflective surfaces having a dielectric multilayer film deposited on the incident surface.
The first reflection surface 7a on which the reflected light from the steel plate 4 is incident has a transmittance and a reflectance of 2: 1, and the second reflection surface on which the light transmitted through the first reflection surface 7a is incident. 7b has a 1: 1 ratio of transmittance and reflectance, and separates the reflected light from the steel plate 4 into three beams having the same light amount. Also,
The optical path lengths from the entrance surface of the beam splitter 7 to the exit surfaces of the three separated beams are the same. The analyzer 8a is the second
2 is provided in the optical path of the transmitted light of the reflecting surface 10b, and is arranged so that the azimuth angle, that is, the angle α 2 formed by the transmission axis with the incident surface of the steel plate 4 is 0 degree, and the analyzer 8b is Second
Is provided in the optical path of the reflected light of the reflective surface 7b of the first reflective surface 7b, and the azimuth angle α 2 is π / 4 degrees, and the analyzer 8c is provided in the optical path of the reflected light of the first reflective surface 7a. α 2 is −π /
It is arranged to be 4. Linear array sensor 9
Reference numerals a, 9b and 9c are, for example, CCD sensors, and are arranged at the subsequent stages of the analyzers 8a, 8b and 8c, respectively. Between the beam splitter 7 and the analyzers 8a, 8b, 8c, slits 10a, 10b, 10c for cutting multiple reflected light and unnecessary scattered light in the beam splitter 7 are provided. A lens group 11 is provided in front of the optical splitter 7. In addition, the linear array sensors 9a, 9b,
The gain of 9c is adjusted so that the same signal is output when light with the same light intensity is incident.

【0018】このように入射した光を分離した3本のビ
−ムの光路に検光子8a〜8cとリニアアレイセンサ9
a〜9cが一体化して設けられているから、リニアアレ
イセンサ9a〜9c等を鋼板4の搬送路近傍に設置して
鋼板4からの反射光を検出するときに、リニアアレイセ
ンサ9a〜9c等の位置調整を必要としないとともに、
鋼板4の同じ位置からの反射光を同じタイミングで検出
することができる。また、3板式偏光リニアアレイカメ
ラ3内に3組のリニアアレイセンサ9a〜9cがまとま
って収納されて小型化しているから、3板式偏光リニア
アレイカメラ3を鋼板4の反射光の光路に簡単に配置す
ることができるとともに、配置位置を任意に選択するこ
とができ、光学系1の配置の自由度を向上することがで
きる。
The analyzers 8a to 8c and the linear array sensor 9 are arranged in the optical paths of the three beams that separate the incident light in this way.
Since a to 9c are integrally provided, when the linear array sensors 9a to 9c and the like are installed in the vicinity of the conveying path of the steel plate 4 and the reflected light from the steel plate 4 is detected, the linear array sensors 9a to 9c and the like. Position adjustment is not required, and
The reflected light from the same position on the steel plate 4 can be detected at the same timing. Further, since three sets of linear array sensors 9a to 9c are collectively housed in the three-plate type polarization linear array camera 3, the three-plate type polarization linear array camera 3 can be easily installed in the optical path of the reflected light of the steel plate 4. The optical system 1 can be arranged and the arrangement position can be arbitrarily selected, so that the degree of freedom in the arrangement of the optical system 1 can be improved.

【0019】3板式偏光リニアアレイカメラ3のリニア
アレイセンサ9a〜9cは、図4のブロック図に示すよ
うに、信号処理部12に接続されている。信号処理部1
2は信号前処理部13a,13b,13cとI1メモリ
14a,I2メモリ14b,I3メモリ14cと、疵パラ
メ−タ演算部15と、パタ−ン記憶部16と、光量記憶
部17と、基準パタ−ン記憶部18と、疵種判定部19
と、等級パタ−ン記憶部20と、疵等級判定部21及び
出力部22を有する。信号前処理部13a〜13cはリ
ニアアレイセンサ9a〜9cから出力された偏光の光強
度信号I1,I2,I3の幅方向等の感度むら等を補正す
るシェ−ディング補正等を行ってから正常部の信号を基
準レベルとして、正常部の信号が255階調の中心濃度で
ある128階調になるように正規化して、正規化した光強
度信号I1,I2,I3をそれぞれI1メモリ14a,I2
メモリ14b,I3メモリ14cに格納する。疵パラメ
−タ演算部15はI1メモリ14a〜I3メモリ14cに
格納された光強度信号I1,I2,I3の分布に表れた疵
部のピ−ク値を正常部の値である128階調を基準にして
プラスであるかマイナスであるかを示す極性パタ−ン
と、128階調を基準にした変化量を示す値パタ−ンを算
出するとともに、疵部の光強度から目視相当光量を演算
する。パタ−ン記憶部16は算出された極性パタ−ンと
値パタ−ンを記憶し、光量記憶部17は算出された目視
相当光量Imaxを記憶する。基準パタ−ン記憶部18に
は各種極性パタ−ンと値パタ−ン及びこれらに対応する
疵種があらかじめ格納されている。疵種判定部19はパ
タ−ン記憶部16に記憶された極性パタ−ンと値パタ−
ンとを基準パタ−ン記憶部18に記憶された各種極性パ
タ−ンと値パタ−ンと比較して疵種を判定する。等級パ
タ−ン記憶部20には各疵種毎に光量に対する疵の等級
を示す等級基準パタ−ンがあらかじめ格納してある。疵
等級判定部21は光量記憶部17に記憶した目視相当光
量Imaxと疵種判定部19で判定した疵種を等級パタ−
ン記憶部20に記憶してある等級基準パタ−ンと比較し
て疵の等級を判定する。出力部22は疵等級判定部21
から出力される疵種と疵の等級を不図示の表示装置や記
録装置に出力する。
The linear array sensors 9a to 9c of the three-plate polarization linear array camera 3 are connected to the signal processing unit 12 as shown in the block diagram of FIG. Signal processing unit 1
Reference numeral 2 denotes a signal preprocessing unit 13a, 13b, 13c, an I 1 memory 14a, an I 2 memory 14b, an I 3 memory 14c, a defect parameter calculation unit 15, a pattern storage unit 16, and a light quantity storage unit 17. , The reference pattern storage unit 18, and the defect type determination unit 19
And a grade pattern storage unit 20, a defect grade determination unit 21 and an output unit 22. The signal preprocessors 13a to 13c perform shading correction and the like to correct sensitivity unevenness in the width direction of the polarized light intensity signals I 1 , I 2 and I 3 output from the linear array sensors 9a to 9c. From the normal part signal as a reference level, the normal part signal is normalized to have 128 gradations, which is the central density of 255 gradations, and the normalized light intensity signals I 1 , I 2 , and I 3 are respectively obtained. I 1 memory 14a, I 2
The data is stored in the memory 14b and the I 3 memory 14c. The defect parameter calculation unit 15 sets the peak value of the defect represented by the distribution of the light intensity signals I 1 , I 2 and I 3 stored in the I 1 memory 14a to I 3 memory 14c to the value of the normal part. A polar pattern that indicates whether it is positive or negative based on a certain 128 gradations and a value pattern that indicates the amount of change based on 128 gradations are calculated, and from the light intensity of the flaw Calculate the amount of light equivalent to visual observation. The pattern storage unit 16 stores the calculated polarity pattern and value pattern, and the light amount storage unit 17 stores the calculated visual equivalent light amount Imax. The reference pattern storage unit 18 stores in advance various polar patterns, value patterns, and flaw types corresponding to these. The defect type determination unit 19 is provided with the polarity pattern and the value pattern stored in the pattern storage unit 16.
And the various types of polarity patterns and the value patterns stored in the reference pattern storage unit 18 to determine the defect type. The grade pattern storage unit 20 stores in advance a grade reference pattern indicating the grade of the flaw with respect to the amount of light for each flaw type. The defect grade determination unit 21 grades the visual equivalent light amount Imax stored in the light intensity storage unit 17 and the defect type determined by the defect type determination unit 19 into a grade pattern.
The defect grade is judged by comparing with the grade reference pattern stored in the storage unit 20. The output unit 22 is the defect grade determination unit 21.
The defect type and the defect grade output from the device are output to a display device or a recording device (not shown).

【0020】次に上記のように構成された表面検査装置
で鋼板4の表面を検査する時の動作を説明する。
Next, the operation of inspecting the surface of the steel sheet 4 with the surface inspection apparatus configured as described above will be described.

【0021】投光部2から出射されて一定速度で移動し
ている鋼板4の表面で反射した偏光は3板式偏光リニア
アレイカメラ3で受光される。3板式偏光リニアアレイ
カメラ3に入射した鋼板4の反射光はビ−ムスプリッタ
7で分離され検光子8a,8b,8cを通ってリニアア
レイセンサ9a〜9cに入射する。このリニアアレイセ
ンサ9a〜9cで反射光の光強度を検出するときに、リ
ニアアレイセンサ9a〜9cの前面に異なる方位角の検
光子8a〜8cが設けられているから,リニアアレイセ
ンサ9a〜9cは異なる偏光の光強度I1,I2,I3
検出し信号処理部12に送る。
The polarized light emitted from the light projecting unit 2 and reflected on the surface of the steel plate 4 moving at a constant speed is received by the three-plate polarization linear array camera 3. The reflected light of the steel plate 4 incident on the three-plate polarization linear array camera 3 is separated by the beam splitter 7 and enters the linear array sensors 9a to 9c through the analyzers 8a, 8b and 8c. When the linear array sensors 9a to 9c detect the light intensity of the reflected light, the linear array sensors 9a to 9c are provided with analyzers 8a to 8c having different azimuth angles in front of the linear array sensors 9a to 9c. Detects the light intensities I 1 , I 2 , and I 3 of different polarizations and sends them to the signal processing unit 12.

【0022】信号処理部12の信号前処理部13a〜1
3cはリニアアレイセンサ9a〜9cから出力された偏
光の光強度信号I1,I2,I3の幅方向等の感度むら等
を補正するシェ−ディング補正等を行ってから、例えば
図5の疵信号分布図に示すように、正常部の信号が128
階調になるように正規化して、正規化した光強度信号I
1,I2,I3をそれぞれI1メモリ14a〜I3メモリ1
4cに格納する。図5において、(a)は光強度信号I
1の分布、(b)は光強度信号I2の分布、(c)は光強
度信号I3の分布を示す。疵パラメ−タ演算部15はI1
メモリ14a〜I3メモリ14cに格納された光強度信
号I1,I2,I3の分布に表れた疵部のピ−ク値をそれ
ぞれ正常部の値である128階調よりプラスであるかマイ
ナスであるかを示す極性パタ−ンと、128階調を基準に
した変化量を示す値パタ−ンを算出する。図5に示す例
では正規化した光強度信号I1,I2,I3の疵部のピ−
ク値は全て128階調よりプラスであるから、極性パタ−
ンは(+,+,+)と算出し、128階調を基準にした光
強度信号I1,I2,I3の疵部のピ−ク値の変化量は
(+38,+10,+32)になる。この変化量を最大値を基
準に規格化すると、(1.0,0.26,0.84)になる。この
変化量の最大値を基準にした規格値例えば(1.0,0.2
6,0.84)を値パタ−ンとして算出する。そして算出し
た極性パタ−ンと値パタ−ンをパタ−ン記憶部16に格
納する。また、疵パラメ−タ演算部15は光強度信号I
1,I2,I3の分布から目視相当光量Imaxを、Imax=
MAX〔I2(x)+I3(x)−I1(x)〕で演算し
て光量記憶部17に記憶させる。例えば、図5に示した
例では、光強度信号I1,I2,I3の疵部のピ−ク値の
変化量は(+38,+10,+32)であるから、目視相当光
量Imaxは「4」になる。
The signal preprocessors 13a to 13a of the signal processor 12
3c is Chez corrects the linear array sensor the light intensity signal I 1 of the polarized light output from 9a to 9c, I 2, sensitivity unevenness in the width direction and the like of the I 3 and the like - from performing loading correction, for example, in FIG. 5 As shown in the defect signal distribution chart, the signal in the normal part is 128
The light intensity signal I is normalized so as to have a gradation.
1 , I 2 , I 3 are respectively I 1 memory 14 a to I 3 memory 1
4c. In FIG. 5, (a) shows the light intensity signal I.
1 shows the distribution, (b) shows the distribution of the light intensity signal I 2 , and (c) shows the distribution of the light intensity signal I 3 . The defect parameter calculation unit 15 uses I 1
Whether it is positive than 128 gradation is click value the value of the normal portion each - peak flaw portion appears in the distribution of memory 14A~I 3 light intensities stored in the memory 14c signals I 1, I 2, I 3 A polarity pattern showing whether it is negative and a value pattern showing the amount of change based on 128 gradations are calculated. In the example shown in FIG. 5, the peaks of the flaws of the normalized light intensity signals I 1 , I 2 , and I 3 are shown.
All black values are more than 128 gradations, so polarity pattern
Is calculated as (+, +, +), and the amount of change in the peak value of the flaw portion of the light intensity signals I 1 , I 2 , I 3 based on 128 gradations is (+38, +10, +32). become. When this change amount is standardized with the maximum value as a reference, it becomes (1.0, 0.26, 0.84). A standard value based on the maximum value of this variation, for example (1.0, 0.2
6, 0.84) is calculated as the value pattern. Then, the calculated polarity pattern and value pattern are stored in the pattern storage unit 16. In addition, the defect parameter calculator 15 determines that the light intensity signal I
From the distribution of 1 , I 2 , and I 3 , the visual equivalent light amount Imax is calculated as Imax =
It is calculated by MAX [I 2 (x) + I 3 (x) −I 1 (x)] and stored in the light quantity storage unit 17. For example, in the example shown in FIG. 5, since the amount of change in the peak value of the flaw portion of the light intensity signals I 1 , I 2 , and I 3 is (+38, +10, +32), the visually equivalent light amount Imax is " 4 ”.

【0023】基準パタ−ン記憶部18には疵の程度に応
じて複数の疵種に対応する極性パタ−ンと値パタ−ンが
実験で定められて、例えば図6に示すように、基準パタ
−ンとして格納してある。図6において、疵種X〜疵種
Wは例えば有害度が低い疵から有害度が高い疵の順に疵
種を示し、各疵種X〜疵種Wに対応する極性パタ−ンと
値パタ−ンの基準値を示す。また、等級パタ−ン記憶部
20には各疵種X〜疵種Wに応じて目視相当光量と疵の
等級を示す相関をあらかじめ調べて、例えば図7の相関
図に示すように格納してある。
In the reference pattern storage unit 18, polar patterns and value patterns corresponding to a plurality of flaw types are experimentally determined according to the degree of flaws, and as shown in FIG. It is stored as a pattern. In FIG. 6, flaw types X to W are, for example, flaw types in the order of low to high degree of damage, and the polar patterns and the value patterns corresponding to the respective flaw types X to W. The standard value of the Further, in the grade pattern storage unit 20, the correlation showing the visual equivalent light quantity and the grade of the flaw is checked in advance in accordance with each flaw type X to the flaw type W, and stored as shown in the correlation diagram of FIG. 7, for example. is there.

【0024】疵種判定部19はパタ−ン記憶部16に記
憶された、極性パタ−ンと値パタ−ン、例えば図5に示
す例の場合、極性パタ−ン(+,+,+)と値パタ−ン
(1.0,0.26,0.84)と、図4に示す基準パタ−ン記憶
部18に記憶された基準パタ−ンとを比較して疵種を判
定する。例えば図5に示す例の場合には疵種Xと判定す
る。このように複数の異なる疵A〜疵Hの疵種を極性パ
タ−ンと値パタ−ンにより判定した例を図8に示す。こ
の疵種を判定する場合に、例えば極性パタ−ンが同じ
(−,−,−)の疵Bと疵Cでも、値パタ−ンにより有
害度の低い疵種Yと有害度の高い疵種Zに分類すること
ができ、疵種を正確に判定することができる。また、疵
の状態によっては疵Gに示すように極性パタ−ンの3つ
の符号のうち1つが反対、あるいは「0」であっても値
パタ−ンを併用することにより疵種を正確に判別するこ
とができる。また、このように極性パタ−ンと値パタ−
ンで疵種を判定するから、疵種判定のための処理が簡略
化され、短時間で精度良く疵種を判定することができ
る。
The defect type judging unit 19 stores the polar pattern and the value pattern stored in the pattern storage unit 16, for example, in the case of the example shown in FIG. 5, the polar pattern (+, +, +). And the value pattern (1.0, 0.26, 0.84) and the reference pattern stored in the reference pattern storage unit 18 shown in FIG. 4 are compared to determine the defect type. For example, in the case of the example shown in FIG. 5, the defect type X is determined. FIG. 8 shows an example in which a plurality of different defect types A to H are determined by the polar pattern and the value pattern. When determining this flaw type, for example, even if flaw B and flaw C have the same polarity pattern (-,-,-), the flaw pattern Y having a low degree of harm and the flaw type having a high degree of harm according to the value pattern. It can be classified into Z, and the flaw type can be accurately determined. Depending on the state of the flaw, even if one of the three signs of the polar pattern is opposite as shown in flaw G, or even if it is "0", the flaw pattern can be accurately identified by using the value pattern together. can do. In addition, the polarity pattern and the value pattern are
Since the defect type is determined by the operation, the process for determining the defect type is simplified, and the defect type can be accurately determined in a short time.

【0025】一方、疵等級判定部21は光量記憶部17
に記憶した目視相当光量Imaxと疵種判定部19で判定
した疵種とを等級パタ−ン記憶部20に記憶してある各
疵種X〜疵種Wに応じて目視相当光量と疵の等級を示す
相関図と比較して疵の等級を判定する。例えば図7に示
すように疵種Xで目視相当光量Imaxが「4」の場合に
は疵の等級をBと判定し、疵種Yで目視相当光量Imax
が「37」の場合には疵の等級をCと判定する。このよう
に目視相当光量Imaxと疵種により疵の等級を判定する
から、鋼板4の表面に生じた凹凸のない模様状疵だけで
なく凹凸状の疵の程度を精度良く判別することができ
る。疵等級判定部21は疵種判定部19で判定した疵種
と判別した疵の等級を出力部22に送る。出力部22は
疵等級判定部21から出力される疵種と疵の等級を表示
装置や記録装置に出力する。
On the other hand, the defect grade judging section 21 includes a light quantity storage section 17
The visual equivalent light amount Imax and the defect grade which are stored in the grade pattern storage unit 20 stored in the grade pattern storage unit 20 are the visual equivalent light amount Imax and the defect type determined by the defect type determination unit 19. Defect grade is judged by comparing with the correlation diagram showing. For example, as shown in FIG. 7, in the case of the flaw type X and the visually equivalent light amount Imax is “4”, the flaw grade is determined to be B, and the flaw type Y is the visually equivalent light amount Imax.
When is "37", the defect grade is judged as C. As described above, since the grade of the flaw is determined based on the visually equivalent light amount Imax and the flaw type, it is possible to accurately determine not only the pattern-like flaw having no unevenness generated on the surface of the steel plate 4 but also the degree of the uneven flaw. The defect grade determination unit 21 sends the defect grade determined to be the defect type determined by the defect type determination unit 19 to the output unit 22. The output unit 22 outputs the defect type and the defect grade output from the defect grade determination unit 21 to a display device or a recording device.

【0026】[0026]

【発明の効果】この発明は以上説明したように、被検査
面に対して一定入射角で偏光を入射し、その反射光の異
なる複数の偏光の光強度分布を検出し、検出した強度分
布を正規化し、正常部に対する疵部の異なる偏光の光強
度信号の変化極性と変化量とを算出し、算出した変化極
性と変化量とをそれぞれあらかじめ定めたパタ−ンと比
較して疵種を判定すようにしたから、簡単な処理で迅速
に疵種を判別することができる。
As described above, according to the present invention, polarized light is incident on a surface to be inspected at a constant incident angle, a light intensity distribution of a plurality of polarized lights having different reflected lights is detected, and the detected intensity distribution is calculated. Normalize and calculate the change polarity and the change amount of the light intensity signal of polarized light of different flaws with respect to the normal part, and compare the calculated change polarity and change amount with the respective predetermined patterns to determine the flaw type. Since this is done, it is possible to quickly determine the defect type with a simple process.

【0027】また、各受光光学系から出力された光強度
分布から目視相当の光量変化すなわち無偏光時の表面反
射強度を演算し、演算した光量変化から疵の等級を判定
するようにしたから、凹凸のない模様状疵だけでなく凹
凸状の疵の程度を簡単な処理で精度良く判別することが
できる。
Further, from the light intensity distribution output from each of the light receiving optical systems, the change in the light amount corresponding to the visual observation, that is, the surface reflection intensity in the non-polarized state is calculated, and the grade of the flaw is determined from the calculated change in the light amount. It is possible to accurately determine not only the pattern-like flaws having no unevenness but also the degree of the unevenness-like flaws by a simple process.

【0028】さらに、簡単な処理で迅速に疵種と疵の等
級を判定するから、装置自体のの構成を簡略化すること
ができるとともに、高速で移動しているシ−ト状製品の
表面にある異常部をオンラインで精度良く検出すること
ができる。
Furthermore, since the type of flaw and the grade of the flaw can be quickly judged by a simple process, the structure of the apparatus itself can be simplified and the surface of the sheet-like product moving at a high speed can be obtained. It is possible to accurately detect a certain abnormal part online.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の光学系を示す構成図であ
る。
FIG. 1 is a configuration diagram showing an optical system according to an embodiment of the present invention.

【図2】光学系の動作を示す配置説明図である。FIG. 2 is an arrangement explanatory view showing the operation of the optical system.

【図3】上記実施例の3板式偏光リニアアレイカメラの
構成図である。
FIG. 3 is a configuration diagram of a three-plate polarization linear array camera of the above embodiment.

【図4】上記実施例の信号処理部を示すブロック図であ
る。
FIG. 4 is a block diagram showing a signal processing unit of the above embodiment.

【図5】疵信号を示す光強度分布図である。FIG. 5 is a light intensity distribution diagram showing a flaw signal.

【図6】疵種と疵パタ−ンと値パタ−ンを示す基準パタ
−ン図である。
FIG. 6 is a reference pattern diagram showing flaw types, flaw patterns, and value patterns.

【図7】光量レベルと疵の等級の相関図である。FIG. 7 is a correlation diagram between a light intensity level and a defect grade.

【図8】各種疵の疵種と等級の具体例を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a specific example of flaw types and grades of various flaws.

【符号の説明】[Explanation of symbols]

1 光学系 2 投光部 3 3板式偏光リニアアレイカメラ 4 鋼板 5 光源 6 偏光子 7 ビ−ムスプリッタ 8 検光子 9 リニアアレイセンサ 12 信号処理部 13 信号前処理部 14a I1メモリ 14b I2メモリ 14c I3メモリ 15 疵パラメ−タ演算部 16 パタ−ン記憶部 17 光量記憶部 18 基準パタ−ン記憶部 19 疵種判定部 29 等級パタ−ン記憶部 21 疵等級判定部DESCRIPTION OF SYMBOLS 1 Optical system 2 Projection part 3 3 Plate-type polarization linear array camera 4 Steel plate 5 Light source 6 Polarizer 7 Beam splitter 8 Analyzer 9 Linear array sensor 12 Signal processing part 13 Signal preprocessing part 14a I 1 memory 14b I 2 memory 14c I 3 memory 15 flaws parameters - data calculating unit 16 pattern - emission storage section 17 amount storage unit 18 reference pattern - emission storage unit 19 flaw type determination unit 29 grade pattern - emission storage unit 21 flaw grade determination unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大重 貴彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takahiko Oshige 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投光部と受光部と信号処理部とを有し、
投光部は被検査面に偏光を入射し、受光部は少なくとも
3方向の異なる角度の偏光を受光する複数の受光光学系
を有し、被検査面で反射した反射光を検出して画像信号
に変換し、信号処理部は各受光光学系から出力された光
強度分布を平均値があらかじめ定めた基準値となるよう
に規格化し、規格化した複数の光強度分布の変化極性と
変化量とをあらかじめ定めたパタ−ンと比較し疵種を判
定することを特徴とする表面検査装置。
1. A light emitting unit, a light receiving unit, and a signal processing unit,
The light projecting unit has a plurality of light receiving optical systems that receive polarized light on the surface to be inspected and the light receiving unit receives polarized light of at least three different directions, and detects reflected light reflected by the surface to be inspected to generate an image signal. And the signal processing unit normalizes the light intensity distribution output from each light receiving optical system so that the average value becomes a predetermined reference value, and changes the polarity and the change amount of the standardized light intensity distributions. A surface inspection device characterized by determining a flaw type by comparing with a predetermined pattern.
【請求項2】 投光部と受光部と信号処理部とを有し、
投光部は被検査面に偏光を入射し、受光部は少なくとも
3方向の異なる角度の偏光を受光する複数の受光光学系
を有し、被検査面で反射した反射光を検出して画像信号
に変換し、信号処理部は各受光光学系から出力された光
強度分布を平均値があらかじめ定めた基準値となるよう
に規格化し、規格化した複数の光強度分布の変化極性と
変化量とをあらかじめ定めたパタ−ンと比較し疵種と疵
の等級を判定し、各受光光学系から出力された光強度分
布から目視相当の光量変化を演算し、演算した光量変化
をあらかじめ定めたパタ−ンと比較し疵の等級を判定す
ることを特徴とする表面検査装置。
2. A light emitting unit, a light receiving unit, and a signal processing unit,
The light projecting unit has a plurality of light receiving optical systems that receive polarized light on the surface to be inspected and the light receiving unit receives polarized light of at least three different directions, and detects reflected light reflected by the surface to be inspected to generate an image signal. And the signal processing unit normalizes the light intensity distribution output from each light receiving optical system so that the average value becomes a predetermined reference value, and changes the polarity and the change amount of the standardized light intensity distributions. Is compared with a predetermined pattern to determine the type of flaw and the grade of the flaw, calculate the light amount change equivalent to visual observation from the light intensity distribution output from each light receiving optical system, and calculate the calculated light amount change. -A surface inspection device characterized by judging the grade of a flaw by comparing with a surface.
JP29789796A 1995-10-24 1996-10-23 Surface inspection device and surface inspection method Expired - Fee Related JP3275737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29789796A JP3275737B2 (en) 1995-10-24 1996-10-23 Surface inspection device and surface inspection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-298832 1995-10-24
JP29883295 1995-10-24
JP29789796A JP3275737B2 (en) 1995-10-24 1996-10-23 Surface inspection device and surface inspection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001339142A Division JP2002181723A (en) 1995-10-24 2001-11-05 Surface inspection apparatus

Publications (2)

Publication Number Publication Date
JPH09178669A true JPH09178669A (en) 1997-07-11
JP3275737B2 JP3275737B2 (en) 2002-04-22

Family

ID=26561288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29789796A Expired - Fee Related JP3275737B2 (en) 1995-10-24 1996-10-23 Surface inspection device and surface inspection method

Country Status (1)

Country Link
JP (1) JP3275737B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
EP1507137A1 (en) 2003-08-12 2005-02-16 Sick Ag Method and apparatus for polarisation dependent and spatially resolved inspection of a surface or layer
JP2007263593A (en) * 2006-03-27 2007-10-11 Photonic Lattice Inc Measuring instrument for phase difference and optical axis direction
DE10362349B3 (en) * 2003-08-12 2014-05-08 Sick Ag Optical examination of the surface or a layer of an object or medium, whereby the surface is illuminated with polarized visual radiation and reflected or scattered radiation is measured on an area by area basis
JP2016224069A (en) * 2016-09-02 2016-12-28 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
EP1507137A1 (en) 2003-08-12 2005-02-16 Sick Ag Method and apparatus for polarisation dependent and spatially resolved inspection of a surface or layer
EP1507137B1 (en) * 2003-08-12 2012-02-15 Sick Ag Method and apparatus for polarisation dependent and spatially resolved inspection of a surface or layer
DE10337040B4 (en) * 2003-08-12 2013-01-17 Sick Ag Device for examining a surface or a layer
DE10362349B3 (en) * 2003-08-12 2014-05-08 Sick Ag Optical examination of the surface or a layer of an object or medium, whereby the surface is illuminated with polarized visual radiation and reflected or scattered radiation is measured on an area by area basis
JP2007263593A (en) * 2006-03-27 2007-10-11 Photonic Lattice Inc Measuring instrument for phase difference and optical axis direction
JP2016224069A (en) * 2016-09-02 2016-12-28 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus

Also Published As

Publication number Publication date
JP3275737B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
KR100437024B1 (en) The inspection method of thin film and the same apparatus
US5835220A (en) Method and apparatus for detecting surface flaws
US20060068512A1 (en) Method and apparatus for detecting defects
WO2011122185A1 (en) Surface detection method for steel plate having resin coating film and surface detection device for same
US20090002686A1 (en) Sheet Metal Oxide Detector
US7209239B2 (en) System and method for coherent optical inspection
JP3591160B2 (en) Surface inspection equipment
JPH09127012A (en) Method and device for detecting surface scratch
JP2000221143A (en) Surface inspecting device
JP3275737B2 (en) Surface inspection device and surface inspection method
JPH09178666A (en) Surface inspection device
JPH09178667A (en) Inspection apparatus for surface
EP0335163B1 (en) Apparatus for detecting foreign matter on the surface of a substrate
JP2005189113A (en) Surface inspecting device and surface inspection method
JP3826578B2 (en) Surface inspection device
JP2002181723A (en) Surface inspection apparatus
JP3591161B2 (en) Surface inspection equipment
JP3446008B2 (en) Surface inspection equipment
JPH0694642A (en) Method and equipment for inspecting surface defect
JPH09159621A (en) Surface inspection device
JPH09166549A (en) Surface inspection device
JP3063523B2 (en) Surface flaw detection method and device
JP3257552B2 (en) Detecting apparatus for surface flaw
JP2005221391A (en) Surface flaw inspection device
JPH09178668A (en) Surface inspection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees