JPH09175820A - 二酸化スズウィスカーの製造方法 - Google Patents

二酸化スズウィスカーの製造方法

Info

Publication number
JPH09175820A
JPH09175820A JP7337299A JP33729995A JPH09175820A JP H09175820 A JPH09175820 A JP H09175820A JP 7337299 A JP7337299 A JP 7337299A JP 33729995 A JP33729995 A JP 33729995A JP H09175820 A JPH09175820 A JP H09175820A
Authority
JP
Japan
Prior art keywords
temperature
tin dioxide
tin
electric furnace
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7337299A
Other languages
English (en)
Inventor
Azuboon Zooi
ゾーイ・アズボーン
Hiroya Yamashita
博也 山下
Masanobu Azuma
正信 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP7337299A priority Critical patent/JPH09175820A/ja
Publication of JPH09175820A publication Critical patent/JPH09175820A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(57)【要約】 【課題】大きなアスペクト比、低い比抵抗、且つ長さが
長く、しかも長さが揃った二酸化スズウイスカーを再現
性良く、高収率に、しかも容易に作製できる製造方法を
提供する。 【解決手段】スズ化合物及び金属スズを大気中の酸素分
圧より低い酸素分圧の雰囲気下で加熱し結晶核を発生さ
せた後、さらに高い温度で加熱して二酸化スズウイスカ
ーを成長させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、二酸化スズウィス
カーの製造方法、詳しくは大きなアスペクト比で比抵抗
が低く且つ長さが長くて、しかも長さが揃った二酸化ス
ズウイスカーを再現性良く、高収率で容易に得る新規な
製造方法に関する。
【0002】
【従来の技術】二酸化スズは、耐薬品性、耐熱性に優
れ、しかも比抵抗を広範囲において制御できる優れた材
料であり導電性付与材料等種々の用途に用いられてい
る。最近では、3次元の非線形光学材料としても研究が
進められている。
【0003】例えば高分子材料に導電性を付与する目的
でカ−ボンファイバ−等の添加が行われているが、カ−
ボンを用いた場合、それ自体黒色のため材料の明彩色化
が図れない、また非常に軽いため飛散し易い等の問題点
があった。このため、該高分子材料には金属繊維や金属
酸化物の粉末を添加することが行なわれている。金属繊
維は小さい比抵抗を有するものの長時間経過すると表面
が酸化あるいは腐食して導電性が低下するという欠点が
ある。一方、従来の金属酸化物粉末は比抵抗が金属繊維
ほど小さくないので高分子材料に導電性を付与するため
にはどうしても比較的多量に添加せざるを得ず、高分子
材料が本来有する物性を低下させる欠点があった。さら
に、耐薬品性、耐熱性に優れる二酸化スズにおいても導
電性を付与した粉末形状での添加が試みられているもの
の、アスペクト比(直径に対する長さの比)が小さいた
め導電性の付与効果が充分でなかった。
【0004】これまで、アスペクト比を上げるための、
二酸化スズウイスカーの製造方法としては、特開昭60
−54997号、特開昭60−161337号、及び、
特開昭60ー158199号公報等に記載される溶融析
出法が提案されている。ところが、これらの方法により
二酸化スズウイスカーは得られるものの、1000℃以
上の高温且つ数日間にもわたる焼成を必要とするため実
験室規模で極少量作製することは可能ではあるが、工業
的に製造できるまでには至っていない。しかも、得られ
る二酸化スズウイスカーの形状は直径1μm以下、長さ
が3mm以下であり、また、アスペクト比も小さく複合
材料として用いる場合、その機能を充分に発揮させるこ
とができず用途が限られる問題があった。更に、長さが
短すぎるためシート状の形態とすることも困難であっ
た。また、得られる複合材料の比抵抗等の物性値の再現
性を高めようとすれば、添加する二酸化スズウィスカー
の形状および大きさを再現性よく制御することが重要と
なる。しかし上記の溶融析出法により得られる二酸化ス
ズウイスカーは形状が不揃いであるため、分級により長
さ及び直径等の形状を揃えた後、複合材料への添加が行
われることから製造工程が複雑となっていた。
【0005】従って、これら従来技術は、アスペクト比
が大きく且つ長さ及び直径等の形状が揃った導電性の高
い二酸化スズウイスカーを再現性よく得る製造方法とし
ては満足できるものではなかった。
【0006】一方、特開平6−305727号公報にお
いては、上記課題を解決するために密閉容器内でスズ化
合物と炭素系物質にほう素化合物を共存させて加熱して
二酸化スズウィスカーを作製する方法が記載されてい
る。しかしながら、本発明者らがスズ化合物、炭素系物
質、およびほう素化合物のそれぞれの充填量、仕込み
比、或いは焼成温度や密閉容器の密閉度等の作製条件を
種々変化させて二酸化スズウイスカーの形成を試みたと
ころ、実際に得られた二酸化スズウィスカーの最大の長
さは5mmであり、10mm以上の二酸化スズウイスカ
ーは得られず、粉末形状の二酸化スズが得られることが
殆どであった。また、得られた二酸化スズウイスカーの
長さは不揃いであり、同一条件で作製しても長さが異な
るなど再現性に問題があった。さらに、ほう素成分が不
純物として二酸化スズウイスカー中に混入し、比抵抗に
大きく影響を及ぼす問題もあった。
【0007】また、特開平6−172099号公報にお
いては、スズ化合物、アンチモン化合物及び炭素系物質
を一定の温度で加熱する際に、加熱温度、スズ化合物の
量、加熱容器の容積および加熱容器の開口部面積の関係
を特定の範囲に制御することによって二酸化スズウィス
カーを得る方法が記載されている。この方法は、作製条
件が微妙に影響する二酸化スズウィスカーの作製に一つ
の指針を与えるものであるが、加熱温度、スズ化合物の
量、加熱容器の容積に応じて加熱容器の開口部面積を特
定の範囲にその都度変更する必要があり、更には一度の
熱処理工程中に酸素濃度の微妙な制御、および気流速度
の制御等、作製条件の緻密な制御が必要となるため工業
的に実用的な方法とは言えなかった。
【0008】
【発明が解決しようとする課題】従って、大きなアスペ
クト比で比抵抗が低く且つ長さが長く、しかも長さの揃
った二酸化スズウイスカーを再現性良く、高収率で容易
に形成するための製造方法が求められていた。
【0009】
【課題を解決するための技術】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、二酸化スズウィス
カーの製造時において、結晶核生成条件と結晶成長条件
とを別に設定することにより、大きなアスペクト比で比
抵抗が低く且つ長さが長く、しかも長さの揃った二酸化
スズウィスカーが再現性よく、高収率で容易に得られる
ことを見い出し、ここに本発明を完成させるに至った。
【0010】即ち、本発明は、スズ化合物あるいは金属
スズを大気中の酸素分圧より低い酸素分圧の雰囲気下で
加熱して結晶核を生成させた後、結晶核生成時よりも高
い温度で加熱して結晶を成長させることを特徴とする二
酸化スズウィスカーの製造方法であり、他の発明は、ス
ズ化合物あるいは金属スズを過剰の炭素系物質の存在下
で加熱して結晶核を生成させた後、実質的に、炭素系物
質の不存在下において結晶核生成時よりも高い温度で加
熱し結晶を成長させることを特徴とする二酸化スズウィ
スカーの製造方法である。
【0011】
【発明の実施の形態】次に本発明を更に具体的に説明す
る。
【0012】本発明における二酸化スズとはX線回折等
の評価法から推定される構造がSnO2を主成分とする
物質であるが、その組成は化学量論比どおりではなくS
nO2組成から多少ずれていてもよい。さらに、該二酸
化スズがひげ状、或いは針状の形態を呈しているものを
本発明において二酸化スズウイスカーとした。
【0013】本発明に使用されるスズ化合物としては焼
成後に二酸化スズになりうるものであれば、制限なく使
用することができる。具体的には一酸化スズ(二酸化ス
ズと同様に一酸化スズもその組成はSnOから多少ずれ
ていてもよい。一酸化スズは酸化第一スズ、酸化スズ
(II)とも言う)、二酸化スズ(酸化第二スズ、酸化
スズ(IV)とも言う)に代表されるスズ酸化物、ある
いはスズのハロゲン化物、水酸化物、硫酸塩、酢酸塩及
び有機スズ化合物等のスズ化合物が使用可能である。ま
た、金属スズは特に制限されず、粒状、粉末状、砂状、
花状、棒状、及び板状のものなどが挙げられ、反応性の
観点からは粒状、粉末状、砂状及び花状のものが好まし
い。該スズ化合物等を単独、或いは複数で用いることも
できる。材料が廉価であり、且つその入手が容易である
という観点から一酸化スズ、二酸化スズ及び金属スズが
好適に使用される。
【0014】本発明において、核生成時には、反応容器
内を大気中の酸素分圧より低い酸素分圧の雰囲気とする
ことが必要である。ここで、大気中の酸素分圧より低い
酸素分圧の雰囲気とは、酸素分圧を0.21atmより
低くすることであり、該酸素分圧を0.0001atm
以上0.21atm未満とすることが本発明の効果を十
分発揮するには好ましい。。該雰囲気の形成には、還元
性ガスのように酸素ガスと共存させることにより酸素分
圧を低くする働きを有するガスを用いる方法、及び、炭
素系物質等を共存させる方法等公知の方法が制限なく用
いられる。還元性ガスとしては、一酸化炭素が挙げられ
るが、該一酸化炭素ガスを単独で、或いは、ヘリウム、
アルゴン、ネオン、クリプトン等の不活性ガスと、又は
窒素、二酸化炭素と混合して用いることもできる。ま
た、炭素系物質としては、活性炭、黒鉛(グラファイト
とも言う)などの炭素単体他、炭化水素化合物、アルコ
ール類など様々な化合物を挙げることができる。該炭素
系物質を単独、或いは複数で用いても良い。
【0015】反応容器内に導入する還元性ガス及び炭素
系物質の量は、反応容器の容積、原料であるスズ化合物
のモル濃度、反応容器内の酸素のモル濃度及び核生成温
度に大きく依存し適宜決定されるため一概に示すことは
できない。しかしながら、目安としては、結晶核生成過
程の終了時においても、大気中の酸素分圧より低い酸素
分圧の雰囲気が維持されている程度が好ましく、炭素系
物質を用いる場合には、未反応の炭素系物質が残存する
程度の量、即ち、原料となるスズ化合物或いは金属スズ
100重量部に対して10重量部以上、通常は5000
重量部以下とすることが好ましい。
【0016】本発明において、得られる二酸化スズウイ
スカーの長さを長くし、また、結晶核の生成時間を比較
的短時間とするためには、該結晶核の生成温度を700
℃以上1100℃未満に設定することが好ましい。さら
に好適には、750〜950℃とすることが本発明の効
果を十分発揮するためには好ましい。
【0017】本発明において、結晶核の生成時間はスズ
化合物、或いは金属スズと炭素系物質の仕込量等の製造
条件によって異なるので一概に明記することは困難であ
る。しかし、長さが20mm以上の二酸化スズウイスカ
ーを低コストで効率よく製造するためには、核生成時間
を30分間から20時間とすることが好ましく、さらに
好ましくは5時間から15時間とするのがよい。
【0018】次に、本発明における結晶成長温度は、得
られる二酸化スズウイスカーの長さを長くし、また、生
産量を多くするためには1100℃以上1400℃未満
とすることが好ましい。さらに好ましくは1150℃以
上1350℃以下の温度範囲に設定することが本発明の
効果を十分発揮するために有効である。
【0019】本発明において、結晶成長時間は核生成時
間と同様、スズ化合物或いは金属スズと炭素系物質の仕
込量等の製造条件によって異なるので一概に明記するこ
とは困難である。しかし、長さが20mm以上の二酸化
スズウイスカーを効率よく製造するためには、結晶成長
時間を30分間から10時間とすることが好ましく、さ
らに好ましくは1時間から3時間とするのがよい。
【0020】本発明における結晶成長時の雰囲気は、結
晶成長時の温度が結晶核生成時の温度より高い温度であ
れば特に制限されることはない。しかしながら、本発明
の効果をさらに発揮させるための結晶成長時の雰囲気と
しては、核生成時の雰囲気を形成するために用いた還元
性ガス又は炭素系物質等を実質的に不在とすることが好
ましい。本発明の方法が二酸化スズウイスカーを効率よ
く製造するための有効な方法となる理由については、本
発明者等も十分に説明し得ないが、現在、以下の様に推
定している。本発明の結晶核生成時の温度は、従来技術
における一般的な二酸化スズウイスカーの焼成温度と比
較して少なくとも200℃以上低くなっている。従っ
て、本発明の結晶核生成時における一酸化スズの発生量
や酸化反応は、従来技術による二酸化スズウイスカーの
製造時とは異なっている。この様な二酸化スズウイスカ
ーの反応条件の相違が二酸化スズウイスカーの形成にど
の様に影響を及ぼしているかは現在分かっていないが、
本発明者らは、本発明における核生成時の条件が結晶核
を効率よく生成するために好適となっているものと推定
している。即ち、結晶核の生成過程において、本発明の
効果を発揮するに十分な均一な結晶核が生成され、その
後の結晶成長過堤において、それらの結晶核が均一に成
長したものと筆者らは考えている。
【0021】本発明においては、結晶核の生成時に生成
温度を変化させることにより極めて精密に二酸化スズウ
イスカーの形状を制御することが可能となる。これによ
り、長さの揃った二酸化スズウイスカーの製造が可能と
なり、分級作業が不要になるため二酸化スズウイスカー
の工業的生産に極めて有効となる。
【0022】発明においても従来技術に示されるよう
に、酸素ガス及び窒素ガス等のガス気流の制御を行うこ
とにより、二酸化スズウイスカーの製造を行うことも容
易に考えられるが、そのような複雑な操作を必要とせず
とも簡単に二酸化スズウイスカーの製造が行えることも
本発明による効果である。
【0023】本発明においては、二酸化スズの比抵抗を
低下させるために周期律表第V族元素化合物をスズ化合
物或いは金属スズに混合して用いることができる。周期
律表第V族元素化合物は、具体的には砒素(As)、ア
ンチモン(Sb)、ビスマス(Bi)、酸化アンチモン
(Sb23、Sb25)、塩化アンチモン(SbC
3、SbCl5)等が挙げられる。また、これらの化合
物等を単独、或いは複数で用いることもでき、そのなか
でもアンチモン及びその化合物が好適に用いられる。本
発明においてスズ化合物又は金属スズと併用される周期
律表第V族元素化合物の量は、スズ化合物又は金属スズ
100重量部に対して0.001〜20重量部が好まし
く、さらに好ましくは0.05〜10重量部である。
【0024】周期律表第V族元素化合物を用いないで得
られる二酸化スズの比抵抗は、通常105Ωcm以上の
値を示す。ところが、周期律表第V族元素化合物を二酸
化スズの構造中へドーピングすることにより、該比抵抗
を著しく変化させることが可能となる。即ち、二酸化ス
ズウイスカーの比抵抗は該周期律表第V族元素化合物の
添加により10-3Ωcm程度まで低下する。これは該元
素化合物が二酸化スズのマトリックス中に電気的に活性
な状態で存在するためであり、エネルギーバンド的には
電子のフェルミレベルが伝導帯側へシフトしたことによ
るものと考えられる。
【0025】本発明に使用する熱処理装置は、特に制限
されず管状型、密閉型及びベルト輸送型等の熱処理装置
の使用が可能である。
【0026】本発明に使用する反応容器は、蒸気状態の
SnO、一部が溶解して存在すると考えられる金属スズ
及びその他の反応容器内に存在する物質等に対して安定
な材質で構成される容器であれば、特に制限されること
なく使用可能である。例えば、アルミナ、炭化珪素、窒
化珪素、窒化ほう素及び白金等の材質で構成された反応
容器が挙げられる。その中でもアルミナ製の反応容器は
廉価且つ入手が容易であるため極めて好適に用いられ
る。反応容器は周期律表第V族元素化合物を含まない系
では、何度も連続して使用することが可能となる。ま
た、周期律表第V族元素化合物が反応容器に付着するこ
とにより、次の焼成での比抵抗の制御に影響を及ぼすこ
とが考えられる場合には、該反応容器を酸やアルカリの
溶液等を用いて洗浄すれば、何度も繰り返して使用する
ことができる。また、二酸化スズウイスカーの長さは反
応容器の大きさにより制限を受けるこのがあるため、反
応容器の大きさは、目的とする二酸化スズウイスカーの
長さにより適宜決定することが好ましい。
【0027】
【発明の効果】本発明の実施により、大きなアスペクト
比で、比抵抗が低く且つ長さが長い二酸化スズウイスカ
ーを再現性良く、高収率で、容易に製造することが可能
となる。また、本発明により得られる二酸化スズウイス
カーの長さ及び直径は製造直後の状態において均一に揃
っているため分級等の分別操作を必要としない利点を有
する。さらに、本発明においてはフラックス等の不純物
を用いないため、得られる二酸化スズウイスカーは高純
度であり、ドーピングによる比抵抗の制御を極めて容易
に行うことが可能となる。
【0028】本発明は、出発原料として安価な原料を使
用し、特別な反応容器及び反応条件の緻密な制御を必要
としないので、二酸化スズウイスカーの工業的生産に極
めて有利であると考えられる。さらに本発明において
は、1100℃未満の低温で行う熱処理が全反応時間の
大半を占めることにより、従来技術と比較し、電力が節
約されるだけでなく、熱処理装置の寿命を大幅に伸ばす
こと等も可能となる。
【0029】
【実施例】本発明を以下の実施例によって具体的に説明
するが、本発明はこれらの実施例によって限定されるも
のではない。本発明に必要な諸特性は下記の測定により
求めた。
【0030】(1)構造 X線回折法により、焼成後の物質の同定を行った。
【0031】(2)比抵抗 試料に100Kg/cm2の圧力を加えた状態におい
て、該試料が測定端子とオーミック接触となることを確
認した後、予め試料に定電流を印加した状態において、
電圧を測定することにより比抵抗の見積を行った。
【0032】(3)形状 得られた二酸化スズウイスカーの長さはノギスを用いて
測定した。また、走査型電子顕微鏡を用いてウイスカー
の断面を観察し、直径を表示した。
【0033】(4)アスペクト比 二酸化スズウイスカーの直径の平均値に対する長さの平
均値の比をアスペクト比とした。
【0034】(5)収率 二酸化スズウイスカーの収率は、理想的な反応により原
料であるスズ化合物、或いは金属スズがすべて二酸化ス
ズに変化することを仮定して、理想的な反応により生成
する二酸化スズの生成量に対する実際に得られた二酸化
スズウイスカーの重量の比で表した。
【0035】実施例1 内容積30ml、純度97%のアルミナ製蓋付き容器中
に、純度90%以上の粉末状酸化第一スズ4g、粒径2
0ミクロンの粉末状活性炭1.4g及び黒鉛製薄板(1
5mmX30mmX3t)を入れ、付属の蓋をして箱型
電気炉の中へ入れた。次に、該電気炉に電力を供給し、
電気炉内温度を900℃まで上昇させて、その温度で約
12時間保持した。そして、電気炉への電力の供給を停
止し、自然空冷により、そのままの状態で室温まで徐冷
した。
【0036】電気炉中の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0037】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に光沢のある透明な針状物
質の存在が確認され、殆どの針状物質が容器の内径まで
成長しているのが認められた。
【0038】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。二酸化スズウイスカーの長さは
平均25mmであり、最大のものは27mm、最小の長
さのものは23mmであった。平均直径は120μmで
あった。また、得られた二酸化スズウイスカーの重量を
測定したところ3.8gであり、収率は約85%であっ
た。さらに、二酸化スズウイスカーの比抵抗の測定を行
った結果、約106Ωcmが得られた。
【0039】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0040】実施例2 実施例1と同様の容器に実施例1と同様の原料を入れ、
付属の蓋をして箱型電気炉の中に入れた。次に電気炉内
温度を800℃まで上昇させて、その温度で約12時間
保持した。そして、電気炉への電力の供給を停止し、自
然空冷により、そのままの状態で室温まで徐冷した。
【0041】電気炉中の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0042】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に光沢のある透明な針状物
質の存在が確認され、殆どの針状物質が容器の内径まで
成長しているのが認められた。
【0043】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0044】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0045】実施例3 実施例1と同様の容器に純度95%以上の粉末状金属ス
ズ3.5g、及び黒鉛製薄板(15mmX30mmX3
t)を入れ、付属の蓋をして箱型電気炉の中へ入れた。
次に、該電気炉に電力を供給し、電気炉内温度を900
℃まで上昇させて、その温度で約12時間保持した。そ
して、電気炉への電力の供給を停止し、自然空冷によ
り、そのままの状態で室温まで徐冷した。
【0046】電気炉中の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0047】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に光沢のある透明な針状物
質の存在が確認され、殆どの針状物質が容器の内径まで
成長しているのが認められた。
【0048】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0049】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0050】実施例4 実施例1と同様の容器に純度90%以上の粉末状酸化第
二スズ4.5g、粒径20ミクロンの粉末状活性炭1.
4g及び黒鉛製薄板(15mmX30mmX3t)を入
れ、付属の蓋をして箱型電気炉の中へ入れた。次に、該
電気炉に電力を供給し、電気炉内温度を800℃まで上
昇させて、その温度で約12時間保持した。そして、電
気炉への電力の供給を停止し、自然空冷により、そのま
まの状態で室温まで徐冷した。
【0051】電気炉中の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0052】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に光沢のある透明な針状物
質の存在が確認され、殆どの針状物質が容器の内径まで
成長しているのが認められた。
【0053】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0054】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0055】実施例5 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4g、純度98%以上の酸化アンチモン(Sb2
3)0.4g、粒径20ミクロンの粉末状活性炭1.
4g及び黒鉛製薄板(15mmX30mmX3t)を入
れ、付属の蓋をして箱型電気炉の中へ入れた。次に、該
電気炉に電力を供給し、電気炉内温度を900℃まで上
昇させて、その温度で約12時間保持した。そして、電
気炉への電力の供給を停止し、自然空冷によりそのまま
の状態で室温まで徐冷した。
【0056】電気炉中の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0057】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に青みを帯びた光沢のある
針状物質の存在が確認され、殆どの針状物質が容器の内
径まで成長しているのが認められた。
【0058】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0059】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0060】実施例6 実施例1と同様の容器に実施例1と同様の原料を入れ、
付属の蓋をして箱型電気炉の中に入れた。次に、該電気
炉に電力を供給し、電気炉内温度を1000℃まで上昇
させて、その温度で約12時間保持した。そして、電気
炉への電力の供給を停止し、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0061】電気炉内の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0062】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に光沢のある透明な針状物質の存在
が認められた。
【0063】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0064】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0065】実施例7 内容積70ml、純度97%のアルミナ製蓋付き容器中
に、純度90%以上の粉末状酸化第一スズ8.0g、粒
径20ミクロンの粉末状活性炭2.8g及び黒鉛製薄板
(15mmX30mmX3t)を入れ、付属の蓋をして
箱型電気炉の中へ入れた。次に、該電気炉に電力を供給
し、電気炉内温度を800℃まで上昇させて、その温度
で約20時間保持した。そして、電気炉への電力の供給
を停止し、自然空冷により、そのままの状態で室温まで
徐冷した。
【0066】電気炉内の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約6時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0067】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に光沢のある透明な針状物質の存在
が認められた。
【0068】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0069】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0070】実施例8 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4g、純度98%以上の酸化アンチモン(Sb2
3)0.7g、粒径20ミクロンの粉末状活性炭1.
4g及び黒鉛製薄板(15mmX30mmX3t)を入
れ、付属の蓋をして箱型電気炉の中へ入れた。次に、該
電気炉に電力を供給し、電気炉内温度を900℃まで上
昇させて、その温度で約12時間保持した。そして、電
気炉への電力の供給を停止し、自然空冷によりそのまま
の状態で室温まで徐冷した。
【0071】電気炉中の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中の黒鉛製薄板を
取り出し、再び、電気炉の温度を1300℃まで上昇さ
せた。温度上昇が停止したのを確認した後、約3時間保
持した。そして、上記同様、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0072】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に青みを帯びた光沢のある
針状物質の存在が確認され、殆どの針状物質が容器の内
径まで成長しているのが認められた。
【0073】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0074】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0075】実施例9 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4gを入れ付属の蓋をして箱型電気炉の中へ入れ
た。箱型電気炉中の酸素分圧が常に0.04atmとな
るように適量の窒素連続的に供給し、電気炉内に窒素が
均一に拡散するように約1時間放置した。次に、電気炉
に電力を供給し、電気炉内温度を900℃まで上昇させ
て、その温度で約20時間保持した。そして電気炉への
電力の供給を停止し、自然空冷により、そのままの状態
で室温まで徐冷した。
【0076】電気炉内の雰囲気温度が室温になったのを
確認した後、窒素ガスの供給を停止し電気炉内の雰囲気
を大気に置換した。その後、電気炉の温度を1300℃
まで上昇させ、温度上昇が停止したのを確認した後、約
3時間保持した。そして、上記同様、自然空冷により、
そのままの状態で室温まで徐冷した。
【0077】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の内壁及び蓋に光沢のある針状物質の存
在が確認され、殆どの針状物質が容器の内径まで成長し
ているのが認められた。
【0078】X線回折法により焼成後の物質の構造を調
査したところ、この針状物質は二酸化スズウイスカーで
あることが確認された。
【0079】表1に焼成条件、表2に得られた二酸化ス
ズウイスカーの収量及び特性等の詳細をまとめた。
【0080】比較例1 実施例1と同様の容器に実施例1と同様の原料を入れ、
付属の蓋をして箱型電気炉の中に入れた。次に、該電気
炉に電力を供給し、電気炉内温度を900℃まで上昇さ
せて、その温度で約12時間保持した。そして、電気炉
への電力の供給を停止し、自然空冷によりそのままの状
態で室温まで徐冷した。
【0081】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0082】X線回折法により焼成後の物質の構造を調
査したところ、粉末状の物質は二酸化スズであることが
確認された。また、得られた二酸化スズ粉末の重量を測
定したところ4.1gであり、比抵抗の測定を行った結
果、106Ωcmが得られた。
【0083】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0084】比較例2 実施例1と同様の容器に実施例1と同様の原料を入れ、
付属の蓋をして箱型電気炉の中に入れた。次に、該電気
炉に電力を供給し、電気炉内温度を1100℃まで上昇
し、その温度で約12時間保持した。そして、電気炉へ
の電力の供給を停止し、自然空冷により、そのままの状
態で室温まで徐冷した。
【0085】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0086】X線回折法により焼成後の物質の構造を調
査したところ、粉末状の物質は二酸化スズであることが
確認された。また、得られた二酸化スズ粉末の重量を測
定したところ4.1gであった。
【0087】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0088】比較例3 実施例1と同様の容器に実施例1と同様の原料を入れ、
付属の蓋をして箱型電気炉の中に入れた。次に、該電気
炉に電力を供給し、電気炉内温度を1300℃まで上昇
させて、その温度で約12時間保持した。そして、電気
炉への電力の供給を停止し、自然空冷により、そのまま
の状態で室温まで徐冷した。
【0089】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0090】X線回折法により焼成後の物質の構造を調
査したところ、粉末状物質は二酸化スズであることが確
認された。また、得られた二酸化スズ粉末の重量を測定
したところ3.9gであった。
【0091】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0092】比較例4 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4g、粒径20ミクロンの粉末状活性炭1.4g
を入れ、付属の蓋をして箱型電気炉の中へ入れた。次
に、該電気炉に電力を供給し、電気炉内温度を900℃
まで上昇させて、その温度で約12時間保持した。そし
て、電気炉への電力の供給を停止し、自然空冷により、
そのままの状態で室温まで徐冷した。
【0093】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0094】X線回折法により焼成後の物質の構造を調
査したところ、粉末状物質は二酸化スズであることが確
認された。また、得られた二酸化スズ粉末の重量を測定
したところ4.0gであった。
【0095】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0096】比較例5 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4g、粒径20ミクロンの粉末状活性炭1.4g
を入れ、付属の蓋をして箱型電気炉の中へ入れた。次
に、該電気炉に電力を供給し、電気炉内温度を1300
℃まで上昇させて、その温度で約12時間保持した。そ
して、電気炉への電力の供給を停止し、自然空冷によ
り、そのままの状態で室温まで徐冷した。
【0097】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0098】X線回折法により焼成後の物質の構造を調
査したところ、粉末状物質は二酸化スズであることが確
認された。また、得られた二酸化スズ粉末の重量を測定
したところ3.9gであった。
【0099】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0100】比較例6 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4gを入れ、付属の蓋をして箱型電気炉の中へ入
れた。次に、該電気炉に電力を供給し、電気炉内温度を
900℃まで上昇させて、その温度で約12時間保持し
た。そして、電気炉への電力の供給を停止し、自然空冷
により、そのままの状態で室温まで徐冷した。
【0101】電気炉内の雰囲気温度が室温になったのを
確認した後、再び、電気炉の温度を1300℃まで上昇
させた。温度上昇が停止したのを確認した後、約3時間
保持した。そして、上記同様、自然空冷により、そのま
まの状態で室温まで徐冷した。
【0102】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0103】X線回折法により焼成後の物質の構造を調
査したところ、粉末状物質は二酸化スズであることが確
認された。また、得られた二酸化スズ粉末の重量を測定
したところ3.7gであった。
【0104】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0105】比較例7 実施例1と同様の容器に純度90%以上の粉末状酸化第
一スズ4gを入れ、付属の蓋をして箱型電気炉の中へ入
れた。次に、該電気炉に電力を供給し、電気炉内温度を
900℃まで上昇させて、その温度で約12時間保持し
た。そして、電気炉への電力の供給を停止し、自然空冷
により、そのままの状態で室温まで徐冷した。
【0106】電気炉内の雰囲気温度が室温になったのを
確認した後、電気炉の扉を開け、容器中にの黒鉛製薄板
(15mmX30mmX3t)を入れ、再び、電気炉の
温度を1300℃まで上昇させた。温度上昇が停止した
のを確認した後、約3時間保持した。そして、上記同
様、自然空冷により、そのままの状態で室温まで徐冷し
た。
【0107】焼成終了後、容器の蓋を開け、中を観察し
たところ、容器の底に白色の粉末状の物質の存在が認め
られた。針状の物質は見られなかった。
【0108】X線回折法により焼成後の物質の構造を調
査したところ、粉末状物質は二酸化スズであることが確
認された。また、得られた二酸化スズ粉末の重量を測定
したところ3.8gであった。
【0109】表1に焼成条件、表2に得られた二酸化ス
ズ粉末の収量及び特性等の詳細をまとめた。
【0110】
【表1】
【0111】
【表2】
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/62 C30B 29/62 A H01B 1/08 H01B 1/08

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 スズ化合物あるいは金属スズを大気中の
    酸素分圧より低い酸素分圧の雰囲気下で加熱して結晶核
    を生成させた後、結晶核生成時よりも高い温度で加熱し
    て結晶を成長させることを特徴とする二酸化スズウィス
    カーの製造方法
  2. 【請求項2】 スズ化合物あるいは金属スズを過剰の炭
    素系物質の存在下で加熱して結晶核を生成させた後、実
    質的に、炭素系物質の不存在下において結晶核生成時よ
    りも高い温度で加熱し結晶を成長させることを特徴とす
    る二酸化スズウィスカーの製造方法
JP7337299A 1995-12-25 1995-12-25 二酸化スズウィスカーの製造方法 Pending JPH09175820A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337299A JPH09175820A (ja) 1995-12-25 1995-12-25 二酸化スズウィスカーの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337299A JPH09175820A (ja) 1995-12-25 1995-12-25 二酸化スズウィスカーの製造方法

Publications (1)

Publication Number Publication Date
JPH09175820A true JPH09175820A (ja) 1997-07-08

Family

ID=18307320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337299A Pending JPH09175820A (ja) 1995-12-25 1995-12-25 二酸化スズウィスカーの製造方法

Country Status (1)

Country Link
JP (1) JPH09175820A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255515A (ja) * 2000-12-27 2002-09-11 National Institute Of Advanced Industrial & Technology 金属酸化物微粒子の製造方法
JP2003064534A (ja) * 2001-06-14 2003-03-05 National Institute Of Advanced Industrial & Technology 金属酸化物短繊維の製造方法
JP2010116285A (ja) * 2008-11-12 2010-05-27 Nissan Motor Co Ltd ウィスカー形成体、電気化学デバイス用電極及びそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255515A (ja) * 2000-12-27 2002-09-11 National Institute Of Advanced Industrial & Technology 金属酸化物微粒子の製造方法
JP2003064534A (ja) * 2001-06-14 2003-03-05 National Institute Of Advanced Industrial & Technology 金属酸化物短繊維の製造方法
JP4614197B2 (ja) * 2001-06-14 2011-01-19 独立行政法人産業技術総合研究所 金属酸化物短繊維の製造方法
JP2010116285A (ja) * 2008-11-12 2010-05-27 Nissan Motor Co Ltd ウィスカー形成体、電気化学デバイス用電極及びそれらの製造方法

Similar Documents

Publication Publication Date Title
Wan et al. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation
Bruce et al. Phase diagram of the LISICON, solid electrolyte system, Li4GeO4-Zn2GeO4
Dai et al. Fabrication and characterization of In2O3 nanowires
CN1070458C (zh) 金属氧化物粉末的制造方法
JPH08337500A (ja) 酸化スズウィスカおよびその製造方法
Xu et al. Characteristics and growth mechanism of ZnO whiskers fabricated by vapor phase transport
JPH09175820A (ja) 二酸化スズウィスカーの製造方法
JP4125638B2 (ja) V族遷移金属ダイカルコゲナイド結晶からなるナノファイバー又はナノチューブ並びにその製造方法
JPH1111946A (ja) 結晶質固溶体粉末の製造方法、インジウム−錫−酸化物の結晶質固溶体粉末、itoスパッタリングターゲット及びito被膜
Kimura et al. The effect of growth atmosphere and Ir contamination on electric properties of La 3 Ta 0.5 Ga 5.5 O 14 single crystal grown by the floating zone and Czochralski method
Rambabu et al. Synthesis and characterization of morphologically different high purity gallium oxide nanopowders
JP5486751B2 (ja) 棒状酸化錫インジウム粉末とその製造方法
US4873070A (en) Process for producing silicon carbide whiskers
US5837209A (en) Tin oxide whisker
CN109023296A (zh) 一种在氟金云母衬底上化学气相沉积生长钼钨硒合金的方法
CN112301379B (zh) 二氧化锆为原料制备金属锆的方法
CN114368729A (zh) 一种定向生长的GeSe2纳米线及其制备方法
JP5499406B2 (ja) シリコンナノワイヤーの製造方法
KR100836890B1 (ko) Ito 기판을 이용한 산화아연 나노선의 수직성장 방법
JPH06172099A (ja) 繊維状導電性酸化錫(iv)の製造方法
US5256260A (en) Method and apparatus for the electrodeposition of bismuth based materials and superconductors
Bachhav et al. THERMAL STUDIES ON COPPER DOPED BARIUM TARTRATE SINGLE CRYSTALS BY SILICA GEL TECHNIQUE
Ma et al. Bamboo-like boron nitride nanotubes
CA2068437A1 (en) Copper oxide whiskers and process for producing the same
GB2150544A (en) A process for preparing metamorphosed alkali metal titanates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A02