JPH09174216A - Apparatus for continuously casting molten metal - Google Patents

Apparatus for continuously casting molten metal

Info

Publication number
JPH09174216A
JPH09174216A JP33980395A JP33980395A JPH09174216A JP H09174216 A JPH09174216 A JP H09174216A JP 33980395 A JP33980395 A JP 33980395A JP 33980395 A JP33980395 A JP 33980395A JP H09174216 A JPH09174216 A JP H09174216A
Authority
JP
Japan
Prior art keywords
flow
mold
magnetic field
stage
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33980395A
Other languages
Japanese (ja)
Other versions
JP3039346B2 (en
Inventor
Koji Takatani
幸司 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7339803A priority Critical patent/JP3039346B2/en
Publication of JPH09174216A publication Critical patent/JPH09174216A/en
Application granted granted Critical
Publication of JP3039346B2 publication Critical patent/JP3039346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the high speed continuous casting operation and the improvement of surface characteristics and internal quality of a cast slab by impressing static magnetic fields to molten metal at the upper stage, middle stage and lower stage of a mold and restraining spouting flow of the molten metal in the mold from an immersion nozzle. SOLUTION: The flow of the molten metal 8 in the mold 1 from the immersion nozzle 2 is restrained to flow speed component in the vertical direction by impressing the static magnetic fields of the upper stage, middle stage and lower stage, and this flow component becomes the spouting flow 17A along the low intensity range of the static magnetic field and flows to almost the horizontal direction. When the casting speed becomes high, the colliding flow speed to short side walls of the mold becomes high, and in order to reduce this high flow speed, such control is executed that, e.g. the static magnetic field at the middle stage is made to the reverse direction to the magnetic fields at the upper stage and the lower stage to make the intensity of the static magnetic field high, or the intensity of the magnetic field is made to high while forming the magnetic poles at the upper stage, middle stage and lower stage to the same direction. By this method, the flow speed of the spouting flow 17A is restrained and the flow speed collided to the short side walls in the mold is restrained, and the remelting of solidified shell 10 at the middle stage position is prevented and the crack and the breakout of the cast slab 11 can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、導電性溶融金属
の連続鋳造に際し、鋳造の高速化および鋳片表面の性状
と鋳片内質の改善を可能にする鋳型内溶融金属の流れを
適正に制御できる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when performing continuous casting of conductive molten metal, makes it possible to speed up the casting and to improve the property of the surface of the slab and the quality of the slab in order to properly flow the molten metal in the mold. Controllable device

【0002】[0002]

【従来の技術】溶融金属の連続鋳造においては、浸漬ノ
ズルから溶融金属を鋳型内に吐出させる注入方法が一般
に採用されている。
2. Description of the Related Art In continuous casting of molten metal, an injection method in which molten metal is discharged from a dipping nozzle into a mold is generally adopted.

【0003】図8は、連続鋳造鋳型内の溶融金属の流れ
を模式的に示した鋳型短辺中心での縦断面図である。同
図に示すようにスラブ鋳片の連続鋳造では、鋳型長手方
向に均一に溶融金属8 を注入するため、浸漬ノズル2か
ら鋳型短辺側壁1Bに向けて溶融金属8 を吐出させる。こ
の吐出流17が鋳型短辺側壁1Bに突き当たると、二次上昇
流18と二次下降流20を生ずる。
FIG. 8 is a vertical cross-sectional view at the center of the short side of the mold, schematically showing the flow of molten metal in the continuous casting mold. As shown in the figure, in the continuous casting of the slab slab, in order to inject the molten metal 8 uniformly in the longitudinal direction of the mold, the molten metal 8 is discharged from the immersion nozzle 2 toward the short side wall 1B of the mold. When this discharge flow 17 impinges on the short side wall 1B of the mold, a secondary upflow 18 and a secondary downflow 20 are generated.

【0004】鋳造速度を大きくすると、単位時間当たり
の溶融金属の注入量が増えるので、吐出流17の鋳型短辺
側壁1Bへの衝突流速が大きくなり、凝固シェル10の厚さ
が薄くなって、鋳片11の表面割れやブレークアウトの危
険性が増大する。また、二次下降流20の流速も大きくな
り、その流れに随伴して非金属介在物やノズル詰まり防
止用に吹き込む不活性ガスが下降し、鋳片内部に気泡と
して捕捉される。さらに、二次上昇流18も強まり、メニ
スカス流19の変動、それに伴う湯面変動が増加するた
め、溶融パウダー13がメニスカス9 の直下で巻き込ま
れ、鋳片表皮近傍に捕捉され、鋳片欠陥の原因となる。
When the casting speed is increased, the injection amount of the molten metal per unit time is increased, so that the collision flow velocity of the discharge flow 17 with the short side wall 1B of the mold is increased, and the thickness of the solidified shell 10 is reduced. The risk of surface cracking or breakout of the slab 11 increases. Further, the flow velocity of the secondary descending flow 20 also increases, and non-metallic inclusions and an inert gas blown in for preventing nozzle clogging descend along with the flow, and are trapped as bubbles inside the slab. Furthermore, the secondary upflow 18 also strengthens, and the fluctuation of the meniscus flow 19 and the accompanying fluctuation of the molten metal surface increase, so that the molten powder 13 is caught immediately below the meniscus 9 and trapped in the vicinity of the slab skin, causing slab defects. Cause.

【0005】鋳片11に捕捉された非金属介在物や気泡
は、例えば冷延コイルとなったときスリバー疵、ヘゲ
疵、ピンホール等の表面欠陥の発生原因となる。
The non-metallic inclusions and air bubbles trapped in the slab 11 cause surface defects such as sliver flaws, bald flaws, and pinholes when they become cold-rolled coils.

【0006】上記のような問題への対策として、静磁場
を利用して溶融金属の浸漬ノズルからの吐出流れに制動
力を与える技術の開発が進められてきた。
As a measure against the above problems, the development of a technique for applying a braking force to a discharge flow of a molten metal from a dipping nozzle has been advanced by utilizing a static magnetic field.

【0007】例えば、特公平2-20349 号公報には、静磁
場を浸漬ノズルからの溶融金属の吐出流を含む局部位置
に印加する方法と装置が開示されている。この方法で
は、浸漬ノズルからの吐出流の流速を遅くすることがで
きるので、高速鋳造下でも鋳片のブレークアウトの発生
を防止できる。しかし、吐出流のみに静磁場を印加する
と、印加領域を迂回する強い上昇流と下降流が生じ、非
金属介在物や気泡を溶鋼から分離するのに十分な効果が
得られない。
For example, Japanese Patent Publication No. 2-20349 discloses a method and apparatus for applying a static magnetic field to a local position including a discharge flow of molten metal from an immersion nozzle. In this method, the flow rate of the discharge flow from the immersion nozzle can be slowed down, so that breakout of the slab can be prevented even during high-speed casting. However, when the static magnetic field is applied only to the discharge flow, strong ascending flow and descending flow that bypass the application region are generated, and it is not possible to obtain a sufficient effect for separating nonmetallic inclusions and bubbles from molten steel.

【0008】特公平5-55220 号公報には、静磁場を浸漬
ノズルからの溶鋼吐出流路を含まない上・下2段の鋳型
長辺全幅領域に印加する方法と装置が開示されている。
この方法では、浸漬ノズルからの溶鋼吐出流が鋳型短辺
に衝突して生ずる二次上昇流および二次下降流を抑制で
きるので、非金属介在物や気泡が効果的に溶鋼から分離
できる。しかし、浸漬ノズルからの溶鋼吐出流が鋳型短
辺に衝突する流速が大きく、鋳片短辺側の凝固シェルを
再溶解する可能性が大きくなるので、凝固シェルの厚さ
の不均一を招きがちである。吐出流の衝突流速が大きく
なり過ぎると鋳片がブレークアウトするので、鋳造速度
の高速化には限界がある。
Japanese Patent Publication No. 5-55220 discloses a method and apparatus for applying a static magnetic field to the upper and lower two stages of the entire long side width of the mold, which does not include the molten steel discharge passage from the immersion nozzle.
In this method, the secondary ascending flow and the secondary descending flow caused by the molten steel discharge flow from the immersion nozzle colliding with the short side of the mold can be suppressed, so that non-metallic inclusions and bubbles can be effectively separated from the molten steel. However, the flow rate of molten steel discharged from the immersion nozzle colliding with the short side of the mold is high, and the possibility of remelting the solidified shell on the short side of the slab becomes large, which tends to lead to uneven thickness of the solidified shell. Is. If the collision flow velocity of the discharge flow becomes too high, the slab breaks out, so there is a limit to the increase in casting speed.

【0009】特開平2-284750号公報には、静磁場を浸漬
ノズル吐出孔を含む鋳型長辺全幅領域、または吐出孔の
上下の鋳型長辺全幅に印加する方法が開示されている。
吐出孔を含む領域に印加する方法では精密な流動制御は
行えず、前記特公平2-20349号公報に記載の方法と同様
の問題が生じる。また、吐出孔の上下領域に印加する方
法では、前記特公平5-55220 号公報に記載の方法と同様
の問題が生じる。
Japanese Unexamined Patent Publication (Kokai) No. 2-284750 discloses a method of applying a static magnetic field to the entire region of the long side of the mold including the discharge hole of the immersion nozzle, or the entire width of the long side of the mold above and below the discharge hole.
With the method of applying to the region including the discharge holes, precise flow control cannot be performed, and the same problem as the method described in Japanese Patent Publication No. 2-20349 occurs. In addition, the method of applying to the upper and lower regions of the discharge hole causes the same problem as the method described in Japanese Patent Publication No. 5-55220.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、溶融
金属の連続鋳造に際し、鋳型内溶融金属に効果的に静磁
場を印加して溶融金属の浸漬ノズルからの吐出流れを制
御し、高速鋳造条件下でも鋳片のブレークアウトを発生
させることなく、かつ表面性状および内質が良好な鋳片
を製造できる溶融金属の連続鋳造装置を提供することに
ある。
An object of the present invention is to apply a static magnetic field to the molten metal in a mold effectively during continuous casting of molten metal to control the discharge flow of the molten metal from a dipping nozzle to achieve high speed. It is an object of the present invention to provide a continuous casting apparatus for molten metal capable of producing a slab having good surface properties and internal quality without causing breakout of the slab even under casting conditions.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は、下記の
連続鋳造装置にある。
The gist of the present invention resides in the following continuous casting apparatus.

【0012】鋳型内の溶融金属に静磁場を印加して鋳型
内の溶融金属の浸漬ノズルからの吐出流れを制御する連
続鋳造装置であって、静磁場を印加する鋳型内領域を垂
直方向に下記の上段、中段および下段に区分し、各段の
鋳型長辺の両側壁外面位置に、鋳込み方向から見てコの
字形に両磁極を有する磁石が鋳型を挟んで対向配置され
た磁石が3段に設置されている連続鋳造装置。
[0012] A continuous casting apparatus for controlling a discharge flow of a molten metal in a mold from a dipping nozzle by applying a static magnetic field to the molten metal in the mold. The upper, middle, and lower stages are divided into three stages, with magnets having U-shaped magnetic poles in a U shape when viewed from the casting direction at the outer surface of both side walls of the long sides of each stage, with magnets sandwiched between the molds. Continuous casting equipment installed in.

【0013】上段:メニスカスを含み、浸漬ノズルから
の吐出流路を含まない上方部分 中段:浸漬ノズルからの吐出流路を含む中間部分 下段:浸漬ノズルからの吐出流路を含まない下方部分 ただし、吐出流路とは、静磁場を印加しないときの浸漬
ノズルから吐出された溶融金属が鋳型短辺の側壁に衝突
するまでの流路である。
Upper part: upper part including meniscus but not including discharge flow path from immersion nozzle Middle part: middle part including discharge flow path from immersion nozzle Lower part: lower part not including discharge flow path from immersion nozzle The discharge flow passage is a flow passage until the molten metal discharged from the immersion nozzle when the static magnetic field is not applied collides with the short side wall of the mold.

【0014】上記の装置で使用する電磁石は、磁石の鉄
芯が連結されたものでもよく、また、永久磁石を用いる
こともできる。
The electromagnet used in the above apparatus may be one in which an iron core of a magnet is connected, or a permanent magnet may be used.

【0015】[0015]

【発明の実施の態様】本発明の電磁石を用いた連続鋳造
装置について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A continuous casting apparatus using the electromagnet of the present invention will be described.

【0016】図1は、本発明の電磁石を配置した連続鋳
造装置の一例を示す斜視図である。
FIG. 1 is a perspective view showing an example of a continuous casting apparatus in which the electromagnet of the present invention is arranged.

【0017】また、図2は、図1のX-X で示す断面を鋳
型の短辺側から見た縦断面図である。
FIG. 2 is a vertical cross-sectional view of the cross section indicated by XX in FIG. 1 viewed from the short side of the mold.

【0018】両図において、鋳型1 の長辺1Aの両側壁外
面の上段U 、中段M および下段L の3段に鋳込み方向か
ら見てコの字形の鉄芯3Bを配置し、鉄芯の平行部3Cにコ
イル3Aを巻回し、鋳型を挟む磁極3Dを形成し、浸漬ノズ
ルの両側に磁場を形成する一対の磁石3 (図では電磁
石)が設けられている。
In both figures, U-shaped iron cores 3B as seen from the casting direction are arranged in three stages of upper U, middle M and lower L outer surfaces of both side walls of the long side 1A of the mold 1, and the parallel cores A coil 3A is wound around the portion 3C to form a magnetic pole 3D that sandwiches the mold, and a pair of magnets 3 (electromagnets in the figure) that form a magnetic field are provided on both sides of the immersion nozzle.

【0019】電磁石は、コの字形の鉄芯3Bの2つの平行
部3Cに、それぞれコイル3Aを巻回し、図2に示すように
可変抵抗器5 を介して直流電源を接続する。鋳片の短辺
を挟んで相対する磁極の極性を異にして、鋳型の短辺方
向に磁場を形成させる。それぞれのコイルに供給する電
流の大きさ、または方向を変えることによって、磁場強
度または磁場分布を変えることができる。
In the electromagnet, coils 3A are respectively wound around two parallel portions 3C of a U-shaped iron core 3B, and a DC power source is connected via a variable resistor 5 as shown in FIG. Magnetic fields are formed in the direction of the short side of the mold by making the polarities of the magnetic poles facing each other across the short side of the slab differ. The magnetic field strength or magnetic field distribution can be changed by changing the magnitude or direction of the current supplied to each coil.

【0020】上記の3段の領域は、静磁場を印加しない
通常の鋳造状態に基づいて定められる。即ち、前述の図
8に破線で示すように、吐出流17が斜め下方に進行し、
鋳型短辺側壁に衝突するまでの流路を「吐出流路」と定
義し、中段M は、この吐出流路の少なくとも一部を含む
位置に設定する。上段U は、吐出流を含まず、それより
も上方にあり、かつ鋳型内溶融金属8 のメニスカス9 を
含む領域、即ちメニスカス流19を含む領域である。下段
L は、吐出流を含まず、上記中段より下方の領域であ
る。
The above three-stage regions are determined based on the normal casting state in which no static magnetic field is applied. That is, as indicated by the broken line in FIG. 8 described above, the discharge flow 17 travels obliquely downward,
The flow path until it collides with the short side wall of the mold is defined as a "discharge flow path", and the middle stage M is set at a position including at least a part of this discharge flow path. The upper stage U is a region that does not include the discharge flow and is above it and that includes the meniscus 9 of the molten metal 8 in the mold, that is, a region that includes the meniscus flow 19. Lower row
L is a region below the middle stage, which does not include the discharge flow.

【0021】図3(a)〜(d) は、コの字形磁石の磁極を変
えた組合せを示す図である。
FIGS. 3A to 3D are views showing combinations in which the magnetic poles of the U-shaped magnet are changed.

【0022】また、図4(a)〜(d) は、前記図3に示す磁
極の組合せに対応する磁力線分布と磁場強度を示す図で
ある。両図において、(a) は、上段と下段が同極、中段
が異極の場合であり、各段の磁場をそれぞれ強くするこ
とができる。(b) は、上段、中段および下段を同極とし
た場合であり、全段にわたって磁場を強くすることがで
きる。(c) は、上段と中段が同極、下段が異極の場合で
あり、メニスカス部の磁場を下部に比べて大きくするこ
とができる。(d) は、中段と下段が同極、上段が異極の
場合であり、メニスカス部に比べて下部の磁場を大きく
することができる。
4 (a) to 4 (d) are diagrams showing magnetic field line distributions and magnetic field intensities corresponding to the magnetic pole combinations shown in FIG. In both figures, (a) shows the case where the upper and lower stages have the same pole and the middle stage has a different pole, and the magnetic fields of the respective stages can be made stronger. (b) shows the case where the upper, middle, and lower stages have the same pole, and the magnetic field can be strengthened over all stages. (c) shows the case where the upper and middle stages have the same pole and the lower stage has the different pole, and the magnetic field in the meniscus portion can be made larger than that in the lower portion. (d) is the case where the middle and lower tiers have the same pole and the upper tier has different poles, and the magnetic field in the lower portion can be made larger than in the meniscus portion.

【0023】このように電磁石を配置することにより磁
場の分布を任意に設定することができ、種々の鋳造条件
に対して浸漬ノズルからの吐出流の流動制御を柔軟に選
択できる。例えば、それぞれの磁極の設定の仕方として
は、図3に示すような選択が各コイルに流す電流の方向
を選択することで可能となる。
By arranging the electromagnets in this way, the distribution of the magnetic field can be arbitrarily set, and the flow control of the discharge flow from the immersion nozzle can be flexibly selected under various casting conditions. For example, as a method of setting each magnetic pole, the selection as shown in FIG. 3 can be made by selecting the direction of the current flowing through each coil.

【0024】上段、中段および下段の3段の電磁石は、
高さ方向に鉄芯を連結することもできる。
The upper, middle and lower three-stage electromagnets are
It is also possible to connect iron cores in the height direction.

【0025】図5は、3段のコの字形電磁石が高さ方向
に鉄芯を連結して配置された連続鋳造装置の鋳型短辺側
から見た側面図(斜視図)である。この場合の磁極の配
置は、中段の電磁石に電源開閉器6 を設けることによっ
て、直流電源を OFFにした場合は、対向する中段磁極で
発生する静磁場強度を上段、下段の磁極で発生する静磁
場強度よりも低く(零に近く)調整できる。また、直流
電源を ON にして、中段磁極のコイル電流を強めると、
中段磁極で発生する静磁場強度が増加し、上段、下段の
磁極で発生する静磁場と等しく、あるいはそれよりも高
く調整するこができる。
FIG. 5 is a side view (perspective view) of a continuous casting machine in which three-stage U-shaped electromagnets are arranged with their iron cores connected in the height direction, as viewed from the shorter side of the mold. In this case, the magnetic poles are arranged so that when the DC power supply is turned off by providing the power switch 6 on the electromagnet in the middle stage, the static magnetic field strength generated in the opposing middle-stage magnetic poles is generated in the upper and lower magnetic poles. Adjustable below the magnetic field strength (close to zero). Also, when the DC power supply is turned on and the coil current of the middle pole is increased,
The strength of the static magnetic field generated in the middle magnetic pole is increased, and it can be adjusted to be equal to or higher than the static magnetic field generated in the upper and lower magnetic poles.

【0026】図6は、本発明の溶融金属の連続鋳造装置
による吐出流の制御を説明する鋳型短辺中心の縦断面図
である。同図に破線で示した範囲が、前述のように設定
した上段U 、中段M および下段L の領域である。浸漬ノ
ズル2 の両側に紙面に垂直方向に逆向きの磁場を各段に
形成する。ここでは、浸漬ノズル2 からの吐出流17は、
中段の静磁場の作用により減速され、水平方向に向きを
転じている。
FIG. 6 is a vertical cross-sectional view of the center of the short side of the mold for explaining the control of the discharge flow by the continuous casting apparatus for molten metal of the present invention. The range indicated by the broken line in the figure is the region of the upper tier U, the middle tier M, and the lower tier L set as described above. Magnetic fields are formed on both sides of the dipping nozzle 2 in opposite directions in the direction perpendicular to the plane of the drawing. Here, the discharge flow 17 from the immersion nozzle 2 is
It is decelerated by the action of the static magnetic field in the middle stage, and it turns to the horizontal direction.

【0027】各段の領域に鋳型外部に設置された3段の
磁石によって、各段に発生する静磁場強度を、図4の
(a) 〜(d) に示すように各段ごとに調整することがで
き、それによって、各段ごとに溶融金属の浸漬ノズルか
ら吐出する流れを適正に制御することができる。例え
ば、3段の磁場強度を等しくしてもよいし(図4(b))、
中段の静磁場を上、下段のそれよりも弱く、あるいは強
くしてもよい(図4(a))。これらの条件を変えることに
よって、後に実施例で詳しく説明するように、それぞれ
異なった優れた効果が得られる。
The static magnetic field strength generated in each stage by the three-stage magnets installed outside the mold in the region of each stage is shown in FIG.
As shown in (a) to (d), adjustment can be made for each stage, whereby the flow of the molten metal discharged from the immersion nozzle can be appropriately controlled for each stage. For example, the magnetic field strengths of the three steps may be equal (Fig. 4 (b)),
The static magnetic field in the middle section may be weaker or stronger than that in the upper and lower sections (Fig. 4 (a)). By changing these conditions, different excellent effects can be obtained, as will be described later in detail in Examples.

【0028】鋳型内の浸漬ノズルからの溶融金属の流れ
は、図6に模式的に示すとおり、上段、中段および下段
に静磁場を印加すると垂直方向の流速成分が抑制され、
静磁場強度の低い領域に沿う吐出抑制流17A となってほ
ぼ水平方向に流れる。このとき、鋳造速度に応じて中段
静磁場の強度を調整すると、水平方向の吐出抑制流17A
の流速と流路範囲または流路面積を適度に調整すること
ができ、二次上昇流18と二次下降流20が生じる。
The flow of the molten metal from the immersion nozzle in the mold is as shown in FIG. 6, when the static magnetic field is applied to the upper, middle and lower stages, the flow velocity component in the vertical direction is suppressed,
A discharge suppressing flow 17A is formed along a region where the static magnetic field strength is low, and flows in a substantially horizontal direction. At this time, if the strength of the middle static magnetic field is adjusted according to the casting speed, the horizontal discharge suppression flow 17A
The flow velocity and the flow passage range or flow passage area can be adjusted appropriately, and a secondary upflow 18 and a secondary downflow 20 are generated.

【0029】鋳造速度が高速化すると鋳型短辺への衝突
流速が大きくなり、これを緩和するには、例えば中段の
静磁場を上段、下段の磁場と反対方向にして静磁場の強
度を高める(図4(a)参照)か、上段、中段および下段の
磁極を同一方向にして静磁場の強度を高める(図4(b)参
照)制御が行われる。これにより、吐出抑制流17A の流
速が抑制されるとともに、前述したように二次上昇流と
二次下降流が生じる。
When the casting speed is increased, the collision flow velocity on the shorter side of the mold is increased, and in order to mitigate this, for example, the static magnetic field in the middle stage is made opposite to the magnetic fields in the upper and lower stages to increase the strength of the static magnetic field ( 4 (a)), or the upper, middle, and lower magnetic poles are oriented in the same direction to increase the strength of the static magnetic field (see FIG. 4 (b)). As a result, the flow velocity of the discharge suppressing flow 17A is suppressed, and as described above, the secondary upflow and the secondary downflow are generated.

【0030】吐出抑制流17A の流速が抑制されると、鋳
型短辺側壁1Bに衝突する流速も抑制され、中段位置の凝
固シェル10の再溶解を防止し、シェル厚さの不均一化に
起因する鋳片11の割れやブレークアウトを防止すること
ができる。
When the flow velocity of the discharge suppressing flow 17A is suppressed, the flow velocity colliding with the side wall 1B of the short side of the mold is also suppressed, which prevents re-melting of the solidified shell 10 at the middle position and causes uneven shell thickness. It is possible to prevent the slab 11 from cracking or breakout.

【0031】二次上昇流18は、磁場強度の低い領域をほ
ぼ垂直上方に上昇し、メニスカス近傍の凝固シェル10や
溶融パウダー13に熱を供給し、急激な凝固シェルの生成
を抑制するとともに、溶融パウダーの温度を高め不純物
の補足を促進する。また、二次上昇流は、静磁場強度が
強く調整された上段磁極中心線14A の位置で、流速が抑
制され二次上昇抑制流18A となり、メニスカス9 近傍で
水平方向に転じて流速変動のないメニスカス流19を生ず
る。これにより湯面変動が抑制され、溶融パウダー13の
溶鋼への巻き込みを防止することができる。
The secondary ascending flow 18 rises substantially vertically upward in the region where the magnetic field strength is low, supplies heat to the solidified shell 10 and the molten powder 13 near the meniscus, and suppresses the rapid formation of the solidified shell. It raises the temperature of the molten powder and promotes the capture of impurities. In addition, the secondary upward flow is suppressed at the upper magnetic pole center line 14A where the static magnetic field strength is strongly adjusted, and the secondary upward flow is suppressed to the secondary upward flow 18A, and it changes horizontally in the vicinity of the meniscus 9 and there is no flow velocity fluctuation. This produces a meniscus flow 19. As a result, fluctuations in the molten metal surface are suppressed, and it is possible to prevent the molten powder 13 from being caught in the molten steel.

【0032】吐出抑制流17A が鋳型短辺側壁1Bに衝突し
生ずる二次下降流20は、磁場強度の低い領域をほぼ垂直
方向に下降し、下段磁極中心線16A の位置で弱い(流速
の低い)二次下降抑制流20A となる。これにより、二次
下降流20に随伴して下降する非金属介在物や気泡が鋳片
11の内部に侵入し、浮上しないまま捕捉されるのを防止
することができる。
The secondary downward flow 20 generated by the ejection suppressing flow 17A colliding with the short side wall 1B of the mold descends almost vertically in the region where the magnetic field strength is low, and is weak at the position of the lower magnetic pole center line 16A (low flow velocity). ) The secondary downflow is 20A. As a result, the non-metallic inclusions and bubbles that are descending along with the secondary downward flow 20 are
It is possible to prevent it from entering the inside of 11 and being caught without ascending.

【0033】静磁場強度を図4(c)に示すパターンとなる
ように磁極を配置すると、メニスカス流速19の低減が可
能となり、メニスカス温度偏差が小さくなり、鋳片の表
面清浄性が向上する。また、図4(d)に示すパターンとな
るように磁極を配置すると、二次下降流および吐出抑制
流の流速が低減され、ブレークアウト、非金属介在物お
よび気泡の数を少なくすることができる。
By arranging the magnetic poles so that the static magnetic field strength has the pattern shown in FIG. 4 (c), the meniscus flow velocity 19 can be reduced, the meniscus temperature deviation can be reduced, and the surface cleanliness of the slab can be improved. Further, when the magnetic poles are arranged so as to have the pattern shown in FIG. 4 (d), the flow rates of the secondary descending flow and the discharge suppressing flow are reduced, and the number of breakouts, non-metallic inclusions and bubbles can be reduced. .

【0034】さらに、図5に示すように上段、中段およ
び下段のコの字形磁石を縦方向に連結した電磁石の磁極
を、中段の磁場強度を強め、吐出流れに強く制動力を印
加することによって、鋳造速度を高めることも可能であ
る。
Further, as shown in FIG. 5, the magnetic poles of the electromagnets in which the upper, middle and lower U-shaped magnets are vertically connected are strengthened by increasing the magnetic field strength in the middle stage and applying a strong braking force to the discharge flow. It is also possible to increase the casting speed.

【0035】上述したように、本発明装置によれば、鋳
造速度の高速化に柔軟に対応して、鋳型内溶融金属に所
定の流れを形成することができる。そして、鋳造速度を
高速化しても鋳片のブレークアウトを発生させることな
く、表面性状、内質が良好な鋳片を製造することができ
る。
As described above, according to the apparatus of the present invention, a predetermined flow can be formed in the molten metal in the mold while flexibly coping with the increase in casting speed. Then, even if the casting speed is increased, it is possible to manufacture a slab having good surface properties and internal quality without causing breakout of the slab.

【0036】次に、本発明の装置について実施例により
具体的に説明する。
Next, the apparatus of the present invention will be specifically described by way of examples.

【0037】[0037]

【実施例】【Example】

(実施例1)内壁寸法が長辺幅1600mm、短辺幅 270mm、
高さ 900mmの水冷銅鋳型を備えたスラブ連続鋳造機を用
いて、低炭素アルミキルド鋼のスラブ鋳片を鋳造した。
鋳片引き抜き速度は 2 m/分(鋳造速度 5.4t/分に
相当する)である。浸漬ノズルの吐出孔は、鋳型短辺に
対向する側に2孔を設けた。鋳型内溶鋼の流れ制御装置
としては、前記図1に示すコの字形鉄芯を3段に配置し
た電磁石を用いた。
(Example 1) The inner wall has a long side width of 1600 mm, a short side width of 270 mm,
A slab slab of low carbon aluminum killed steel was cast using a slab continuous casting machine equipped with a water-cooled copper mold having a height of 900 mm.
The withdrawal speed of the slab is 2 m / min (corresponding to a casting speed of 5.4 t / min). Two discharge holes of the immersion nozzle were provided on the side facing the short side of the mold. As the apparatus for controlling the flow of molten steel in the mold, an electromagnet having the U-shaped iron core shown in FIG. 1 arranged in three stages was used.

【0038】3段の電磁石の平行部3Cは、前述の上段、
中段および下段の各領域内に設置した。最大磁場強度
は、上段および下段を2200ガウスと一定に制御し、中段
を−1000、1000および3000( ケースNo. 1、2および
3)に制御した。中段の磁場強度のマイナス記号は、上
下段の磁場印加方向と反対方向を意味する。
The parallel portion 3C of the three-stage electromagnet is
It was installed in each of the middle and lower regions. The maximum magnetic field strength was controlled to be 2200 gauss at the upper and lower stages, and the middle stage was controlled at -1000, 1000, and 3000 (Case Nos. 1, 2, and 3). The minus sign of the magnetic field strength in the middle tier means the direction opposite to the magnetic field application direction in the upper and lower tiers.

【0039】比較例1は、吐出流路を含まない上段と下
段に静磁場を印加する方法で溶鋼流れを制御した例、比
較例2は中段だけに静磁場を印加した例である。
Comparative Example 1 is an example in which the flow of molten steel is controlled by a method of applying a static magnetic field to the upper and lower stages that do not include a discharge flow channel, and Comparative Example 2 is an example in which a static magnetic field is applied only to the middle stage.

【0040】吐出流が鋳型短辺側壁に衝突する衝突流速
は、中段の静磁場強度を変化させたときの流動解析シミ
ュレーションで得られる。短辺衝突流速比は、実施例の
ケース2の条件で得られる衝突流速を1とする相対値で
表した。
The collision flow velocity at which the discharge flow collides with the short side wall of the mold is obtained by a flow analysis simulation when the static magnetic field strength in the middle stage is changed. The short-side collision flow velocity ratio was expressed as a relative value with the collision flow velocity obtained under the conditions of Case 2 of the example being 1.

【0041】ブレークアウト指数は、ケース2の条件の
場合に発生するブレークアウト発生回数を1とする相対
値で表した。
The breakout index is represented by a relative value with the number of breakout occurrences occurring under the case 2 condition being 1.

【0042】メニスカス温度偏差は、鋳型の1/2 厚さ位
置におけるメニスカス直下10mmの温度を幅方向に測定
し、その最高温度 Tmax 、最低温度 Tmin 、平均温度 T
m を用い、 〔(Tmax−Tmin)/Tm〕×100 により算出した値である。
The meniscus temperature deviation is obtained by measuring the temperature 10 mm directly below the meniscus at a half thickness position of the mold in the width direction, and measuring the maximum temperature Tmax, the minimum temperature Tmin, and the average temperature T.
It is a value calculated by [(Tmax-Tmin) / Tm] × 100 using m.

【0043】鋳片内介在物指数は、スラブ表面から45 m
m 深さの位置を、顕微鏡により 20μm以上の介在物個
数を計量し、実施例のケース1の介在物個数を1とする
相対値で表した。
The inclusion index in the slab is 45 m from the slab surface.
The position of the m depth was measured by a microscope to measure the number of inclusions of 20 μm or more, and expressed as a relative value with the number of inclusions in Case 1 of the example being 1.

【0044】鋳片内気泡指数は、スラブ表面から45 mm
深さの位置を、顕微鏡により鋳片内の 50 μm以上の気
泡個数を計量し、実施例のケース1の気泡個数を1とす
る相対値で表した。
The bubble index in the slab is 45 mm from the slab surface.
The depth position was represented by a relative value with the number of bubbles in Case 1 of the example being 1, by measuring the number of bubbles of 50 μm or more in the cast piece with a microscope.

【0045】表面清浄性指数は、鋳片の表面から 10 mm
以内の領域について、顕微鏡により20μm以上の介在物
個数を計量し、実施例のケース1の介在物個数を1とす
る相対値で表した。
The surface cleanliness index is 10 mm from the surface of the slab.
For the area within, the number of inclusions of 20 μm or more was measured with a microscope and expressed as a relative value with the number of inclusions of Case 1 of the example being 1.

【0046】これらの測定結果を表1に示す。Table 1 shows the results of these measurements.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例のケース1、ケース2およびケース
3は、上段、中段および下段に静磁場を印加し、中段の
磁場強度を変化させた。中段の磁場強度を−1000ガウス
(ケース1)、1000ガウス(ケース2)および3000ガウ
ス(ケース3)と変化させると鋳型短辺衝突流速比は、
ケース2(1000ガウス)において最大となり、これを1
とした。そして、短辺衝突流速比の値に比例して、鋳片
のブレークアウト指数が0.75、1.0 および0.65と減少し
た。中段に静磁場を印加すると短辺衝突流速を抑制する
ことができ、中段の磁場を上段、下段の磁場方向と反対
方向に強くした場合、および同方向に強くした場合に、
短辺衝突流を更に低下(0.80および0.70)させることが
できる。また、メニスカス温度偏差は0.30〜0.50であ
り、二次上昇流も抑制されており、メニスカス流も安定
している。更に、いずれも二次下降流も抑制されてお
り、非金属介在物、気泡および表面清浄も良好である。
In case 1, case 2 and case 3 of the embodiment, a static magnetic field was applied to the upper, middle and lower stages to change the magnetic field strength of the middle stage. When the magnetic field strength in the middle stage is changed to −1000 gauss (case 1), 1000 gauss (case 2) and 3000 gauss (case 3), the mold short side collision flow velocity ratio becomes
Maximum in Case 2 (1000 gauss), which is 1
And And, the breakout index of the slab decreased to 0.75, 1.0 and 0.65 in proportion to the value of the short side collision flow velocity ratio. When a static magnetic field is applied to the middle stage, the short-side collision flow velocity can be suppressed, and when the middle stage magnetic field is strengthened in the direction opposite to the upper and lower magnetic field directions, and when strengthened in the same direction,
The short-side impingement flow can be further reduced (0.80 and 0.70). Further, the meniscus temperature deviation is 0.30 to 0.50, the secondary upward flow is also suppressed, and the meniscus flow is stable. Further, in each case, the secondary downflow is also suppressed, and nonmetallic inclusions, bubbles and surface cleaning are also good.

【0049】これに対し、比較例1(ケース4およびケ
ース5)では中段に静磁場印加を行っていないので、吐
出流の流速が抑制されないまま鋳型短辺側壁に衝突し、
鋳型短辺側壁への衝突流、二次上昇流および二次下降流
の流速が大きくなる。この衝突流速が増大(ケース4お
よび5では鋳型短辺側壁への衝突流速比が1.4 および1.
3 と大きく、)するためブレークアウト指数が3.0 およ
び2.5 と増大した。また、二次上昇流の増大は、メニス
カス近傍への熱供給、それによるパウダーの溶解を促進
させる面では有利となるが、発明例と同等の静磁場強度
(2200ガウス)を上段に印加したケース4では、メニス
カス流速の抑制効果と温度偏差は発明例とほぼ同等であ
る。
On the other hand, in Comparative Example 1 (Case 4 and Case 5), since the static magnetic field was not applied to the middle stage, it collided with the short side wall of the mold without suppressing the flow velocity of the discharge flow,
The flow velocity of the impinging flow, the secondary upflow and the secondary downflow on the short side wall of the mold increases. This collision velocity increases (In Cases 4 and 5, the collision velocity ratio to the short side wall of the mold is 1.4 and 1.
As a result, the breakout index increased to 3.0 and 2.5. In addition, the increase of the secondary upflow is advantageous in terms of heat supply to the vicinity of the meniscus and promotion of melting of the powder due to it, but a static magnetic field strength (2200 gauss) equivalent to that of the invention example is applied to the upper stage. In No. 4, the effect of suppressing the meniscus flow velocity and the temperature deviation are almost the same as those of the invention example.

【0050】上段の静磁場強度を1200ガウスと低くした
ケース5では、メニスカス流速はさらに大きくなり、メ
ニスカス温度偏差が0.80と増大する。二次下降流の増大
は、鋳片内部の溶融金属の下部に非金属介在物や気泡を
侵入させ、鋳片内の介在物個数指数が2.5 および3.5 、
並びに気泡個数指数が2.3 および2.8 となり、その分離
効果が悪くなった。ケース5は、下段の静磁場強度を12
00ガウスと低くしたので、二次下降流の流速抑制の効果
が劣り、鋳片内介在物個数指数、気泡個数指数が増加
し、表面清浄性指数も2.6 となり、表面性状も悪くなっ
た。
In case 5 in which the static magnetic field strength in the upper part is lowered to 1200 gauss, the meniscus flow velocity further increases, and the meniscus temperature deviation increases to 0.80. The increase in the secondary downflow causes non-metallic inclusions and bubbles to enter the lower part of the molten metal inside the slab, and the inclusion number index in the slab is 2.5 and 3.5,
In addition, the bubble number indexes became 2.3 and 2.8, and the separation effect deteriorated. In case 5, the lower static magnetic field strength is 12
Since it was as low as 00 gauss, the effect of suppressing the flow velocity of the secondary downflow was inferior, the index of inclusions in the slab and the index of bubble number were increased, the surface cleanliness index was 2.6, and the surface properties were also poor.

【0051】比較例2(ケース6、7および8)は、中
段だけに静磁場を印加し、磁場強度を1000、2200および
3000ガウスの3段階に変化させた。鋳型短辺衝突流速比
が1.2 、1.1 および0.9 と磁場強度に比例して漸減し
た。しかし、上段に静磁場を印加しないので、二次上昇
流の流速抑制がなく、メニスカス温度偏差が1.1 、1.5
および1.8 と大きくなり、メニスカス流速変動が増大し
ていることがわかる。また、下段にも静磁場を印加しな
いので、同様に二次下降流の流速も増大し、介在物個数
指数、気泡個数指数および表面清浄指数も大きくなり、
非金属介在物や気泡の分離効果が悪化した。
In Comparative Example 2 (Cases 6, 7 and 8), the static magnetic field was applied only to the middle stage, and the magnetic field strengths of 1000, 2200 and
It was changed in 3 steps of 3000 gauss. The mold short-side collision flow velocity ratio was 1.2, 1.1, and 0.9, and gradually decreased in proportion to the magnetic field strength. However, since the static magnetic field is not applied to the upper stage, there is no suppression of the flow velocity of the secondary upflow, and the meniscus temperature deviation is 1.1 and 1.5.
And 1.8, which shows that the fluctuation of the meniscus flow velocity is increasing. Further, since the static magnetic field is not applied to the lower stage as well, the flow velocity of the secondary downward flow is also increased, and the inclusion number index, bubble number index and surface cleaning index are also increased.
The separation effect of non-metallic inclusions and bubbles deteriorated.

【0052】以上の結果から、鋼種によって総合的に性
状の優れたものが要求される場合にはケース1の磁場分
布が、内質が要求される場合にはケース2の磁場分布
が、鋳造速度を速くしたい場合にはケース3の磁場分布
が適切である。このように本発明装置を用いれば、目的
とする鋳片の性状に合わせて浸漬ノズルからの吐出流の
流動制御を行うことができる。
From the above results, the magnetic field distribution in case 1 is required when a steel with excellent properties is required depending on the steel type, and the magnetic field distribution in case 2 is required when the internal quality is required. The magnetic field distribution in Case 3 is appropriate when it is desired to increase the speed. As described above, by using the device of the present invention, it is possible to control the flow of the discharge flow from the immersion nozzle in accordance with the properties of the target slab.

【0053】これらの結果から、上段、中段および下段
の静磁場強度を各段ごとに調整、制御することにより、
鋳造速度を高速化してもブレークアウトすることなく、
表面性状と内質が良好な鋳片を製造することができる。
From these results, by adjusting and controlling the static magnetic field strengths of the upper, middle and lower stages for each stage,
Even if the casting speed is increased, there is no breakout,
It is possible to manufacture a slab having excellent surface properties and internal quality.

【0054】(実施例2)図5に示す3つのコの字形鉄
芯の垂直部を連結した電磁石が、鋳型を挟んで配置され
た連続鋳造装置を用い、鋳造試験を行った。
(Example 2) A casting test was conducted using a continuous casting apparatus in which electromagnets having three U-shaped iron cores shown in FIG.

【0055】図7は、3つのコの字形鉄芯の垂直部を連
結した磁石と磁力線分布を示す図である。同図に示すよ
うに、上段および下段にはそれぞれ3000ガウス、中段に
4000ガウスの磁場を与え、鋳片引き抜き速度3m/分で
実施例1と同様な鋳造を行った。その結果、ブレークア
ウトの発生がなく、表面清浄の優れた鋳片を得ることが
できた。
FIG. 7 is a diagram showing a magnet connecting the vertical portions of three U-shaped iron cores and the distribution of magnetic force lines. As shown in the figure, the upper and lower rows are 3000 gauss, and the middle row is
A magnetic field of 4000 gauss was applied, and casting similar to that of Example 1 was performed at a slab drawing speed of 3 m / min. As a result, it was possible to obtain a slab with excellent surface cleanliness without the occurrence of breakout.

【0056】[0056]

【発明の効果】本発明装置を用いれば、連続鋳造用の鋳
型内溶融金属の浸漬ノズルからの流れを鋳造速度に応じ
て適正に制御できるので、鋳片のブレークアウト防止と
非金属介在物や気泡の効果的な分離を両立させることが
できる。従って、鋳造速度の高速化への対応が可能とな
り、しかも表面性状および内質が良好な鋳片を製造する
ことができる。本発明は普通鋼の鋳造のみならず、ステ
ンレス鋼や銅のような非鉄金属の連続鋳造にも適用する
ことができる。
By using the apparatus of the present invention, the flow of the molten metal in the mold for continuous casting from the dipping nozzle can be properly controlled according to the casting speed. It is possible to achieve both effective separation of bubbles. Therefore, it becomes possible to cope with the increase in casting speed, and it is possible to manufacture a slab having good surface properties and internal quality. The present invention can be applied not only to casting of ordinary steel but also to continuous casting of non-ferrous metals such as stainless steel and copper.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電磁石を配置した連続鋳造装置の一例
を示す斜視図である。
FIG. 1 is a perspective view showing an example of a continuous casting apparatus in which an electromagnet of the present invention is arranged.

【図2】図1のX-X で示す断面を鋳型の短辺側から見た
縦断面図である。
FIG. 2 is a vertical cross-sectional view of the cross section indicated by XX in FIG. 1 viewed from the short side of the mold.

【図3】コの字形磁石の磁極を変えた組合せを示す図で
あり、(a) は上段と下段が同極、中段が異極の場合、
(b) は上段、中段および下段を同極とした場合、(c) は
上段と中段が同極、下段が異極の場合、(d) は中段と下
段が同極、上段が異極の場合の磁極配置を示す図であ
る。
FIG. 3 is a view showing a combination in which the magnetic poles of the U-shaped magnet are changed, and (a) shows the case where the upper and lower stages have the same pole and the middle stage has a different pole.
In (b), the upper, middle and lower poles have the same polarity, in (c), the upper and middle poles have the same poles, and in the lower pole, the lower poles have different polarities. It is a figure which shows the magnetic pole arrangement in the case.

【図4】本発明の電磁石における3段の極性を変えたと
きの磁力線分布と磁場強度を示す図であり、 (a)〜(d)
は図3に示す磁極の組合せに対応する磁力線分布と磁場
強度を示す図である。
FIG. 4 is a diagram showing a magnetic field line distribution and a magnetic field strength when the polarities of three steps are changed in the electromagnet of the present invention, (a) to (d)
FIG. 4 is a diagram showing magnetic field line distributions and magnetic field intensities corresponding to the combinations of magnetic poles shown in FIG. 3.

【図5】3つのコの字形磁石の垂直部を連結した本発明
の電磁石を配置した連続鋳造装置の一例を示す鋳型短辺
側の側面図である。
FIG. 5 is a side view on a short side of a mold showing an example of a continuous casting apparatus in which an electromagnet of the present invention in which vertical portions of three U-shaped magnets are connected is arranged.

【図6】本発明装置を用いたときの溶融金属の浸漬ノズ
ルからの吐出流れを模式的に示す鋳型短辺中心縦断面図
である。
FIG. 6 is a vertical cross-sectional view of the center of the short side of the mold, schematically showing the discharge flow of the molten metal from the immersion nozzle when the apparatus of the present invention is used.

【図7】実施例に使用した磁石配置と磁力線分布を示す
図である。
FIG. 7 is a diagram showing a magnet arrangement and a magnetic force line distribution used in Examples.

【図8】従来の磁場を印加しない連続鋳造鋳型内の溶融
金属の流れを模式的に示した鋳型短辺中心断面図であ
る。
FIG. 8 is a cross-sectional view of the center of a short side of a mold, schematically showing the flow of molten metal in a continuous casting mold in which a conventional magnetic field is not applied.

【符号の説明】[Explanation of symbols]

1.鋳型 1A.鋳型長辺側壁 1B.鋳型短辺側壁 2.浸漬ノズル 2A.吐出孔 3.電磁石 3A.コイル 3B.鉄芯 4.E型電磁石 4-1.上部電磁石 4-2.中部電磁石 4-3.下部電磁石 4A.コイル 4B.E型鉄芯 5.可変抵抗器 6.電源開閉器 7.直流電源 8.溶融金属 9.メニスカス 10.凝固シェル 11.鋳片 12.固体パウダー13.溶融パウダー 14.上段磁極面 14A.上段磁極中心線 15.中段磁極面 15A.中段磁極中心線 16.下段磁極面 16A.下段磁極中心線 17.吐出流 17A.吐出抑制流 18.二次上昇流 18A.二次上昇抑制流 19.メニスカス流 20.二次下降流 20A.二次下降抑制流 1. Mold 1A. Mold long side wall 1B. Short side wall of the mold 2. Immersion nozzle 2A. Discharge hole 3. Electromagnet 3A. Coil 3B. Iron core 4. E-type electromagnet 4-1. Upper electromagnet 4-2. Middle electromagnet 4-3. Lower electromagnet 4A. Coil 4B. E-type iron core 5. Variable resistor 6. Power switch 7. DC power supply 8. Molten metal 9. Meniscus 10. Solidification shell 11. Slab 12. Solid powder 13. Molten powder 14. Upper magnetic pole surface 14A. Upper magnetic pole center line 15. Middle pole surface 15A. Middle pole center line 16. Lower magnetic pole surface 16A. Lower magnetic pole center line 17. Discharge flow 17A. Discharge suppression flow 18. Secondary upflow 18A. Secondary upflow suppression 19. Meniscus style 20. Secondary downflow 20A. Secondary downflow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋳型内の溶融金属に静磁場を印加して鋳型
内の溶融金属の浸漬ノズルからの吐出流れを制御する連
続鋳造装置であって、静磁場を印加する鋳型内領域を垂
直方向に下記の上段、中段および下段に区分し、各段の
鋳型長辺の両側壁外面位置に、鋳込み方向から見てコの
字形に両磁極を有する磁石が鋳型を挟んで対向配置され
た磁石が3段に設置されていることを特徴とする連続鋳
造装置。 上段:メニスカスを含み、浸漬ノズルからの吐出流路を
含まない上方部分 中段:浸漬ノズルからの吐出流路を含む中間部分 下段:浸漬ノズルからの吐出流路を含まない下方部分 ただし、吐出流路とは、静磁場を印加しないときの浸漬
ノズルから吐出された溶融金属が鋳型短辺の側壁に衝突
するまでの流路である。
1. A continuous casting apparatus for controlling a discharge flow of a molten metal in a mold from an immersion nozzle by applying a static magnetic field to the molten metal in the mold. Is divided into the following upper, middle, and lower stages, and the magnets with both magnetic poles in a U-shape when viewed from the casting direction are placed opposite to each other on the outer surface of both side walls of the long sides of the mold in each stage. A continuous casting device that is installed in three stages. Upper part: upper part that includes meniscus and does not include discharge flow path from immersion nozzle Middle part: middle part that includes discharge flow path from immersion nozzle Lower part: lower part that does not include discharge flow path from immersion nozzle However, discharge flow path Is the flow path until the molten metal discharged from the immersion nozzle when the static magnetic field is not applied collides with the short side wall of the mold.
【請求項2】鋳型長辺の両側壁外面に配置された上段、
中段および下段の磁石は、その鉄芯が連結された電磁石
である請求項1に記載の連続鋳造装置。
2. An upper stage arranged on the outer surface of both side walls of the long side of the mold,
The continuous casting apparatus according to claim 1, wherein the middle and lower magnets are electromagnets whose iron cores are connected.
JP7339803A 1995-12-27 1995-12-27 Continuous casting machine for molten metal Expired - Fee Related JP3039346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7339803A JP3039346B2 (en) 1995-12-27 1995-12-27 Continuous casting machine for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7339803A JP3039346B2 (en) 1995-12-27 1995-12-27 Continuous casting machine for molten metal

Publications (2)

Publication Number Publication Date
JPH09174216A true JPH09174216A (en) 1997-07-08
JP3039346B2 JP3039346B2 (en) 2000-05-08

Family

ID=18330966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7339803A Expired - Fee Related JP3039346B2 (en) 1995-12-27 1995-12-27 Continuous casting machine for molten metal

Country Status (1)

Country Link
JP (1) JP3039346B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method

Also Published As

Publication number Publication date
JP3039346B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
KR0180985B1 (en) Continuous casting method for steel
JP2002522227A (en) Continuous casting method and apparatus therefor
KR100918323B1 (en) Induction stirring coil
EP0445328B1 (en) Method for continuous casting of steel
AU716170B2 (en) Magnetic brake apparatus for continuous casting mold and continuous casting method using the same
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
JPH0810917A (en) Method for continuously casting molten metal and apparatus thereof
JPH09174216A (en) Apparatus for continuously casting molten metal
KR20090073500A (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
US11027331B2 (en) Molding facility
JP3186649B2 (en) Continuous casting method of molten metal
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP4407260B2 (en) Steel continuous casting method
JP3149821B2 (en) Continuous casting method
JP6036144B2 (en) Continuous casting method
JP3147824B2 (en) Continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP4910357B2 (en) Steel continuous casting method
JP2750320B2 (en) Continuous casting method using static magnetic field
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JPH0596351A (en) Method for continuously casting steel slab by traveling magnetic field and magnetostatic field
JPH07136747A (en) Continuous casting method for bloom and its device
JPH1058098A (en) Device for pouring molten metal for continuous casting
JPH08229651A (en) Apparatus for continuously casting steel and method thereof
JPH06142865A (en) Method for controlling fluidity in mold by dc magnetic field

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090303

LAPS Cancellation because of no payment of annual fees