JPH09167614A - Manufacture of composite electrode - Google Patents

Manufacture of composite electrode

Info

Publication number
JPH09167614A
JPH09167614A JP7326681A JP32668195A JPH09167614A JP H09167614 A JPH09167614 A JP H09167614A JP 7326681 A JP7326681 A JP 7326681A JP 32668195 A JP32668195 A JP 32668195A JP H09167614 A JPH09167614 A JP H09167614A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
fluororesin
solution
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7326681A
Other languages
Japanese (ja)
Inventor
Houyu Chin
芳瑜 陳
Hiroyoshi Yoshihisa
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP7326681A priority Critical patent/JPH09167614A/en
Publication of JPH09167614A publication Critical patent/JPH09167614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obviate a drying process and a recovering device of a solvent of a high polymer by applying complex paste by kneading a binding agent solution and an electrode active material onto a current collecting body, and setting it not more than a temperature at which a binding agent can dissolve in electrolyte. SOLUTION: Mixed powder of a positive electrode active material and a conductive material is heated by a hot plate, and electrolyte in which a fluororesin is dissolved is added/mixed by 30wt.% to/in the mixed powder 70wt.%, and complex paste is formed. After this complex paste is applied onto a heated aluminium foil current collecting body 3, it is cooled in a dry air atmosphere. At this time, it is set not more than a temperature at which a binding agent can dissolve in electrolyte. Then, a fluororesin being a binding agent is deposited, and fills up a void between activating particles, and the particles are firmly bound to each other, and a solid-state positive electrode 1 is formed. Carbon is used as an active material, and processing which is the same as the positive electrode is performed, and the complex paste is heated, and is applied onto a copper foil current collecting body 4, and when it is cooled further in the same way as the positive electrode, a solid-state negative electrode 2 is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池等に用
いる複合正極、複合負極の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a composite positive electrode and a composite negative electrode used in a lithium battery or the like.

【0002】[0002]

【従来の技術】従来の非水二次電池の電極は、正極につ
いてはLiCoO2 等の正極活物質粒子とアセチレンブ
ラック(以下、ABという)等の導電剤粉末及びポリエ
チレンオキシド等の極性高分子に、LiPF6 等の塩を
溶解させた高分子固体電解質又はポリフッ化ビニリデン
やポリアクリロニトリル等の高分子に非水電解液を保持
させたゲル電解質を混合した混合物から形成されてい
た。また、負極についてはリチウム金属、リチウム合金
表面に上記高分子固体電解質又はゲル電解質の層を配置
するか、或いはリチウム吸蔵放出可能な金属や炭素又は
遷移金属のカルコゲン化合物等の粒子と高分子固体電解
質やゲル電解質の混合物から形成されていた。これらは
いずれも活物質又は活物質と導電剤の混合粉末が、高分
子固体電解質やゲル電解質と直に接触しているものであ
る。また、いずれの場合も高分子固体電解質やゲル電解
質を構成するポリマーをアセトニトリルやテトラヒドロ
フラン等の溶媒に溶解させておき、この溶液と活物質粒
子を混合し、集電体上に塗布した後、乾燥して溶媒を除
去することによって固体状電極を形成していた。
2. Description of the Related Art Electrodes of conventional non-aqueous secondary batteries are composed of positive electrode active material particles such as LiCoO 2 , conductive agent powder such as acetylene black (hereinafter referred to as AB) and polar polymers such as polyethylene oxide. , A polymer solid electrolyte in which a salt such as LiPF 6 is dissolved or a mixture of a polymer such as polyvinylidene fluoride or polyacrylonitrile with a gel electrolyte in which a non-aqueous electrolyte is retained. As for the negative electrode, lithium metal, a layer of the above-mentioned polymer solid electrolyte or gel electrolyte is arranged on the surface of the lithium alloy, or particles such as a metal or carbon or transition metal chalcogen compound capable of occluding and releasing lithium and the polymer solid electrolyte. And was formed from a mixture of gel electrolytes. In all of these, the active material or the mixed powder of the active material and the conductive agent is in direct contact with the polymer solid electrolyte or gel electrolyte. In any case, the polymer that constitutes the polymer solid electrolyte or gel electrolyte is dissolved in a solvent such as acetonitrile or tetrahydrofuran, the solution and active material particles are mixed, and the mixture is applied onto a current collector and then dried. Then, the solid electrode was formed by removing the solvent.

【0003】[0003]

【発明が解決しようとする課題】前記従来の構成よりな
る正極及び負極では活物質粒子と高分子固体電解質やゲ
ル電解質との接触が悪く、界面のインピーダンスが高い
という欠点があった。即ち、高分子の溶液粘度が高く、
活物質粒子表面の微細な凹凸のある面が溶液によって十
分に濡れないという欠点があった。また、塗布後の乾燥
工程で、固体電解質又はゲル電解質に体積収縮が生じ、
活物質粒子表面から剥離してしまうという欠点があっ
た。更に、乾燥後の電解液の注液工程で高分子の膨潤が
生じ、集電体からの活物質層が剥離する原因となってい
た。
In the positive electrode and the negative electrode having the above-mentioned conventional structure, there is a drawback that the active material particles are poorly contacted with the polymer solid electrolyte or gel electrolyte and the interface impedance is high. That is, the solution viscosity of the polymer is high,
There is a drawback that the surface of the active material particles having fine irregularities is not sufficiently wetted by the solution. Further, in the drying step after coating, volume contraction occurs in the solid electrolyte or gel electrolyte,
There is a drawback that the active material particles are separated from the surface. Further, swelling of the polymer occurs in the step of injecting the electrolyte solution after drying, which causes the active material layer to peel from the current collector.

【0004】これを解決する方法として、米国特許第52
96318 号にはフッ素樹脂のテトラヒドロフラン溶液に電
解液を混合し、該溶液に活物質粒子を混合したペースト
を集電体上に塗布した後、テトラヒドロフランを乾燥除
去してゲル状と成す電極製法が記載されている。しか
し、この方法では、後の注液工程は省けるものの、精密
な溶剤の蒸発量のコントロールを要し、生産面で技術的
な困難を伴っていた。この様に前記従来の電極の製法で
は高分子の溶剤の乾燥工程が必要であり、乾燥装置及び
蒸発させた溶剤の回収装置が必要であった。
As a method of solving this, US Pat. No. 52
No. 96318 describes an electrode manufacturing method in which an electrolyte solution is mixed with a tetrahydrofuran solution of a fluororesin, a paste in which active material particles are mixed with the solution is applied on a current collector, and then the tetrahydrofuran is dried and removed to form a gel. Has been done. However, with this method, although the subsequent liquid injection step can be omitted, precise control of the evaporation amount of the solvent is required, which is technically difficult in terms of production. As described above, the conventional electrode manufacturing method requires a step of drying a polymer solvent, and a drying device and a device for recovering the evaporated solvent.

【0005】[0005]

【課題を解決するための手段】本発明は、ある種のフッ
素樹脂が電解液に対して常温では溶解しないが、その溶
解度が温度の上昇と共に増大すること、及び溶液を常温
に戻した時に結着剤としてフッ素樹脂が析出して強固な
固体となることに着目して、完成されたものである。特
にポリフッ化ビニリデンと6フッ化プロピレンは通常電
池が使用される温度である60℃以下では溶解せず、か
つ結着力に優れ結着剤として好適な材料である。即ち、
結着剤を60℃を超える温度で電解液に溶解させ、同温
度で該結着剤溶液に活物質粒子を混合して複合ペースト
を形成し、該複合ペーストを集電体上に塗布した後、冷
却して結着剤を析出させることにより、固体状の複合層
を形成し、電極を作製する。このように作製した電極は
結着剤であるフッ素樹脂の再溶解温度が当初の溶解温度
より高くなるため、高温特性に優れる。また、高温で混
練し、高温で集電体上に塗布する為、結着剤の活物質粒
子及び集電体に対する濡れが良い。しかも析出した結着
剤が機械的に強固であり、集電体との結着、活物質粒子
との結着に優れた電極ができる。従って、これを用いた
非水二次電池は容量、サイクル特性等の電気的特性に優
れている。しかも、乾燥工程が不要で、電池の製造工程
を簡単化できるものである。
According to the present invention, a certain kind of fluororesin is not dissolved in an electrolytic solution at room temperature, but its solubility increases with an increase in temperature, and when the solution is returned to room temperature. It was completed by paying attention to the fact that fluororesin as a binder deposits and becomes a solid solid. In particular, polyvinylidene fluoride and propylene hexafluoride are materials which are not dissolved at 60 ° C. or lower, which is a temperature at which batteries are usually used, and which are excellent in binding force and are suitable as a binder. That is,
After the binder is dissolved in the electrolytic solution at a temperature higher than 60 ° C., active material particles are mixed with the binder solution at the same temperature to form a composite paste, and the composite paste is applied onto a current collector. By cooling and depositing the binder, a solid composite layer is formed and an electrode is produced. The electrode thus manufactured has excellent high temperature characteristics because the remelting temperature of the fluororesin as the binder is higher than the initial melting temperature. In addition, since the mixture is kneaded at a high temperature and applied on the current collector at a high temperature, the binding of the binder to the active material particles and the current collector is good. Moreover, the deposited binder is mechanically strong, and an electrode excellent in binding with the current collector and binding with the active material particles can be formed. Therefore, the non-aqueous secondary battery using this is excellent in electrical characteristics such as capacity and cycle characteristics. Moreover, the drying process is not required, and the battery manufacturing process can be simplified.

【0006】[0006]

【発明の実施の形態】以下、本発明の詳細について実施
例により説明するが、本発明はこれに限定されるもので
はない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0007】(本発明1)本発明では正極活物質にLi
CoO2 粉末を用いる。即ち、LiCoO2 粉末に2〜
10wt%のABを導電剤として添加し、約1時間、ボ
ールミルで混合する。混合粉は温度110℃で8時間乾
燥する。
(Invention 1) In the present invention, Li is used as the positive electrode active material.
CoO 2 powder is used. That is, 2 to 2 in LiCoO 2 powder
10 wt% AB is added as a conductive agent and mixed in a ball mill for about 1 hour. The mixed powder is dried at a temperature of 110 ° C. for 8 hours.

【0008】結着剤としては、フッ素樹脂の一つである
ポリフッ化ビニリデンと6フッ化プロピレンとの共重合
体を用いた。この共重合体を、エチレンカーボネート
(以下、ECという)、ジエチレンカーボネート(以
下、DECという)、ジメチレンカーボネート(以下、
DMCという)の混合溶液に1モルのLiPF6 を溶解
してなる電解液に、1:9の重量比で、温度100℃で
溶解させる。
As the binder, a copolymer of polyvinylidene fluoride, which is one of fluororesins, and propylene hexafluoride was used. This copolymer is used as ethylene carbonate (hereinafter, referred to as EC), diethylene carbonate (hereinafter, referred to as DEC), dimethylene carbonate (hereinafter, referred to as EC).
A mixed solution of DMC) and 1 mol of LiPF 6 are dissolved in an electrolytic solution at a weight ratio of 1: 9 and dissolved at a temperature of 100 ° C.

【0009】前記の正極活物質及び導電剤の混合粉を1
00℃のホットプレートで加熱して、該混合粉70wt
%に前記のフッ素樹脂を溶解した電解液を30wt%添
加して混合し、複合ペーストを形成する。形成した複合
ペーストを加熱されたアルミニウム箔上に塗布した後、
ドライエアー雰囲気中で冷却する。冷却により、電解液
を含有した状態で結着剤である前記フッ素樹脂が析出す
る。これにより、析出したフッ素樹脂が活物質粒子の空
隙を埋めて、粒子同志を強固に結着して、固体状正極が
形成される。
The mixed powder of the positive electrode active material and the conductive agent described above
Heated on a hot plate at 00 ° C to give 70 wt% of the mixed powder.
% Of the electrolyte solution in which the above-mentioned fluororesin is dissolved and mixed to form a composite paste. After applying the formed composite paste on the heated aluminum foil,
Cool in a dry air atmosphere. By cooling, the fluororesin as a binder is deposited while containing the electrolytic solution. As a result, the precipitated fluororesin fills the voids of the active material particles and firmly bonds the particles to each other to form a solid positive electrode.

【0010】負極活物質としては黒鉛質カーボンを用い
る。即ち、乾燥したカーボン粉を100℃のホットプレ
ートで加熱して、該カーボン粉70wt%に前記のフッ
素樹脂を溶解した電解液を30wt%添加して混合し、
複合ペーストを形成する。形成した複合ペーストを加熱
された銅箔上に塗布した後、ドライエアー雰囲気中で冷
却する。冷却により、電解液を含有した状態で結着剤で
ある前記フッ素樹脂が析出する。これにより、析出した
フッ素樹脂が活物質粒子の空隙を埋めて、粒子同志を強
固に結着して、固体状負極が形成される。
Graphite carbon is used as the negative electrode active material. That is, the dried carbon powder is heated on a hot plate at 100 ° C., and 30 wt% of the electrolytic solution in which the fluororesin is dissolved is added to 70 wt% of the carbon powder and mixed,
Form a composite paste. The formed composite paste is applied on a heated copper foil and then cooled in a dry air atmosphere. By cooling, the fluororesin as a binder is deposited while containing the electrolytic solution. As a result, the deposited fluororesin fills the voids of the active material particles and firmly binds the particles to each other to form a solid negative electrode.

【0011】前記正極又は負極の少なくとも一方の表面
に、EC、DEC、DMCの混合溶液に1モルのLiP
6 を溶解してなる電解液と2官能又は3官能エチレン
オキシドモノマーとを3:1の重量比で混合した溶液を
塗布した後、電子線(以下、EBという)を照射して硬
化させる。このようにして作製した正極、負極を積層し
て、30×30mm、厚み0.3mmのフィルム電池を
組み立てた。その電池の概略断面図を図1に示す。図1
において、1は正極、2は負極、3はアルミニウム集電
体、4は銅集電体、5は高分子固体電解質セパレータ、
6はパッケージである。
At least one surface of the positive electrode or the negative electrode is coated with 1 mol of LiP in a mixed solution of EC, DEC and DMC.
A solution prepared by mixing an electrolytic solution containing F 6 and a bifunctional or trifunctional ethylene oxide monomer in a weight ratio of 3: 1 is applied and then irradiated with an electron beam (hereinafter referred to as EB) to be cured. The positive electrode and the negative electrode produced in this way were stacked to assemble a film battery having a size of 30 × 30 mm and a thickness of 0.3 mm. A schematic sectional view of the battery is shown in FIG. FIG.
1, 1 is a positive electrode, 2 is a negative electrode, 3 is an aluminum current collector, 4 is a copper current collector, 5 is a polymer solid electrolyte separator,
6 is a package.

【0012】(本発明2)前記本発明1と同じ手順で正
極、負極を作製した。セパレータには微孔性ポリエチレ
ンフィルムを用いた。正極、セパレータ、負極を積層し
た後、電槽内に収納し、セパレータの吸収量に見合う量
の電解液、即ち1MのLiPF6 をEC及びDEC混合
溶媒に溶解したものを注液した。このようにして作製し
た電池に於いては、電極の膨潤、集電体からの複合層の
剥離は認められなかった。
(Invention 2) A positive electrode and a negative electrode were produced by the same procedure as in the above-mentioned Invention 1. A microporous polyethylene film was used as the separator. After stacking the positive electrode, the separator, and the negative electrode, the positive electrode, the separator, and the negative electrode were housed in a battery case, and an electrolyte solution in an amount corresponding to the absorption amount of the separator, that is, 1M LiPF 6 dissolved in an EC and DEC mixed solvent was injected. In the battery thus produced, neither swelling of the electrode nor separation of the composite layer from the current collector was observed.

【0013】(比較例)本比較例は本発明1と同一のフ
ッ素樹脂を1:9の重量比でテトラヒドロフランに溶解
させる。該溶液とEC、DEC、DMCの混合溶液に1
モルのLiPF6 を溶解してなる電解液とを1:1の重
量比で混合した溶液と本発明1と同一正極活物質混合粉
とを7:3の重量比で混合し、複合ペーストを形成す
る。形成した複合ペーストをアルミニウム箔上に塗布し
て、加熱してテトラヒドロフランを蒸発によって除去す
る。加熱により形成されたフッ素樹脂が活物質粒子の空
隙を埋めて固体状正極を形成する。
(Comparative Example) In this comparative example, the same fluororesin as that used in Invention 1 is dissolved in tetrahydrofuran in a weight ratio of 1: 9. 1 to a mixed solution of the solution and EC, DEC, DMC
A solution prepared by mixing an electrolyte solution in which 1 mol of LiPF 6 is dissolved at a weight ratio of 1: 1 and the same positive electrode active material mixed powder of the present invention 1 are mixed at a weight ratio of 7: 3 to form a composite paste. To do. The formed composite paste is applied on an aluminum foil and heated to remove tetrahydrofuran by evaporation. The fluororesin formed by heating fills the voids of the active material particles to form a solid positive electrode.

【0014】負極活物質粒子は黒鉛カーボンを用いる。
即ち、前記と同じ混合溶液とカーボン粉とを7:3の重
量比で混合し、複合ペーストを形成する。形成した複合
ペーストを銅箔上に塗布した後、加熱してテトラヒドロ
フランを蒸発によって除去する。加熱により形成された
フッ素樹脂が活物質粒子の空隙を埋めて固体状負極を形
成する。
Graphite carbon is used as the negative electrode active material particles.
That is, the same mixed solution as described above and carbon powder are mixed in a weight ratio of 7: 3 to form a composite paste. After coating the formed composite paste on a copper foil, it is heated to remove tetrahydrofuran by evaporation. The fluororesin formed by heating fills the voids of the active material particles to form a solid negative electrode.

【0015】本発明1と同様に正極又は負極の表面に高
分子固体電解質セパレータを形成した後、これらを積層
してフィルム電池を組み立てた。これらの本発明1、本
発明2及び比較例の電池を用いてサイクル試験を行っ
た。その結果を図2に示す。図2から明らかな通り、本
発明1、2の電池では、比較例の電池に比べて電池容量
が向上し、かつサイクル特性が安定していることが分か
る。
A polymer solid electrolyte separator was formed on the surface of the positive electrode or the negative electrode in the same manner as in the present invention 1, and then these were laminated to assemble a film battery. A cycle test was performed using the batteries of the present invention 1, the present invention 2, and the comparative example. The result is shown in FIG. As is clear from FIG. 2, the batteries of the present inventions 1 and 2 have improved battery capacity and stable cycle characteristics as compared with the batteries of the comparative examples.

【0016】本発明1、本発明2及び比較例の電池の6
0℃における放電容量を図3に示す。図3により、本発
明1、2の電池は比較例の電池より、高温特性が向上し
たことが分る。
Six of the batteries of Invention 1, Invention 2 and Comparative Example
The discharge capacity at 0 ° C. is shown in FIG. It can be seen from FIG. 3 that the batteries of Inventions 1 and 2 have improved high temperature characteristics as compared with the batteries of Comparative Example.

【0017】[0017]

【発明の効果】本発明によれば、高温で複合ペーストを
作製し、その後冷却することによって、析出されたフッ
素樹脂層が活物質の空隙を埋めて、活物質粒子同士の密
着性が向上し、安定なサイクル特性が得られる。また、
析出されたフッ素樹脂は、100℃以上の温度にならな
いと再溶解をしないため、電池の高温特性に優れる。
According to the present invention, a composite paste is prepared at a high temperature and then cooled to fill the voids of the active material with the deposited fluororesin layer, thereby improving the adhesion between the active material particles. , Stable cycle characteristics can be obtained. Also,
The deposited fluororesin does not re-dissolve unless the temperature reaches 100 ° C. or higher, so that the high temperature characteristics of the battery are excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の概略断面図である。FIG. 1 is a schematic sectional view of a battery of the present invention.

【図2】本発明1、2及び比較例の電池の容量特性及び
サイクル寿命特性を示す図である。
FIG. 2 is a diagram showing capacity characteristics and cycle life characteristics of the batteries of Examples 1 and 2 and Comparative Example.

【図3】本発明1、2及び比較例の電池の60℃での高
温特性を示す図である。
FIG. 3 is a diagram showing high temperature characteristics at 60 ° C. of the batteries of Examples 1 and 2 and Comparative Example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 アルミニウム集電体 4 銅集電体 5 高分子固体電解質セパレータ 6 パッケージ 1 Positive Electrode 2 Negative Electrode 3 Aluminum Current Collector 4 Copper Current Collector 5 Polymer Solid Electrolyte Separator 6 Package

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極活物質と結着剤から成る複合層を集
電体上に形成する複合電極の製造方法において、結着剤
を電解液に溶解し得る温度で加熱溶解して結着剤溶液を
準備し、該結着剤溶液と電極活物質とを混練して複合ペ
ーストを形成し、該複合ペーストを集電体上へ塗布した
後、結着剤が電解液に溶解し得る温度以下にすることを
特徴とする複合電極の製造方法。
1. A method for producing a composite electrode, wherein a composite layer comprising an electrode active material and a binder is formed on a current collector, and the binder is heated and melted at a temperature at which it can be dissolved in an electrolytic solution. A solution is prepared, the binder solution and the electrode active material are kneaded to form a composite paste, and the composite paste is applied onto a current collector, and then the temperature at which the binder is soluble in the electrolytic solution or lower. A method of manufacturing a composite electrode, comprising:
【請求項2】 前記結着剤が、フッ素樹脂である請求項
1記載の複合電極の製造方法。
2. The method for producing a composite electrode according to claim 1, wherein the binder is a fluororesin.
【請求項3】 前記フッ素樹脂が、ポリフッ化ビニリデ
ン、6フッ化プロピレン、又はポリフッ化ビニリデンと
6フッ化プロピレンの共重合体である請求項2記載の複
合電極の製造方法。
3. The method for producing a composite electrode according to claim 2, wherein the fluororesin is polyvinylidene fluoride, propylene hexafluoride, or a copolymer of polyvinylidene fluoride and propylene hexafluoride.
JP7326681A 1995-12-15 1995-12-15 Manufacture of composite electrode Pending JPH09167614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7326681A JPH09167614A (en) 1995-12-15 1995-12-15 Manufacture of composite electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7326681A JPH09167614A (en) 1995-12-15 1995-12-15 Manufacture of composite electrode

Publications (1)

Publication Number Publication Date
JPH09167614A true JPH09167614A (en) 1997-06-24

Family

ID=18190473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7326681A Pending JPH09167614A (en) 1995-12-15 1995-12-15 Manufacture of composite electrode

Country Status (1)

Country Link
JP (1) JPH09167614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173071A (en) * 2014-03-12 2015-10-01 三洋化成工業株式会社 Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery
JP2017004981A (en) * 2011-01-07 2017-01-05 株式会社半導体エネルギー研究所 Power storage device
US10153482B2 (en) 2010-10-28 2018-12-11 Electrovaya Inc. Method for manufacturing of slurry for production of battery film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153482B2 (en) 2010-10-28 2018-12-11 Electrovaya Inc. Method for manufacturing of slurry for production of battery film
JP2017004981A (en) * 2011-01-07 2017-01-05 株式会社半導体エネルギー研究所 Power storage device
JP2015173071A (en) * 2014-03-12 2015-10-01 三洋化成工業株式会社 Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery

Similar Documents

Publication Publication Date Title
JP4777593B2 (en) Method for producing lithium ion secondary battery
JP4575487B2 (en) Lithium ion secondary battery and manufacturing method thereof
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
KR100477885B1 (en) Method of making lithium ion polymer battery and porous polymeric electrolte
JP2002530838A (en) Electrolyte with improved low temperature performance
JP2004164897A (en) Bipolar battery
JP2004164896A (en) Electrode for all-solid polymer battery and its manufacturing method
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP2003031261A (en) Bipolar battery
JP4142921B2 (en) Lithium ion secondary battery
JP5471598B2 (en) Non-aqueous electrolyte battery
TW200423449A (en) Secondary cell with polymer coated anode
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
JPH10112321A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2000294291A (en) Polymer electrolyte battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPH09167614A (en) Manufacture of composite electrode
JP4399871B2 (en) Manufacturing method of non-aqueous secondary battery
KR20010037099A (en) Lithium secondary battery and fabrication method thereof
JP2010056093A (en) Lithium ion secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery
JP2004193041A (en) Carbon electrode for polymer battery and the polymer battery using the same
JPH09180705A (en) Lithium battery
JP3379567B2 (en) Lithium secondary battery
JP2003157903A (en) Manufacturing method of nonaqueous secondary cell