JPH09166653A - Coil for magnetic-flux detection and magnetic-flux detection probe - Google Patents

Coil for magnetic-flux detection and magnetic-flux detection probe

Info

Publication number
JPH09166653A
JPH09166653A JP32880895A JP32880895A JPH09166653A JP H09166653 A JPH09166653 A JP H09166653A JP 32880895 A JP32880895 A JP 32880895A JP 32880895 A JP32880895 A JP 32880895A JP H09166653 A JPH09166653 A JP H09166653A
Authority
JP
Japan
Prior art keywords
magnetic flux
loop
terminals
differential circuit
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32880895A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kiyozawa
良行 清澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP32880895A priority Critical patent/JPH09166653A/en
Publication of JPH09166653A publication Critical patent/JPH09166653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a magnetic flux with high spatial resolution by arranging one pair of loops, in which very small loop-shaped parts and two terminal parts each are brought close, on the face of an insulating wafer so as to be symmetric with respect to a line and forming them as conductive thin-film patterns. SOLUTION: One pair of loops by a first loop in which a very small loop-shaped part 15 in a diameter of about 0.1 to several mm or lower and terminal parts 15A, 15B are brought close and by a second loop in which a very small loop-shaped part 16 in the same manner as the loop-shaped part 15 and terminal parts 16A, 16B are brought close are arranged in such a way that they are brought close to each other in a congruence shape and that they are arranged so as to be symmetric with respect to a line, and they are formed on the face of an insulating wafer as conductive thin-film patterns. Then, the terminal parts 15A, 16A and a differential circuit 18 are impedance-matched by resistances 20, 20', the difference between respective interminal voltages across the terminal parts 15A, 15B and across the terminal parts 16A, 16B is set by the differential circuit 18, and only an electromagnetic inductive component by a magnetic flux is obtained. It is amplified by an amplifier circuit 19, a frequency is decomposed, and change in a magnetic flux density can be detected for every frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は磁束検出用コイル
および磁束検出プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic flux detecting coil and a magnetic flux detecting probe.

【0002】[0002]

【従来の技術】電磁誘導を利用して磁束の検出を行なう
ことはEMI(electro-magnetic interference 電磁的
障害もしくは電磁的干渉)対策を初めとして広く行なわ
れている。磁束を検出するための「磁束検出用コイル」
としては従来から、例えば実開平6−40885号公報
や特開昭62−106379号公報開示のものが知られ
ている。
2. Description of the Related Art Detecting a magnetic flux using electromagnetic induction is widely carried out including measures against EMI (electro-magnetic interference). "Magnetic flux detection coil" for detecting magnetic flux
For example, those disclosed in Japanese Utility Model Laid-Open No. 6-40885 and Japanese Patent Laid-Open No. 62-106379 are known.

【0003】しかし、実開平6−40885公報開示の
磁束検出用コイルは磁束とともに電界の影響をも検出し
てしまい、電界の影響分を補正するのが容易でない。特
開昭62−106379号公報開示の磁束検出用コイル
は、電界の影響を除去し、磁束のみを検出できるが「磁
束検出用コイルのループを小さくする」ことが困難であ
るため、磁束検出の空間分解能を高めることが困難であ
り、例えばLSIが表面実装されているようなサーキッ
トボードからの漏洩磁束の検出等の目的には適していな
いし、磁束をその向きまで含めて3次元的に検出するこ
とも困難である。
However, the magnetic flux detecting coil disclosed in Japanese Utility Model Laid-Open No. 6-40885 detects the influence of the electric field as well as the magnetic flux, and it is not easy to correct the influence of the electric field. The magnetic flux detecting coil disclosed in Japanese Patent Laid-Open No. 62-106379 can remove the influence of the electric field and detect only the magnetic flux, but it is difficult to "make the loop of the magnetic flux detecting coil small". It is difficult to increase the spatial resolution, and it is not suitable for the purpose of detecting leakage magnetic flux from a circuit board such as a surface-mounted LSI, and magnetic flux is detected three-dimensionally including its direction. Is also difficult.

【0004】[0004]

【発明が解決しようとする課題】この発明は上述した事
情に鑑み、磁束検出用コイルにおいて電界の影響を除去
し、高い空間分解能による磁束検出を可能ならしめるこ
とを課題とする(請求項1,2)。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, it is an object of the present invention to eliminate the influence of an electric field in a magnetic flux detecting coil and to enable magnetic flux detection with high spatial resolution (claims 1 and 2). 2).

【0005】この発明の別の課題は、磁束検出用コイル
において磁束の3次元的な検出を、電界の影響を除去し
高い空間分解能で可能ならしめることである(請求項
3)。この発明の他の課題は、磁束検出プローブにおい
て、電界の影響を除去し、高い空間分解能による磁束検
出を可能ならしめることである(請求項4〜7)。
Another object of the present invention is to enable three-dimensional detection of magnetic flux in a magnetic flux detecting coil with a high spatial resolution by eliminating the influence of an electric field (claim 3). Another object of the present invention is to eliminate the influence of an electric field in a magnetic flux detection probe and enable magnetic flux detection with high spatial resolution (claims 4 to 7).

【0006】[0006]

【課題を解決するための手段】請求項1記載の磁束検出
用コイルは「1対のループ」によるパターンを、絶縁性
ウエハの面上に「導電性の薄膜パターン」として形成し
てなる。1対のループの個々は「微小なループ状部分と
これに連なる2つの端子部」を有し、2つの端子部は互
いに近接している。
A magnetic flux detecting coil according to a first aspect of the present invention has a pattern of "a pair of loops" formed on a surface of an insulating wafer as a "conductive thin film pattern". Each of the pair of loops has “a minute loop-shaped portion and two terminal portions connected to this”, and the two terminal portions are close to each other.

【0007】これら1対の微小なループは「互いに近接
して線対称的」に配置される。
The pair of minute loops are arranged "axisymmetrically in close proximity to each other".

【0008】請求項2記載の磁束検出用コイルは「ルー
プパターン」を、絶縁性ウエハの面状に「導電性の薄膜
パターン」として形成してなる。「ループパターン」
は、共通端子部に連なる直線状部分の両側に、この直線
状部分を共通部分として、且つ直線部分に対して線対称
的に「微小なループ状部分およびこれに連なる端子部
と」を有する。
In the magnetic flux detecting coil according to the second aspect, the "loop pattern" is formed as a "conductive thin film pattern" on the surface of the insulating wafer. "Loop pattern"
Has "a minute loop-shaped portion and a terminal portion connected to this" on both sides of the linear portion connected to the common terminal portion and having the linear portion as a common portion and line-symmetrically with respect to the linear portion.

【0009】微小なループ状部分に連なる各端子部は上
記共通端子部を相手方として「2対の端子対」を構成す
る。
Each terminal portion connected to the minute loop-shaped portion constitutes "two pairs of terminals" with the common terminal portion as a counterpart.

【0010】上記請求項1,2記載の磁束検出用コイル
において「ループ状部分が微小である」とは、ループ状
部分における「径」が0.1mm程度〜数mm以下であ
ることを意味する。このようにループ状部分が小さいた
め、極めて高い空間分解能で磁束の検出が可能である。
コイルは「薄膜パターン」として形成されるため、極め
て微小であるにも拘らず、成膜技術とエッチング等のパ
ターニング技術とにより容易且つ確実に形成できる。
In the magnetic flux detecting coils according to claims 1 and 2, "the loop portion is minute" means that the "diameter" in the loop portion is about 0.1 mm to several mm or less. . Since the loop-shaped portion is small as described above, the magnetic flux can be detected with an extremely high spatial resolution.
Since the coil is formed as a "thin film pattern", it can be formed easily and surely by the film forming technique and the patterning technique such as etching although it is extremely minute.

【0011】請求項1,2記載の磁束検出用コイルは、
対をなすループ状部分が「互いに近接して線対称的」に
形成されているので、2対の端子対のそれぞれに発生す
る電圧の差を取ると、電界の影響により各端子対に発生
する電圧を互いに相殺出来、電界の影響を除去して磁束
による誘導電圧のみを有効に検出できる。
A magnetic flux detecting coil according to claims 1 and 2 is
Since the pair of loop-shaped portions are formed “close to each other and line-symmetrical”, when the difference between the voltages generated in each of the two pairs of terminals is taken, it is generated in each pair of terminals due to the influence of the electric field. The voltages can be canceled out from each other, and the influence of the electric field can be removed to effectively detect only the induced voltage due to the magnetic flux.

【0012】請求項3記載の磁束検出用コイルは、請求
項1または2記載の磁束検出用コイルを3つ「導電性の
薄膜パターン形成面が互いに直交するように組み合わ
せ」て一体化してなる。このようにすると互いに直交す
る3つのコイルにより、磁束の3つの直交成分を検出で
きるので、これらを合成することにより磁束を3次元的
に検出できる。
A magnetic flux detecting coil according to a third aspect is formed by integrating three magnetic flux detecting coils according to the first or second aspect so that "the conductive thin film pattern forming surfaces are orthogonal to each other". In this way, the three orthogonal components of the magnetic flux can be detected by the three coils that are orthogonal to each other, so that the magnetic flux can be three-dimensionally detected by combining them.

【0013】請求項4記載の磁束検出プローブは、請求
項1記載の磁束検出用コイルと、差動回路と、増幅回路
とを有する。
A magnetic flux detecting probe according to a fourth aspect includes the magnetic flux detecting coil according to the first aspect, a differential circuit, and an amplifying circuit.

【0014】「差動回路」は、請求項1記載の磁束検出
用コイルにおける2対の端子対の端子間電圧を入力さ
れ、これら端子間電圧の差を出力する回路である。「増
幅回路」は、差動回路の出力を増幅する回路である。
The "differential circuit" is a circuit which receives the voltage between the terminals of the two pairs of terminals in the magnetic flux detecting coil according to claim 1 and outputs the difference between the voltage between these terminals. The "amplifier circuit" is a circuit that amplifies the output of the differential circuit.

【0015】請求項5記載の磁束検出プローブは、請求
項2記載の磁束検出用コイルと、差動回路と、増幅回路
とを有する。
A magnetic flux detecting probe according to a fifth aspect includes the magnetic flux detecting coil according to the second aspect, a differential circuit, and an amplifying circuit.

【0016】「差動回路」は、請求項2記載の磁束検出
用コイルにおける2対の端子対の端子間電圧を入力さ
れ、これら端子間電圧の差を出力する回路である。「増
幅回路」は、差動回路の出力を増幅する回路である。
The "differential circuit" is a circuit which receives a voltage between terminals of two pairs of terminals in the magnetic flux detecting coil according to claim 2 and outputs a difference between the voltage between the terminals. The "amplifier circuit" is a circuit that amplifies the output of the differential circuit.

【0017】請求項6記載の磁束検出プローブは、請求
項4または5記載の磁束検出プローブにおいて「1対の
インピーダンス抵抗器」を有することを特徴とする。
The magnetic flux detecting probe according to claim 6 is characterized in that in the magnetic flux detecting probe according to claim 4 or 5, it has "a pair of impedance resistors".

【0018】1対の「インピーダンス抵抗器」は、2対
の端子対の各端子間電圧を差動回路に対してインピーダ
ンス整合させるための抵抗器である。この請求項6記載
の磁束検出プローブは「高い周波数の磁束」を検出でき
る。
The pair of "impedance resistors" are resistors for impedance matching the voltage between the terminals of the two pairs of terminals to the differential circuit. The magnetic flux detection probe according to claim 6 can detect "high frequency magnetic flux".

【0019】請求項7記載の磁束検出用プローブは、磁
束を3次元的に検出するためのプローブであり、請求項
4または5または6記載の磁束検出プローブを3つ有
し、3つの磁束検出用プローブを、各磁束検出プローブ
の磁束検出用コイルの導電性の薄膜パターン形成面が互
いに直交するように組み合わせてなる。
A magnetic flux detecting probe according to a seventh aspect is a probe for three-dimensionally detecting a magnetic flux, which has three magnetic flux detecting probes according to the fourth, fifth or sixth aspects, and three magnetic flux detecting probes. Probes are combined so that the conductive thin film pattern forming surfaces of the magnetic flux detecting coils of each magnetic flux detecting probe are orthogonal to each other.

【0020】請求項4〜7の任意の1に記載の磁束検出
用プローブは、その増幅回路の出力を「スペクトラム・
アナライザ」に入力することにより、周波数ごとの磁束
の相対強度を検出できる。
In the magnetic flux detecting probe according to any one of claims 4 to 7, the output of the amplifier circuit is "spectrum
By inputting into the analyzer, the relative intensity of the magnetic flux for each frequency can be detected.

【0021】[0021]

【発明の実施の形態】以下、発明の実施の形態を説明す
る。
Embodiments of the present invention will be described below.

【0022】図1(a)は、請求項1記載の磁束検出用
コイルの実施の1形態を示す平面図である。
FIG. 1A is a plan view showing an embodiment of the magnetic flux detecting coil according to the present invention.

【0023】「微小なループ状部分15と、これに連な
る2つの端子部15A,15Bが近接した第1のルー
プ」と「微小なループ状部分16と、これに連なる2つ
の端子部16A,16Bが近接した第2のループ」とに
よる1対のループは、互いに合同的な形状を有して互い
に近接し、且つ図中に鎖線で示す「対称線」に関して線
対称的に配置され、絶縁性ウエハ17の面上に「導電性
の薄膜パターン」として形成されている。
"A minute loop-shaped portion 15 and a first loop in which two terminal portions 15A and 15B connected to the minute loop are close to each other" and "A minute loop-shaped portion 16 and two terminal portions 16A and 16B connected to the minute loop-shaped portion 16. A pair of loops that are adjacent to each other and have a congruent shape, and are arranged in line symmetry with respect to a “symmetry line” shown by a chain line in the figure, and have insulating properties. It is formed on the surface of the wafer 17 as a “conductive thin film pattern”.

【0024】1対のループの構成するパターンは「各ル
ープが互いに近接し、互いに線対称的」であれば良く、
種々のパターン形態が可能である。パターンの形態の3
例を図1(b)〜(d)に示す。
The pattern formed by the pair of loops may be "each loop is close to each other and is line-symmetric with each other".
Various pattern configurations are possible. Pattern form 3
An example is shown in FIGS.

【0025】図1(b)に示すパターンは「半円もしく
は半楕円形状」をなす微小なループ状部分150とこれ
に連なる2つの端子部150A,150Bが近接した第
1のループと、半円もしくは半楕円形状をなす微小なル
ープ状部分160とこれに連なる2つの端子部160
A,160Bが近接した第2のループとによる1対のル
ープを互いに近接させ且つ線対称的に配置したパターン
である。
The pattern shown in FIG. 1 (b) is a semi-circle or semi-elliptical micro-loop portion 150, a first loop in which two terminal portions 150A and 150B connected to the micro loop portion 150 are in close proximity, and a semi-circle. Alternatively, a semi-elliptical minute loop-shaped portion 160 and two terminal portions 160 connected to the minute loop-shaped portion 160.
A and 160B are a pattern in which a pair of loops including a second loop adjacent to each other and A and 160B are adjacent to each other and are arranged line-symmetrically.

【0026】図1(c)に示すパターンは「三角形状」
をなす微小なループ状部分151とこれに連なる2つの
端子部151A,151Bが近接した第1のループと、
三角形状をなす微小なループ状部分161とこれに連な
る2つの端子部161A,161Bが近接した第2のル
ープとによる1対のループを互いに近接させ且つ線対称
的に配置したパターンである。
The pattern shown in FIG. 1C is "triangular".
A small loop-shaped portion 151 and a first loop in which two terminal portions 151A and 151B connected to the minute loop-shaped portion 151 are close to each other,
This is a pattern in which a pair of loops including a minute loop-shaped portion 161 having a triangular shape and a second loop in which two terminal portions 161A and 161B connected to the triangular loop portion are adjacent to each other and arranged line-symmetrically.

【0027】図1(d)に示すパターンは「円形もしく
は楕円形状」をなす微小なループ状部分152とこれに
連なる2つの端子部152A,152Bが近接した第1
のループと、円形もしくは楕円形状をなす微小なループ
状部分162とこれに連なる2つの端子部162A,1
62Bが近接した第2のループとによる1対のループを
互いに近接させ且つ線対称的に配置したパターンであ
る。
The pattern shown in FIG. 1D is a first pattern in which a minute loop-shaped portion 152 having a "circular or elliptical shape" and two terminal portions 152A and 152B connected to the minute loop-shaped portion 152 are close to each other.
Loop, a minute loop-shaped portion 162 having a circular or elliptical shape, and two terminal portions 162A, 1 connected to this
62B is a pattern in which a pair of loops including a second loop and a second loop 62B are arranged close to each other and are arranged line-symmetrically.

【0028】図2は、請求項4,6記載の磁束検出用プ
ローブの実施の1形態を示す図である。
FIG. 2 is a diagram showing one embodiment of the magnetic flux detecting probe according to the present invention.

【0029】図1(a)に示す磁束検出用コイルを構成
する「導電性の薄膜パターン」の端子部15A,15
B、16A,16Bを差動回路18に接続する。この実
施の形態においては検出されるべき磁束は高周波成分を
含み、端子部15A,16Aと差動回路18との間に、
それぞれインピーダンス抵抗器20,20’が介在され
る。差動回路18の出力は増幅回路19に入力させる。
また増幅回路19の出力は「スペクトラム・アナライ
ザ」に入力される。差動回路18と増幅回路19との間
のインピーダンスを整合させることは勿論である。
Terminal portions 15A, 15 of "conductive thin film pattern" constituting the magnetic flux detecting coil shown in FIG.
B, 16A and 16B are connected to the differential circuit 18. In this embodiment, the magnetic flux to be detected contains a high frequency component, and between the terminal portions 15A and 16A and the differential circuit 18,
Impedance resistors 20 and 20 'are respectively interposed. The output of the differential circuit 18 is input to the amplifier circuit 19.
The output of the amplifier circuit 19 is input to the "spectrum analyzer". Of course, the impedance between the differential circuit 18 and the amplifier circuit 19 is matched.

【0030】図1(a)に示すループ状部分15,16
は互いに線対称的であるため、各ループ内で検出磁束の
磁束密度が変化すると、それに従う誘導ポテンシャル
は、端子部15Aと16Aが同極性となり、端子部15
Bと16Bが同極性になる。また、電界の作用により発
生するポテンシャルは、端子部15Aと16Bが同極性
となり、端子部15Bと16Aが同極性になる。
The loop-shaped portions 15 and 16 shown in FIG.
Are linearly symmetric with respect to each other, so that when the magnetic flux density of the detected magnetic flux changes in each loop, the inductive potential according to that changes, the terminals 15A and 16A have the same polarity, and the terminal 15
B and 16B have the same polarity. The potentials generated by the action of the electric field have the same polarity between the terminal portions 15A and 16B and the same polarity between the terminal portions 15B and 16A.

【0031】端子部15A,15Bによる端子間電圧:
ΔV15を、磁束による電磁誘導の成分:ΔV15Mと電界
の影響による成分:ΔV15Eに分けると「ΔV15=ΔV
15M+ΔV15E」であり、端子部16A,16Bによる端
子間電圧:ΔV16を、磁束による電磁誘導の成分:ΔV
16Mと電界の影響による成分:ΔV16Eに分けると「ΔV
16=ΔV16M+ΔV16E」である。
Voltage between terminals by the terminals 15A and 15B:
The [Delta] V 15, components of the electromagnetic induction caused by magnetic flux: [Delta] V 15M and components due to the influence of the electric field: Separating the [Delta] V 15E "[Delta] V 15 = [Delta] V
15M + ΔV 15E ”, and the inter-terminal voltage by the terminal portions 16A and 16B: ΔV 16 and the electromagnetic induction component by the magnetic flux: ΔV
16M and component due to the influence of electric field: ΔV 16E
16 = ΔV 16M + ΔV 16E ”.

【0032】ループ状部分15,16は微小で互いに近
接し、且つ、線対称的に配置されているから、インピー
ダンス抵抗器20,20’によりインピーダンス整合さ
れたのちは、−ΔV15M=ΔV16M、且つ、ΔV15E=Δ
16Eである。
Since the loop-shaped portions 15 and 16 are minute, close to each other, and arranged in line symmetry, after impedance matching is performed by the impedance resistors 20 and 20 ', -ΔV 15M = ΔV 16M , And ΔV 15E = Δ
It is V 16E .

【0033】従って、差動回路18で端子間電圧:ΔV
15,ΔV16の差:ΔV15−ΔV16を取ると、これは
「(ΔV15M+ΔV15E)−(ΔV16M+ΔV16E)」であ
って、上記関係:−ΔV15M=ΔV16M,ΔV15E=ΔV
16Eを考慮すると、ΔV15−ΔV16=2ΔV15Mとなり、
磁束による電磁誘導成分のみとなるから、これを増幅回
路19により増幅し、スペクトラム・アナライザにより
周波数分解すれば、磁束密度の変化を周波数ごとに検出
することができる。「検出対象としての磁束が、高周波
成分を含まない」ことが分かっている場合には、インピ
ーダンス抵抗器20,20’を省略してもよい。
Therefore, in the differential circuit 18, the voltage between terminals: ΔV
If the difference between 15 and ΔV 16 : ΔV 15 −ΔV 16 is taken, this is “(ΔV 15M + ΔV 15E ) − (ΔV 16M + ΔV 16E )”, and the above relation: −ΔV 15M = ΔV 16M , ΔV 15E = ΔV
Considering 16E , ΔV 15 −ΔV 16 = 2ΔV 15M ,
Since only the electromagnetic induction component due to the magnetic flux is amplified by the amplifier circuit 19 and frequency-resolved by the spectrum analyzer, the change in magnetic flux density can be detected for each frequency. The impedance resistors 20 and 20 ′ may be omitted when it is known that “the magnetic flux to be detected does not include a high frequency component”.

【0034】図3(a)は、請求項2記載の磁束検出用
コイルの実施の1形態を示す平面図である。
FIG. 3A is a plan view showing an embodiment of the magnetic flux detecting coil according to the present invention.

【0035】共通端子部23に連なる直線状部分230
の両側に、直線状部分230を共通部分とし、且つ直線
状部分230に対して線対称的に、微小なループ状部分
24A,24Bと、これらに連なる端子部21,22と
を有する「ループパターン」を、図1(a)の形態にお
けると同様の絶縁性ウエハ17の面状に「導電性の薄膜
パターン」として形成した。端子部21と共通端子部2
3とが「一方の端子対」をなし、端子部22と共通端子
部23とが「他方の端子対」をなす。
A linear portion 230 connected to the common terminal portion 23
"Loop pattern" having linear loop portions 230 as common portions and having minute loop-shaped portions 24A and 24B and terminal portions 21 and 22 connected to these portions on both sides of the Was formed as a "conductive thin film pattern" on the surface of the insulating wafer 17 similar to that in the form of FIG. 1 (a). Terminal 21 and common terminal 2
3 constitutes "one terminal pair", and the terminal portion 22 and the common terminal portion 23 constitute "other terminal pair".

【0036】ループパターンは「共通の直線状部分の両
側の部分が直線状部分に対して線対称的」であれば良
く、種々のパターン形態が可能である。ループパターン
の形態の3例を図3(b)〜(d)に示す。
The loop pattern only needs to be "the portions on both sides of the common linear portion are line-symmetric with respect to the linear portion", and various pattern forms are possible. Three examples of the form of the loop pattern are shown in FIGS.

【0037】図3(b)に示すループパターンは、共通
端子部23Aに連なる直線状部分231を共通部分と
し、且つ、直線状部分231を対称線として「円もしく
は楕円形状」を構成する微小なループ状部分241A,
241Bおよびこれらに連なる端子部21A,22Aを
有するパターンである。
In the loop pattern shown in FIG. 3B, the linear portion 231 connected to the common terminal portion 23A is used as a common portion, and the linear portion 231 is used as a symmetry line to form a "circular or elliptical shape". Loop-shaped portion 241A,
241B and terminal portions 21A and 22A that are continuous with these.

【0038】図3(c)に示すループパターンは、共通
端子部23Bに連なる直線状部分232を共通部分と
し、且つ、直線状部分232を対称線として「四辺形形
状」を構成する微小なループ状部分242A,242B
およびこれらに連なる端子部21B,22Bを有するパ
ターンである。
The loop pattern shown in FIG. 3C is a minute loop which forms a "quadrilateral shape" with the straight line portion 232 connected to the common terminal portion 23B as a common portion and the straight line portion 232 as a symmetry line. Shaped portions 242A, 242B
And a pattern having terminal portions 21B and 22B connected to these.

【0039】図3(d)に示すループパターンは、共通
端子部23Cに連なる直線状部分233を共通部分と
し、且つ、直線状部分233を対称線として「円もしく
は楕円形状」をなす微小なループ状部分243A,24
3Bおよびこれらに連なる端子部21C,22Cを有す
るパターンである。
The loop pattern shown in FIG. 3D is a minute loop having a "circular or elliptical shape" with the straight line portion 233 connected to the common terminal portion 23C as a common portion and the straight line portion 233 as a symmetry line. Portion 243A, 24
3B and a pattern having terminal portions 21C and 22C continuous with these.

【0040】図4は、請求項5,6記載の磁束検出用プ
ローブの実施の1形態を示す図である。
FIG. 4 is a diagram showing one embodiment of the magnetic flux detecting probe according to the fifth and sixth aspects.

【0041】図3(a)に示す磁束検出用コイルを構成
する導電性の薄膜パターンの共通端子部23とともに端
子21,22を差動回路18に接続する。この実施の形
態においても検出されるべき磁束は高周波成分を含み、
端子部21,22と差動回路18との間にはそれぞれ図
2の形態におけると同様のインピーダンス抵抗器20,
20’が介在される。差動回路18の出力は増幅回路1
9に入力させる。また増幅回路19の出力は「スペクト
ラム・アナライザ」に入力される。差動回路18と増幅
回路19との間のインピーダンスを整合させることは勿
論である。
The terminals 21 and 22 are connected to the differential circuit 18 together with the common terminal portion 23 of the conductive thin film pattern forming the magnetic flux detecting coil shown in FIG. In this embodiment also, the magnetic flux to be detected contains high frequency components,
Between the terminal portions 21 and 22 and the differential circuit 18, the impedance resistors 20 similar to those in the embodiment of FIG.
20 'is interposed. The output of the differential circuit 18 is the amplifier circuit 1.
Input to 9. The output of the amplifier circuit 19 is input to the "spectrum analyzer". Of course, the impedance between the differential circuit 18 and the amplifier circuit 19 is matched.

【0042】図3(a)に示すループ状部分24A,2
4Bは、共通の直線状部分230に関して線対称的であ
るため、各ループ内で検出磁束の磁束密度が変化する
と、それに従う誘導ポテンシャルは、共通端子部23に
対し端子部21と23が逆極性となる。また、電界の作
用により発生するポテンシャルは、共通端子部23に対
して端子部21と22が同極性となる。
The loop-shaped portions 24A and 2 shown in FIG.
4B is line-symmetric with respect to the common straight line portion 230, so that when the magnetic flux density of the detected magnetic flux changes in each loop, the induced potential according to it changes between the terminals 21 and 23 with respect to the common terminal 23. Becomes Further, the potential generated by the action of the electric field has the same polarity in the terminal portions 21 and 22 with respect to the common terminal portion 23.

【0043】ループ状部分24A,24Bは微小であ
り、互いに近接し且つ線対称的に配置されているから、
各ループ状部分に発生する電圧の、磁束による成分と電
界の影響による成分とは、その絶対値が互いに等しい。
Since the loop-shaped portions 24A and 24B are minute and are arranged close to each other and line-symmetrically,
The absolute values of the magnetic flux component and the electric field component of the voltage generated in each loop portion are equal to each other.

【0044】従って、インピーダンス整合された2つの
端子間電圧を差動回路18において減算すると図2の実
施の形態と同様、磁束による電磁誘導成分のみが残るか
ら、これを増幅回路19により増幅しスペクトラム・ア
ナライザにより周波数分解すれば、磁束密度の変化を周
波数ごとに検出することができる。検出対象としての磁
束が高周波成分を含まないことが分かっている場合に
は、インピーダンス抵抗器20,20’を省略してもよ
い。
Therefore, when the voltage between the two terminals whose impedance is matched is subtracted in the differential circuit 18, only the electromagnetic induction component due to the magnetic flux remains as in the embodiment of FIG.・ If the frequency is decomposed by an analyzer, the change in magnetic flux density can be detected for each frequency. If it is known that the magnetic flux to be detected does not contain high frequency components, the impedance resistors 20 and 20 'may be omitted.

【0045】図2,図4に示した実施の形態で、コイル
部分が「平衡回路」であるの対し、増幅回路19および
スペクトラム・アナライザは一般に「不平衡回路」であ
るので、差動回路18は「2つの入力信号(2つの端子
間電圧)の減算演算を行なうとともに、平衡回路と不平
衡回路を接続するバラン」の機能を備えている。
In the embodiment shown in FIGS. 2 and 4, the coil portion is a “balanced circuit”, whereas the amplifier circuit 19 and the spectrum analyzer are generally an “unbalanced circuit”, and therefore the differential circuit 18 is used. Has a function of "balun for performing subtraction calculation of two input signals (voltage between two terminals) and connecting a balanced circuit and an unbalanced circuit".

【0046】図5,6には、請求項3記載の磁束検出用
コイルの実施の形態を示す。
5 and 6 show an embodiment of the magnetic flux detecting coil according to claim 3.

【0047】図5に示す実施の形態は、立方体形状のブ
ロック25の「互いに直交する3つの面」に、図1
(a)に即して説明した形態の磁束検出用コイル26
A,26B,26Cの絶縁性ウエハを貼り付けた構成で
ある。
In the embodiment shown in FIG. 5, the cube-shaped block 25 has "three planes orthogonal to each other".
The magnetic flux detecting coil 26 having the form described in accordance with (a).
This is a configuration in which insulating wafers A, 26B, and 26C are attached.

【0048】図6に示す実施の形態は、立方体形状のブ
ロック25の「互いに直交する3つの面」に、図3
(a)に即して説明した形態の磁束検出用コイル27
A,27B,27Cの絶縁性ウエハを貼り付けた構成で
ある。
In the embodiment shown in FIG. 6, the cube-shaped block 25 has three "planes orthogonal to each other" as shown in FIG.
The magnetic flux detecting coil 27 having the form described in accordance with (a).
This is a configuration in which insulating wafers A, 27B, and 27C are attached.

【0049】これら、図5,6の実施の形態における立
方体形状のブロック25に代えて、別の形状のブロック
を用いても良い。3つの磁束検出用コイルは原理的に
は、その「法線ベクトル」が互いに独立となるように、
即ち「同一平面上に無い」ように組み合わせれば良い
が、磁束を3次元的に精度良く検出するには、演算の容
易さからしても、上記法線ベクトルが直交3軸となるよ
うに組み合わせるのが合理的である。
Instead of the cube-shaped block 25 in the embodiment of FIGS. 5 and 6, a block having another shape may be used. In principle, the three magnetic flux detection coils should have their "normal vectors" independent of each other.
That is, it may be combined so as not to be "on the same plane", but in order to detect the magnetic flux three-dimensionally with high accuracy, the normal vector is set to three orthogonal axes even from the viewpoint of easy calculation. It is rational to combine.

【0050】図5,6に記載の形態において、各磁束検
出用コイルの2つの端子対をそれぞれ差動回路を介して
増幅回路に連結すれば、3次元的に磁束を検出できる磁
束検出プローブを構成できる(請求項7)。勿論、必要
に応じてインピーダンス抵抗器によるインピーダンス整
合を行ない、増幅回路と差動回路のインピーダンス整合
も行なう。
In the embodiment shown in FIGS. 5 and 6, if two terminal pairs of each magnetic flux detecting coil are respectively connected to an amplifier circuit via a differential circuit, a magnetic flux detecting probe capable of three-dimensionally detecting magnetic flux is provided. It can be configured (claim 7). Of course, impedance matching is performed by an impedance resistor as needed, and impedance matching between the amplifier circuit and the differential circuit is also performed.

【0051】上記の実施の形態において、導電性の薄膜
パターンは、公知の適宜の薄膜成膜技術(スパッタリン
グや真空蒸着等)と、薄膜のパターニング技術(ドライ
エッチングやウエットエッチング)とを利用して形成可
能である。薄膜の材料は導電性であればよく、アルミニ
ウムやステンレス、銅、や各種の合金等を良好に用いる
ことができる。また、絶縁性ウエハは、後述の石英ウエ
ハを初めとする種々の絶縁材料によるウエハを使用でき
る。
In the above-described embodiment, the conductive thin film pattern is formed by using a known appropriate thin film deposition technique (sputtering, vacuum deposition, etc.) and thin film patterning technique (dry etching or wet etching). Can be formed. The material of the thin film is only required to be conductive, and aluminum, stainless steel, copper, various alloys, and the like can be favorably used. Further, as the insulating wafer, wafers made of various insulating materials such as a quartz wafer described later can be used.

【0052】[0052]

【実施例】【Example】

実施例1 図1に示す形態例の磁束検出用コイルを以下のように作
製した。
Example 1 A magnetic flux detecting coil of the embodiment shown in FIG. 1 was manufactured as follows.

【0053】絶縁性ウエハ17として、2mm×2mm
の大きさの「石英ウエハ」を用意した。その上に、アル
ミニウムの薄膜を「スパッタリング」により厚さ1μm
に形成した。
As the insulating wafer 17, 2 mm × 2 mm
"Quartz wafer" of the size of was prepared. On top of that, an aluminum thin film is formed by "sputtering" to a thickness of 1 μm.
Formed.

【0054】このアルミニウム薄膜上に、図1(a)に
示すパターンをフォトレジストを用いて、フォトリソグ
ラフィによりパターニングし、その後、パターニングさ
れたフォトレジストのパターンをマスクとし、CCl4
ガスをエッチングガスとするドライエッチングを行な
い、マスクに覆われていないアルミニウム薄膜部分を除
去した。
On this aluminum thin film, the pattern shown in FIG. 1 (a) was patterned by photolithography using a photoresist, and then CCl 4 was used with the patterned photoresist pattern as a mask.
Dry etching was performed using gas as an etching gas to remove the aluminum thin film portion not covered by the mask.

【0055】その後、フォトレジストによるマスクを除
去して、図1(a)に示すごとき形状の導電性の薄膜パ
ターンを得た。導電性の薄膜パターンにおける長方形形
状の各ループ状部分は長手方向:1mm、短手方向:
0.7mmである。
Then, the photoresist mask was removed to obtain a conductive thin film pattern having a shape as shown in FIG. Each rectangular loop portion of the conductive thin film pattern has a longitudinal direction of 1 mm and a lateral direction of:
It is 0.7 mm.

【0056】このようにして得られた磁束検出用コイル
を用いて、図2に示すごとき構成の磁束検出プローブを
構成し、ピンピッチや配線ピッチが1mm以下でLSI
が実装されたサーキットボードの漏洩磁束ノイズの検出
を極めて高い空間分解能で実現できた。
The magnetic flux detecting coil thus obtained is used to construct a magnetic flux detecting probe having the structure as shown in FIG. 2, and an LSI having a pin pitch or wiring pitch of 1 mm or less is used.
It was possible to detect the leakage magnetic flux noise of the circuit board on which was mounted with extremely high spatial resolution.

【0057】実施例2 図3に示す形態例の磁束検出用コイルを以下のように作
製した。
Example 2 A magnetic flux detecting coil of the embodiment shown in FIG. 3 was produced as follows.

【0058】絶縁性ウエハ17として、2mm×2mm
の大きさの「石英ウエハ」を用意した。その上に、アル
ミニウムの薄膜を「スパッタリング」により厚さ1μm
に形成した。
As the insulating wafer 17, 2 mm × 2 mm
"Quartz wafer" of the size of was prepared. On top of that, an aluminum thin film is formed by "sputtering" to a thickness of 1 μm.
Formed.

【0059】このアルミニウム薄膜上に、図3(a)に
示すパターンをフォトレジストを用いて、フォトリソグ
ラフィによりパターニングし、その後、パターニングさ
れたフォトレジストのパターンをマスクとし、CCl4
ガスをエッチングガスとするドライエッチングを行な
い、マスクに覆われていないアルミニウム薄膜部分を除
去した。
On this aluminum thin film, the pattern shown in FIG. 3A was patterned by photolithography using a photoresist, and then CCl 4 was used with the patterned photoresist pattern as a mask.
Dry etching was performed using gas as an etching gas to remove the aluminum thin film portion not covered by the mask.

【0060】その後、フォトレジストによるマスクを除
去し、図3(a)に示すごとき形状の導電性の薄膜パタ
ーンを得た。導電性の薄膜パターンにおける長方形形状
の各ループ状部分は長手方向:1mm、短手方向:0.
7mmである。
After that, the photoresist mask was removed to obtain a conductive thin film pattern having a shape as shown in FIG. Each rectangular loop-shaped portion in the conductive thin film pattern has a longitudinal direction of 1 mm and a lateral direction of 0.
7 mm.

【0061】このようにして得られた磁束検出用コイル
を用いて、図4に示す如き構成の磁束検出プローブを構
成し、ピンピッチや配線ピッチが1mm以下でLSIが
実装されたサーキットボードの漏洩磁束ノイズの検出を
極めて高い空間分解能で実現できた。
Using the magnetic flux detecting coil thus obtained, a magnetic flux detecting probe having a constitution as shown in FIG. 4 is constituted, and the leakage flux of the circuit board on which the LSI is mounted with a pin pitch or wiring pitch of 1 mm or less. Noise detection was realized with extremely high spatial resolution.

【0062】[0062]

【発明の効果】以上に説明したように、この発明によれ
ば磁束検出用コイルおよび磁束検出プローブを提供でき
る。
As described above, according to the present invention, the magnetic flux detecting coil and the magnetic flux detecting probe can be provided.

【0063】請求項1,2記載の磁束検出用コイル、請
求項4,5記載の磁束検出プローブは、磁束検出におけ
る電界の影響を除去し、高い空間分解能で磁束検出を可
能とする。
The magnetic flux detecting coils according to the first and second aspects and the magnetic flux detecting probe according to the fourth and fifth aspects eliminate the influence of the electric field in the magnetic flux detection and enable the magnetic flux detection with high spatial resolution.

【0064】請求項3記載の磁束検出用コイル、請求項
7記載の磁束検出プローブは、磁束検出における電界の
影響を除去し、高い空間分解能で3次元的な磁束検出を
可能とする。
The magnetic flux detecting coil according to the third aspect and the magnetic flux detecting probe according to the seventh aspect eliminate the influence of the electric field in the magnetic flux detection and enable three-dimensional magnetic flux detection with high spatial resolution.

【0065】請求項6記載の磁束検出プローブは高周波
数の磁束の検出を、電界の影響を除去し、高い空間分解
能で実現できる。
The magnetic flux detection probe according to the sixth aspect can detect a high-frequency magnetic flux with a high spatial resolution by removing the influence of the electric field.

【0066】勿論、この発明による磁束検出プローブ
は、OA機器等からの漏洩磁束の検出等に好適に使用可
能である。
Of course, the magnetic flux detecting probe according to the present invention can be suitably used for detecting leakage magnetic flux from OA equipment and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の磁束検出用コイルの実施の形態
を説明するための図である。
FIG. 1 is a diagram for explaining an embodiment of a magnetic flux detecting coil according to claim 1;

【図2】請求項4,6記載の磁束検出プローブの、実施
の形態を説明するための図である。
FIG. 2 is a diagram for explaining an embodiment of a magnetic flux detection probe according to claims 4 and 6;

【図3】請求項2記載の磁束検出用コイルの実施の形態
を説明するための図である。
FIG. 3 is a diagram for explaining an embodiment of a magnetic flux detecting coil according to claim 2;

【図4】請求項5,6記載の磁束検出プローブの、実施
の形態を説明するための図である。
FIG. 4 is a diagram for explaining an embodiment of a magnetic flux detection probe according to claims 5 and 6;

【図5】請求項3記載の磁束検出用コイルの実施の1形
態を説明するための図である。
FIG. 5 is a diagram for explaining one embodiment of the magnetic flux detecting coil according to claim 3;

【図6】請求項3記載の磁束検出用コイルの実施の別形
態を説明するための図である。
FIG. 6 is a diagram for explaining another embodiment of the magnetic flux detecting coil according to claim 3;

【符号の説明】[Explanation of symbols]

15,16 微小なループ状部分 15A,15B 端子部 16A,16B 端子部 17 絶縁性ウエハ 15, 16 Minute loop-shaped portion 15A, 15B Terminal portion 16A, 16B Terminal portion 17 Insulating wafer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】微小なループ状部分とこれに連なる2つの
端子部が近接したループを1対、互いに近接させて線対
称的に配置したパターンを、絶縁性ウエハの面上に導電
性の薄膜パターンとして形成したことを特徴とする磁束
検出用コイル。
1. A conductive thin film on a surface of an insulating wafer, in which a pair of minute loop-shaped portions and a pair of loops in which two terminal portions connected to the minute loop-shaped portions are arranged close to each other are arranged line-symmetrically. A coil for magnetic flux detection, which is formed as a pattern.
【請求項2】共通端子部に連なる直線状部分の両側に、
この直線状部分を共通部分として、且つ直線状部分に対
して線対称的に微小なループ状部分およびこれに連なる
端子部とを有するループパターンを、絶縁性ウエハの面
状に導電性の薄膜パターンとして形成したことを特徴と
する磁束検出用コイル。
2. On both sides of a linear portion connected to the common terminal portion,
A loop pattern having this linear portion as a common portion and a minute loop-shaped portion which is line-symmetric with respect to the linear portion and a terminal portion connected to this is formed into a conductive thin film pattern on the surface of the insulating wafer. A magnetic flux detecting coil characterized by being formed as.
【請求項3】請求項1または2記載の磁束検出用コイル
を3つ、導電性の薄膜パターン形成面が互いに直交する
ように組み合わせて一体化してなる、磁束を3次元的に
検出するための磁束検出用コイル。
3. A magnetic flux detecting coil formed by combining three magnetic flux detecting coils according to claim 1 or 2 so that the conductive thin film pattern forming surfaces are orthogonal to each other, and for three-dimensionally detecting a magnetic flux. Magnetic flux detection coil.
【請求項4】請求項1記載の磁束検出用コイルの、2対
の端子対の端子間電圧の差を出力する差動回路と、この
差動回路の出力を増幅する増幅回路とを有する磁束検出
プローブ。
4. A magnetic flux of the magnetic flux detecting coil according to claim 1, which has a differential circuit for outputting a difference in voltage between terminals of two pairs of terminals, and an amplifier circuit for amplifying the output of the differential circuit. Detection probe.
【請求項5】請求項2記載の磁束検出用コイルの、2対
の端子対の端子間電圧の差を出力する差動回路と、この
差動回路の出力を増幅する増幅回路とを有する磁束検出
プローブ。
5. A magnetic flux of the magnetic flux detecting coil according to claim 2, which has a differential circuit for outputting a difference in voltage between terminals of two pairs of terminals and an amplifier circuit for amplifying an output of the differential circuit. Detection probe.
【請求項6】請求項4または5記載の磁束検出プローブ
において、2対の端子対の各端子間電圧を差動回路に対
してインピーダンス整合させるための1対のインピーダ
ンス抵抗器を有し、高周波の磁束を検出できる磁束検出
プローブ。
6. The magnetic flux detection probe according to claim 4 or 5, further comprising a pair of impedance resistors for impedance-matching the voltage between the terminals of the two pairs of terminals to the differential circuit. Flux detection probe that can detect the magnetic flux of.
【請求項7】請求項4または5または6記載の磁束検出
プローブを3つ、各磁束検出プローブの磁束検出用コイ
ルの導電性の薄膜パターン形成面が互いに直交するよう
に組み合わせた、磁束を3次元的に検出するための磁束
検出プローブ。
7. A magnetic flux obtained by combining three magnetic flux detecting probes according to claim 4 or 5 or 6 such that the conductive thin film pattern forming surfaces of the magnetic flux detecting coils of each magnetic flux detecting probe are orthogonal to each other. Magnetic flux detection probe for dimensionally detecting.
JP32880895A 1995-12-18 1995-12-18 Coil for magnetic-flux detection and magnetic-flux detection probe Pending JPH09166653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32880895A JPH09166653A (en) 1995-12-18 1995-12-18 Coil for magnetic-flux detection and magnetic-flux detection probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32880895A JPH09166653A (en) 1995-12-18 1995-12-18 Coil for magnetic-flux detection and magnetic-flux detection probe

Publications (1)

Publication Number Publication Date
JPH09166653A true JPH09166653A (en) 1997-06-24

Family

ID=18214336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32880895A Pending JPH09166653A (en) 1995-12-18 1995-12-18 Coil for magnetic-flux detection and magnetic-flux detection probe

Country Status (1)

Country Link
JP (1) JPH09166653A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138057A (en) * 1997-07-17 1999-02-12 Ricoh Co Ltd Foreign noise eliminating device and radiation measuring device equipped with eliminating device
JP2001066337A (en) * 1999-08-27 2001-03-16 Sony Corp Device for visualizing electric field/magnetic field distribution
JP2001349917A (en) * 2000-06-12 2001-12-21 Advantest Corp Apparatus for measuring radiation directivity of antenna
JP2006250913A (en) * 2005-02-09 2006-09-21 National Univ Corp Shizuoka Univ Integrated magnetic field probe
JP2007508535A (en) * 2003-10-08 2007-04-05 サントル ナシオナル デチュード スパシアル Magnetic field measurement probe
JP2007108083A (en) * 2005-10-14 2007-04-26 Hitachi High-Technologies Corp Magnetic detection coil and magnetic field measuring apparatus
JP2011022070A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Magnetic field sensor
JP2016014628A (en) * 2014-07-03 2016-01-28 株式会社日本自動車部品総合研究所 Electric field measuring device
CN105372508A (en) * 2015-11-11 2016-03-02 中国电子科技集团公司第四十一研究所 Electric field radiation broadband detector based on distributed thin film resistor loading and design method thereof
JP2016145727A (en) * 2015-02-06 2016-08-12 株式会社豊田中央研究所 Magnetic flux density sensor
JP2017053798A (en) * 2015-09-11 2017-03-16 凸版印刷株式会社 Magnetic sensor
JP2018100904A (en) * 2016-12-20 2018-06-28 国立大学法人金沢大学 Electromagnetic field sensor, electromagnetic measuring system, and electromagnetic wave incoming direction inferring system
CN110044808A (en) * 2019-05-20 2019-07-23 哈尔滨工业大学(深圳) Conducting magnetic component degree of rusting harmless quantitative detection method, system and storage medium
CN110261798A (en) * 2019-07-22 2019-09-20 上海交通大学 Asymmetric difference magnet field probe structure

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1138057A (en) * 1997-07-17 1999-02-12 Ricoh Co Ltd Foreign noise eliminating device and radiation measuring device equipped with eliminating device
JP2001066337A (en) * 1999-08-27 2001-03-16 Sony Corp Device for visualizing electric field/magnetic field distribution
JP2001349917A (en) * 2000-06-12 2001-12-21 Advantest Corp Apparatus for measuring radiation directivity of antenna
JP2007508535A (en) * 2003-10-08 2007-04-05 サントル ナシオナル デチュード スパシアル Magnetic field measurement probe
JP2006250913A (en) * 2005-02-09 2006-09-21 National Univ Corp Shizuoka Univ Integrated magnetic field probe
US7912530B2 (en) 2005-10-14 2011-03-22 Hitachi High-Technologies Corporation Magnetic detection coil and apparatus for measurement of magnetic field
JP2007108083A (en) * 2005-10-14 2007-04-26 Hitachi High-Technologies Corp Magnetic detection coil and magnetic field measuring apparatus
JP4571570B2 (en) * 2005-10-14 2010-10-27 株式会社日立ハイテクノロジーズ Magnetic detection coil and magnetic field measuring device
JP2011022070A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Magnetic field sensor
JP2016014628A (en) * 2014-07-03 2016-01-28 株式会社日本自動車部品総合研究所 Electric field measuring device
JP2016145727A (en) * 2015-02-06 2016-08-12 株式会社豊田中央研究所 Magnetic flux density sensor
JP2017053798A (en) * 2015-09-11 2017-03-16 凸版印刷株式会社 Magnetic sensor
CN105372508A (en) * 2015-11-11 2016-03-02 中国电子科技集团公司第四十一研究所 Electric field radiation broadband detector based on distributed thin film resistor loading and design method thereof
CN105372508B (en) * 2015-11-11 2018-10-02 中国电子科技集团公司第四十一研究所 A kind of electric field radiation broadband detector and its design method based on distributed thin film resistor loaded
JP2018100904A (en) * 2016-12-20 2018-06-28 国立大学法人金沢大学 Electromagnetic field sensor, electromagnetic measuring system, and electromagnetic wave incoming direction inferring system
CN110044808A (en) * 2019-05-20 2019-07-23 哈尔滨工业大学(深圳) Conducting magnetic component degree of rusting harmless quantitative detection method, system and storage medium
CN110044808B (en) * 2019-05-20 2021-09-10 哈尔滨工业大学(深圳) Nondestructive quantitative detection method and system for corrosion degree of magnetic conduction member and storage medium
CN110261798A (en) * 2019-07-22 2019-09-20 上海交通大学 Asymmetric difference magnet field probe structure
CN110261798B (en) * 2019-07-22 2020-11-06 上海交通大学 Asymmetric differential magnetic field probe structure

Similar Documents

Publication Publication Date Title
JPH09166653A (en) Coil for magnetic-flux detection and magnetic-flux detection probe
JP6525336B2 (en) 3-axis digital compass
CN107229022B (en) Magnetic sensor
EP1907872A1 (en) Orthogonal fluxgate magnetic field sensor
US20090256580A1 (en) Orthogonal radio frequency voltage/current sensor with high dynamic range
JP2002131342A (en) Current sensor
JP2018146314A (en) Magnetic sensor and magnetic sensor device
JP5535467B2 (en) Phase correction type active magnetic shield device
JP2002243766A (en) Electric current sensor
JP2008032723A (en) Improved current sensor provided with ac magnetic excitation
JP2008134181A (en) Magnetic detector and its manufacturing method
US7414399B2 (en) Micromagnetometer of the fluxgate type with improved excitation coil
CN107850647A (en) Magnetic detection device
Dezuari et al. New hybrid technology for planar fluxgate sensor fabrication
JP3764834B2 (en) Current sensor and current detection device
JP5487403B2 (en) Current sensor
US11946975B2 (en) Magnetic sensor and inspection device
JP6725300B2 (en) Magnetic sensor and manufacturing method thereof
US20220221536A1 (en) Magnetic sensor and inspection device
JP6671985B2 (en) Current sensor
JP6671986B2 (en) Current sensor and method of manufacturing the same
JP6793611B2 (en) Current detector
Rombach et al. An integrated sensor head in silicon for contactless detection of torque and force
JP2006208020A (en) Biaxial magnetic sensor, and manufacturing method therefor
US11759118B2 (en) Magnetic sensor and inspection device