JPH09165692A - Low alpha ray lead for semiconductor material and its production - Google Patents

Low alpha ray lead for semiconductor material and its production

Info

Publication number
JPH09165692A
JPH09165692A JP34699895A JP34699895A JPH09165692A JP H09165692 A JPH09165692 A JP H09165692A JP 34699895 A JP34699895 A JP 34699895A JP 34699895 A JP34699895 A JP 34699895A JP H09165692 A JPH09165692 A JP H09165692A
Authority
JP
Japan
Prior art keywords
lead
dose
low
metal salt
chp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34699895A
Other languages
Japanese (ja)
Other versions
JP3036422B2 (en
Inventor
Hiromi Mochida
裕美 持田
Akira Mori
暁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7346998A priority Critical patent/JP3036422B2/en
Publication of JPH09165692A publication Critical patent/JPH09165692A/en
Application granted granted Critical
Publication of JP3036422B2 publication Critical patent/JP3036422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a low α ray lead having the α ray dose extremely lower than the α ray dose of the conventional products and to provide a process for smelting such lead. SOLUTION: The low α ray lead for semiconductor materials having a grade of 4i4 nines and a count number of radioactive αparticles of <=0.05CHP/cm<2> is produced by executing electrolyte refining using the crude lead obtd. by heating and melting lead sulfide together with an alkaline metal salt having the α ray dose of <=1CHP/cm<2> and a reducing agent in a nonoxidizing atmosphere, thereby subjecting the alkaline metal salt to reduction decomposition and subjecting the lead sulfide to desulfurization reduction as anode and sulfamic acid contg. substantially no radioactive isotope as an electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、従来品よりも放射
性α粒子のカウント数(α線量)が格段に低く、経時的
にも低いα線量を維持する半導体材料用鉛とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lead for semiconductor materials, which has a significantly lower count number (α dose) of radioactive α particles than conventional products and maintains a low α dose over time, and a method for producing the same.

【0002】[0002]

【従来技術】鉛は、ハンダの材料として電子機器の回路
の組立てに用いられるほかに、各種LSIのダイボンデ
ィングや装置部材接合用のろう材としてもその合金が多
用されている。またガラス成分としてパッケージの封止
材等にも用いられる。ところで、これらの電子機器で
は、半導体素子の高集積化に伴ない、ソフトエラーが問
題になっており、これは素子のパッケージ材などから放
出されるα線がその主な原因であることから、α線量が
極力少ない低α鉛が求められている。
2. Description of the Related Art Lead is used not only as a solder material for assembling circuits of electronic devices, but also as an alloy thereof as a brazing material for die bonding of various LSIs and joining of device members. It is also used as a glass component for a package sealing material and the like. By the way, in these electronic devices, with the high integration of semiconductor elements, soft errors have become a problem, and this is mainly due to α rays emitted from the packaging material of the elements, There is a need for low α-lead that has as low an α-dose as possible.

【0003】このようなα線量の少ない鉛を得る方法と
しては、スルファミン酸液を電解液として電解する方法
(特公昭62-47955号)や、鉛鉱石を重量分離してα線の
発生源となる母岩および脈石を除去し、酸素雰囲気下で
アルカリ還元する方法(特開平1-132725号)などが従来
知られている。
As a method of obtaining lead having a small α dose, a method of electrolyzing a sulfamic acid solution as an electrolytic solution (Japanese Patent Publication No. 62-47955) or a source of α rays by weight-separating lead ore is used. There is conventionally known a method (Japanese Patent Laid-Open No. 1-132725) for removing the host rock and gangue and reducing the alkali in an oxygen atmosphere.

【0004】[0004]

【発明の解決課題】ここで、前者の電解精製方法によれ
ばフッ化水素酸を電解浴とする通常の電解法よりは格段
にα線量が少ない金属鉛を得ることができるが、電解に
供する鉛地金のα線量に大きく影響される。電解に供す
る鉛地金のα線量が高ければ、本電解方法による低α化
にも限界がある。また鉛地金は、従来、方鉛鉱を主体と
する鉛鉱石を焙焼して酸化鉛に転化して溶融還元する
か、あるいは酸化と同時に空気還元して得られるが、こ
れらの製錬方法では粗鉛の収率が低く、α線量の少ない
鉛を低コストで得るのが難しい。
According to the former electrolytic refining method, it is possible to obtain metallic lead having a much smaller α dose than the usual electrolytic method using hydrofluoric acid as an electrolytic bath, but it is subjected to electrolysis. It is greatly affected by the alpha dose of lead metal. If the α dose of lead metal used for electrolysis is high, there is a limit to the reduction of α by this electrolysis method. Conventionally, lead bullion is obtained by roasting lead ore mainly composed of galena and converting it to lead oxide for smelting reduction, or by air reduction simultaneously with oxidation. Therefore, the yield of crude lead is low, and it is difficult to obtain lead with a small α dose at low cost.

【0005】後者の上記アルカリ還元法は、α線の発生
源となる母岩や脈石を重量分離処理によって除去し、さ
らに鉛鉱石として出来るだけ粗く分散したものを用いて
いるが、原料鉱石の産出場所によってα線量が大幅に異
なり、産出場所の影響が大きいため、安定な品位の保つ
のが難しい。また、選鉱後の製錬方法は一般的な上記還
元法に従っており、このため粗鉛の収率が低く製造コス
トが嵩む問題がある。さらに低α化にも限界があり、得
られる粗鉛のα線量は電解直後は約0.01〜0.05
CPH/cm2 程度であるが、1〜2年経過後には上記値の約
10倍程度のα線量となる問題がある。
In the latter alkali reduction method, the host rock or gangue, which is a source of α-rays, is removed by weight separation treatment, and the lead ore is used as coarsely dispersed as possible. It is difficult to maintain stable quality because the α-ray dose varies greatly depending on the production site and the influence of the production site is large. Further, the smelting method after beneficiation follows the general reduction method described above, and therefore there is a problem that the yield of crude lead is low and the manufacturing cost is high. Furthermore, there is a limit to lowering α, and the α dose of crude lead obtained is about 0.01 to 0.05 immediately after electrolysis.
Although it is about CPH / cm 2 , there is a problem that after 1 to 2 years, the α dose becomes about 10 times the above value.

【0006】本発明は、従来の低α鉛における上記問題
を解決したものであって、従来品に比べて格段にα線量
が低く、しかも経時的に低α線量を維持する半導体材料
用鉛を提供するものであり、さらにその収率の高い製造
方法を提供することを目的とする。
The present invention solves the above problems in the conventional low α-lead, and provides a lead for semiconductor material which has a significantly lower α-ray dose than the conventional product and which maintains a low α-ray dose over time. It is an object of the present invention to provide a production method having a high yield.

【0007】[0007]

【課題の解決手段】本発明によれば、請求項1に記載さ
れる以下の半導体材料用低α線鉛が提供される。 (1) 4ナイン以上の品位を有し、放射性α粒子のカ
ウント数が0.05CHP/cm2 以下であることを特徴とす
る半導体材料用低α線鉛。
According to the present invention, the following low α-ray lead for semiconductor material is provided. (1) A low α-ray lead for a semiconductor material, which has a quality of 4 nines or more and a radioactive α particle count of 0.05 CHP / cm 2 or less.

【0008】また本発明によれば上記半導体材料用低α
線鉛を得る方法として、請求項2ないし3に記載する以
下の製造方法が提供される。 (2) 硫化鉛を、α線量が1CHP/cm2 以下のアルカリ
金属塩および還元剤と共に非酸化性雰囲気下で加熱溶融
し、アルカリ金属塩を還元分解することにより硫化鉛を
脱硫還元して得た粗鉛をアノードとし、実質的に放射性
同位元素を含有しないスルファミン酸を電解液として電
解精製することにより、4ナイン以上の品位を有し、放
射性α粒子のカウント数が0.05CHP/cm2 以下の半導
体材料用低α線鉛を製造することを特徴とする方法。 (3) アルカリ金属塩および還元剤としてα線量が1
CHP/cm2 以下の水酸化ナトリウムおよび炭素を用い、電
解液中の鉛濃度30〜150 g/l、スルファミン酸濃度
30〜150 g/l、カソード電流密度0.5〜2.0Am
p/dm2 で電解精製する上記(2) に記載の製造方法。
Further, according to the present invention, a low α for the above semiconductor material is used.
As a method for obtaining the lead wire, the following manufacturing method described in claims 2 to 3 is provided. (2) Lead sulfide is obtained by desulfurizing and reducing lead sulfide by heat-melting it with an alkali metal salt having an α dose of 1 CHP / cm 2 or less and a reducing agent in a non-oxidizing atmosphere, and reductively decomposing the alkali metal salt. The crude lead is used as an anode, and sulfamic acid containing substantially no radioactive isotope is used as an electrolytic solution for electrolytic refining to have a quality of 4 nines or more and a radioactive α particle count of 0.05 CHP / cm 2 A method for producing a low α-ray lead for a semiconductor material described below. (3) α dose of 1 as alkali metal salt and reducing agent
Using sodium hydroxide and carbon of CHP / cm 2 or less, the lead concentration in the electrolytic solution is 30 to 150 g / l, the sulfamic acid concentration is 30 to 150 g / l, and the cathode current density is 0.5 to 2.0 Am.
The production method according to (2) above, in which p / dm 2 is used for electrolytic refining.

【0009】[0009]

【発明の実施形態】以下に本発明を実施例と共に詳細に
説明する。(I)製錬工程 本発明の製造方法では、原料鉱石(硫化鉱)から鉛地金
を得る製錬工程において、従来の硫化鉛を焙焼して酸化
鉛に転じた後に還元する焙焼還元法、あるいは還元剤と
して炭酸ナトリウムを単独に用いる上記アルカリ還元剤
と異なり、硫化鉛をアルカリ金属塩および還元剤と共に
加熱溶融し、酸化焙焼を行わず直接に還元脱硫して鉛地
金を得る。この方法によれば、アルカリ金属塩の分解が
促されるので硫化鉛の脱硫が促進され、金属鉛の回収率
が格段に向上する。原料の硫化鉛(硫化鉛)は少量の銅
や亜鉛を含むものでも良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. (I) Smelting step In the manufacturing method of the present invention, in the smelting step of obtaining lead bullion from a raw material ore (sulfide ore), a conventional roasting reduction in which lead sulfide is roasted to convert into lead oxide and then reduced Method, or unlike the above alkaline reducing agent that uses sodium carbonate alone as a reducing agent, lead sulfide is heated and melted together with an alkali metal salt and a reducing agent, and directly reduced and desulfurized without oxidizing and roasting to obtain lead metal. . According to this method, the decomposition of the alkali metal salt is promoted, the desulfurization of lead sulfide is promoted, and the recovery rate of metallic lead is significantly improved. The raw material lead sulfide (lead sulfide) may contain a small amount of copper or zinc.

【0010】アルカリ金属塩は、その分解により生じる
アルカリ金属が硫化鉛を還元し、硫黄と結合して硫化鉛
を脱硫するものであり、ナトリウム、カリウムなどの水
酸化物、炭酸塩が用いられる。なお、アルカリ土類金属
塩を用いた場合にはアルカリ金属塩よりも金属鉛の回収
率が低いので好ましくない。低α鉛を得るには、このア
ルカリ金属塩もα線源が少ないものを用いる必要があ
り、具体的にはα線量が1CPH/cm2 以下のものが適当で
ある。入手し易い低α品のアルカリ金属塩としては、水
酸化ナトリウム、水酸化カリ、炭酸ナトリウム等がある
が、温度条件および経済性の点から水酸化ナトリウムが
最適である。
The alkali metal salt is one in which an alkali metal produced by its decomposition reduces lead sulfide and combines with sulfur to desulfurize lead sulfide, and hydroxides and carbonates such as sodium and potassium are used. The use of an alkaline earth metal salt is not preferable because the recovery rate of metallic lead is lower than that of an alkali metal salt. In order to obtain low α-lead, it is necessary to use an alkali metal salt having a small α-ray source. Specifically, an α-ray dose of 1 CPH / cm 2 or less is suitable. Sodium hydroxide, potassium hydroxide, sodium carbonate and the like are available as low α products of alkali metal salts, and sodium hydroxide is most suitable in terms of temperature conditions and economy.

【0011】還元剤は上記アルカリ金属塩を還元分解す
るものであり、還元力および反応生成物の点からグラフ
ァイト、石炭、コークスなどの炭素が好ましい。用いら
れた炭素は水酸化ナトリウムなどのアルカリ金属塩と反
応し、これを還元分解して自身は一酸化炭素や炭酸ガス
などになり、系外に出る。低α鉛を得るには、この還元
剤もα線源が少ないものを用いる必要があるが、炭素は
α線量が0.5CPH/cm2 以下の低α品を入手し易いので
この点からも好ましい。
The reducing agent reductively decomposes the above alkali metal salt, and carbon such as graphite, coal and coke is preferable from the viewpoint of reducing power and reaction products. The carbon used reacts with an alkali metal salt such as sodium hydroxide, and reductively decomposes this to become carbon monoxide, carbon dioxide gas, etc., and goes out of the system. In order to obtain low α-lead, it is necessary to use a reducing agent with a small α-ray source, but carbon is also easy to obtain low-α products with an α dose of 0.5 CPH / cm 2 or less. preferable.

【0012】硫化鉛にアルカリ金属塩として水酸化ナト
リウムを加え、還元剤の炭素と共に非酸化性雰囲気下で
加熱溶融すると、次式に従い水酸化ナトリウムが炭素に
よって分解され、ナトリウムが硫化鉛と反応して硫黄と
結合するので硫化鉛が還元脱硫されて鉛地金が得られ
る。炭素は一酸化炭素となり系外に抜ける。生じた硫化
ナトリウムは余剰の苛性ソーダと共にスラグとなる。 PbS + 2NaOH + C → Pb + Na2 S + H2 O + CO↑ ---(1)
When sodium hydroxide as an alkali metal salt is added to lead sulfide and heated and melted with carbon as a reducing agent in a non-oxidizing atmosphere, sodium hydroxide is decomposed by carbon according to the following formula, and sodium reacts with lead sulfide. And lead to sulfur, so lead sulfide is reduced and desulfurized to obtain lead metal. Carbon becomes carbon monoxide and escapes to the outside of the system. The generated sodium sulfide becomes slag together with excess caustic soda. PbS + 2NaOH + C → Pb + Na 2 S + H 2 O + CO ↑ --- (1)

【0013】各原料の量は概ね上記反応式の当量比に従
うが、水酸化ナトリウムおよび炭素の量は当量比よりや
や過剰に用いるのが好ましい。具体的には、硫化鉛10
0重量部に対し、水酸化ナトリウム30〜80重量部お
よび炭素4〜12重量部を用いるのが適当である。これ
らの原料を溶融炉ないしルツボに装入し、非酸化性雰囲
気下、700〜1300℃の温度範囲で加熱溶融する。
この反応により、溶融炉ないしルツボの底部に鉛地金が
溜り、その上に硫化ナトリウムのスラグが堆積する。こ
の硫化ナトリウムのスラグには原料硫化鉛中の他の不純
物元素や鉱石中のシリカ分も併せて吸収され、鉛地金か
ら除去される。
The amount of each raw material generally follows the equivalence ratio in the above reaction formula, but it is preferable to use the amounts of sodium hydroxide and carbon in a slightly excess amount than the equivalence ratio. Specifically, lead sulfide 10
It is suitable to use 30 to 80 parts by weight of sodium hydroxide and 4 to 12 parts by weight of carbon to 0 parts by weight. These raw materials are charged into a melting furnace or crucible and heated and melted in a temperature range of 700 to 1300 ° C. in a non-oxidizing atmosphere.
By this reaction, lead metal is accumulated at the bottom of the melting furnace or crucible, and slag of sodium sulfide is deposited on it. The sodium sulfide slag also absorbs other impurity elements in the raw lead sulfide and silica in the ore, and is removed from the lead metal.

【0014】上記製錬方法における金属鉛の回収率は、
後述の実施例に示すように90%以上であり、従来の製
錬法の回収率に比較して格段に高い回収率が達成され
る。また、上記製錬方法においては、低α品のアルカリ
金属塩および還元剤を用いることにより、α線量が0.
02CPH/cm2 以下の極めてα線量が低い鉛が得られる。
The recovery rate of metallic lead in the above smelting method is
As shown in Examples described later, it is 90% or more, and a recovery rate significantly higher than that of the conventional smelting method is achieved. Further, in the above smelting method, the use of a low α product alkali metal salt and a reducing agent results in an α dose of 0.
Lead with an extremely low α dose of 02 CPH / cm 2 or less can be obtained.

【0015】(II)電解精製工程 上記製錬工程で得た低α線量の鉛地金を電解精製するこ
とにより、高品位の極低α線量の精製金属鉛を得る。電
解精製は、上記製錬工程で得た鉛地金をアノードとし、
実質的に放射性同位元素を含有しないスルファミン酸を
電解液として行う。液組成および電解条件は以下の範囲
が適当である。 電解液組成:鉛濃度30〜150 g/l、スルファミン酸
濃度30〜150 g/l、 液温:15〜50℃ カソード電流密度:0.5〜2.0Amp/dm2
(II) Electrolytic refining step By electrolytically refining the low α-dose lead metal obtained in the above smelting step, a high-quality ultra-low α-dose purified metallic lead is obtained. Electrolytic refining uses the lead metal obtained in the above smelting process as the anode,
Sulfamic acid containing substantially no radioisotope is used as an electrolytic solution. The following ranges are suitable for the liquid composition and the electrolysis conditions. Electrolyte composition: Lead concentration 30 to 150 g / l, sulfamic acid concentration 30 to 150 g / l, liquid temperature: 15 to 50 ° C. Cathode current density: 0.5 to 2.0 Amp / dm 2

【0016】電解液として、実質的に放射性同位元素を
含有しないスルファミン酸を用いるが、これは市販のス
ルファミン酸で良い。スルファミン酸に代えて一般の鉛
電解精製で常用される珪フッ酸を電解液に用いるのは好
ましくない。市販の珪フッ酸にはトリウムの含有量が高
いので精製鉛のα線量が粗鉛よりも高くなる。
As the electrolytic solution, sulfamic acid containing substantially no radioisotope is used, which may be commercially available sulfamic acid. It is not preferable to use silicofluoric acid, which is commonly used in general lead electrolytic refining, in the electrolytic solution instead of sulfamic acid. Due to the high content of thorium in commercial silica hydrofluoric acid, the α dose of purified lead is higher than that of crude lead.

【0017】電解液中の鉛濃度は30〜150g/l が適
当である。鉛濃度がこの範囲よりも低いと鉛以外の元素
も析出するのでこれが不純物となり品位が下がる。一
方、鉛濃度が上記範囲を越えると電解効率が低下する。
電解液中のスルファミン酸濃度は同様に30〜150g/
l が適当である。これよりスルファミン酸濃度が低いと
鉛の溶解が円滑に進まず、また、この濃度が上記範囲を
上回るとスルファミンの析出を生じるので好ましくな
い。
A suitable lead concentration in the electrolytic solution is 30 to 150 g / l. If the lead concentration is lower than this range, elements other than lead also precipitate, and this becomes an impurity and the quality deteriorates. On the other hand, when the lead concentration exceeds the above range, the electrolysis efficiency decreases.
Similarly, the concentration of sulfamic acid in the electrolyte is 30 to 150 g /
l is appropriate. If the concentration of sulfamic acid is lower than this, dissolution of lead will not proceed smoothly, and if the concentration exceeds this range, precipitation of sulfamine will occur, which is not preferable.

【0018】電解液の液温は15〜50℃が適当であ
る。15未満では電解液の電気抵抗が大きくなるため電
解効率が低下し、50℃を越えると電解液の蒸発による
損失が大きななる。カソードの電流密度は0.5〜2.
0Amp/dm2 が適当である。電流密度がこれよりも低いと
電解時間が長引き、また電流密度が上記範囲よりも高い
と鉛以外の元素が析出して不純物混入の原因となる。
The liquid temperature of the electrolytic solution is suitably 15 to 50 ° C. When it is less than 15, the electric resistance of the electrolytic solution becomes large, so that the electrolytic efficiency is lowered, and when it exceeds 50 ° C., the loss due to evaporation of the electrolytic solution becomes large. The current density of the cathode is 0.5-2.
0 Amp / dm 2 is suitable. If the current density is lower than this, the electrolysis time will be prolonged, and if the current density is higher than the above range, elements other than lead will precipitate and cause contamination of impurities.

【0019】(III) 精製鉛のα線量、品位 上記製造方法によって得られる精製鉛は、4ナイン以上
の品位を有し、放射性α粒子のカウント数が0.03CH
P/cm2 以下である。従来の製造方法によって得られる精
製鉛のα線量は0.1CHP/cm2 程度が限界であり、従っ
て上記製造方法によれば、α線量が従来品の1/3以下
であり、長期間この低いα線量を維持する極低α線量の
精製鉛が得られる。
(III) α-Dose and Quality of Purified Lead Purified lead obtained by the above production method has a quality of 4 nines or more and a radioactive α particle count of 0.03 CH
P / cm 2 or less. The α dose of purified lead obtained by the conventional manufacturing method is limited to about 0.1 CHP / cm 2 , and therefore, according to the above manufacturing method, the α dose is 1/3 or less of the conventional product, which is low for a long time. An extremely low α dose of purified lead that maintains an α dose is obtained.

【0020】[0020]

【実施例および比較例】以下に本発明の実施例を比較例
と共に示す。実施例1 表1に示す品位の原料鉛鉱石(方鉛鉱)2000gに水
酸化ナトリウム(純度98%、α線量 0.2CPH/cm2 )90
0gおよびグラファイト粉(純度99%、α線量0.4CPH/c
m2 )160gをグラファイトルツボにて混合し、ルツ
ボごと窒素雰囲気下の加熱炉内に装入し、400℃に加
熱して水分および酸素を除いた後、さらに950℃で3
時間加熱して原料を溶融した。徐冷後、スラグとメタル
分を分離し、鉛地金を得た。アルカリ金属塩の種類およ
び添加量と共に粗鉛のα線量、品位および回収率を表2
に示した。この鉛地金を陽極とし、表2に示す電解液組
成および電解条件に従って鉛精製を行い精製金属鉛を得
た。この精製鉛の品位とα線量および収率を表2に併せ
て示した。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below together with comparative examples. Example 1 To 2000 g of raw material lead ore (galena) of the grade shown in Table 1, sodium hydroxide (purity 98%, α dose 0.2 CPH / cm 2 ) 90
0g and graphite powder (purity 99%, α dose 0.4CPH / c
m 2 ) 160 g was mixed in a graphite crucible, charged together with the crucible into a heating furnace under a nitrogen atmosphere, heated to 400 ° C. to remove water and oxygen, and further heated at 950 ° C. for 3
The raw material was melted by heating for a time. After gradual cooling, the slag and metal were separated to obtain lead metal. Table 2 shows the α dose, quality and recovery rate of crude lead along with the type and amount of alkali metal salt added.
It was shown to. Using this lead metal as an anode, lead was purified according to the electrolytic solution composition and electrolysis conditions shown in Table 2 to obtain purified metallic lead. Table 2 also shows the quality, α dose and yield of this purified lead.

【0021】実施例2 水酸化ナトリウムに代えて炭酸ナトリウム(純度98.5
%)1200gを用いた他は実施例1と同様にして鉛地
金を得た。この鉛地金を陽極とし、表2に示す電解液組
成および電解条件に従って鉛精製を行い精製金属鉛を得
た。この結果を表2に間まとめて示した。
Example 2 Instead of sodium hydroxide, sodium carbonate (purity 98.5
%) 1200 g of lead metal was obtained in the same manner as in Example 1. Using this lead metal as an anode, lead was purified according to the electrolytic solution composition and electrolysis conditions shown in Table 2 to obtain purified metallic lead. The results are summarized in Table 2.

【0022】比較例1(酸化脱硫) 実施例1の水酸化ナトリウムとグラファイト粉に代えて
炭酸ナトリウム800gと塩化ナトリウム400gを用
い、空気を吹き込みながら800〜1000℃の温度に
6時間加熱して鉛地金を得た。この鉛地金を陽極とし、
表2に示す電解液組成および電解条件に従って鉛精製を
行い精製金属鉛を得た。この結果を表2にまとめて示し
た。
Comparative Example 1 (oxidative desulfurization) Instead of the sodium hydroxide and the graphite powder of Example 1, 800 g of sodium carbonate and 400 g of sodium chloride were used, and the mixture was heated to a temperature of 800 to 1000 ° C. for 6 hours while blowing air into lead. I got a bullion. With this lead metal as an anode,
Purified lead was obtained by purifying lead according to the electrolytic solution composition and electrolysis conditions shown in Table 2. The results are summarized in Table 2.

【0023】比較例2(鉄釘法) 実施例1の水酸化ナトリウムとグラファイト粉に代えて
還元剤として鉄粉を用い、その他は実施例1と同一条件
で原料を加熱溶融し粗鉛を得た。この鉛地金を陽極と
し、表2に示す電解液組成および電解条件に従って鉛精
製を行い精製金属鉛を得た。この結果を表2にまとめて
示した。
Comparative Example 2 (Iron Nail Method) Iron powder was used as a reducing agent in place of the sodium hydroxide and graphite powder of Example 1, and the raw material was heated and melted under the same conditions as in Example 1 to obtain crude lead. It was Using this lead metal as an anode, lead was purified according to the electrolytic solution composition and electrolysis conditions shown in Table 2 to obtain purified metallic lead. The results are summarized in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2の結果に示すように、本実施例の精製
鉛のα線量は電解直後0.002〜0.01CHP/cm2
あり、これは2年経過後にはやや高くなるが0.01〜
0.03程度である。一方、比較例の精製鉛のα線量
は、電解直後は0.03〜0.05CHP/cm2 であるが、
2年経過後には0.1〜0.15CHP/cm2 であり、本発
明の約5倍以上である。
As shown in the results of Table 2, the α dose of purified lead in this example was 0.002 to 0.01 CHP / cm 2 immediately after electrolysis, which was slightly higher after 2 years, but was less than 0.2. 01-
It is about 0.03. On the other hand, the α dose of purified lead in the comparative example is 0.03 to 0.05 CHP / cm 2 immediately after electrolysis,
After 2 years, it is 0.1 to 0.15 CHP / cm 2, which is about 5 times or more that of the present invention.

【0027】[0027]

【発明の効果】本発明によれば、従来は製造困難であっ
たα線量が0.05CHP/cm2 以下の精製鉛とその製造方
法が提供される。本発明によって得られる精製鉛は高品
位であり、かつα線量が極めて低く、長期間この低α線
量を維持するので半導体材料用として最適であり、半導
体機器におけるメモリーのソフトエラーの防止に有利で
ある。また、本発明の製造方法によれば上記極低α線量
が高収率で得られるので、工業的実施に適し、実用性に
優れる。
According to the present invention, there is provided a purified lead having an α dose of 0.05 CHP / cm 2 or less, which has been conventionally difficult to produce, and a method for producing the same. The purified lead obtained by the present invention has a high quality, an extremely low α dose, and since it maintains this low α dose for a long period of time, it is most suitable for semiconductor materials and is advantageous in preventing a soft error of a memory in a semiconductor device. is there. Further, according to the production method of the present invention, the extremely low α-ray dose can be obtained in a high yield, which is suitable for industrial implementation and excellent in practicality.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】4ナイン以上の品位を有し、放射性α粒子
のカウント数が0.05CHP/cm2 以下であることを特徴
とする半導体材料用低α線鉛。
1. A low α-ray lead for a semiconductor material, having a quality of 4 nines or more and having a radioactive α particle count of 0.05 CHP / cm 2 or less.
【請求項2】硫化鉛を、α線量が1CHP/cm2 以下のアル
カリ金属塩および還元剤と共に非酸化性雰囲気下で加熱
溶融し、アルカリ金属塩を還元分解することにより硫化
鉛を脱硫還元して得た粗鉛をアノードとし、実質的に放
射性同位元素を含有しないスルファミン酸を電解液とし
て電解精製することにより、4ナイン以上の品位を有
し、放射性α粒子のカウント数が0.05CHP/cm2 以下
の半導体材料用低α線鉛を製造することを特徴とする方
法。
2. Lead sulfide is desulfurized and reduced by heat-melting lead sulfide together with an alkali metal salt having an α dose of 1 CHP / cm 2 or less and a reducing agent in a non-oxidizing atmosphere, and reductively decomposing the alkali metal salt. The crude lead thus obtained was used as an anode, and sulfamic acid containing substantially no radioisotope was used as an electrolytic solution for electrolytic refining to have a quality of 4 nines or more and a radioactive α particle count of 0.05 CHP / A method for producing low-alpha lead for a semiconductor material of cm 2 or less.
【請求項3】 アルカリ金属塩および還元剤としてα線
量が1CHP/cm2 以下の水酸化ナトリウムおよび炭素を用
い、電解液中の鉛濃度30〜150 g/l、スルファミン
酸濃度30〜150 g/l、カソード電流密度0.5〜
2.0Amp/dm2で電解精製する請求項2に記載の製造方
法。
3. An alkali metal salt and sodium hydroxide and carbon having an α dose of 1 CHP / cm 2 or less as an reducing agent are used, and the lead concentration in the electrolytic solution is 30 to 150 g / l and the sulfamic acid concentration is 30 to 150 g / l. l, cathode current density 0.5〜
The method according to claim 2 , wherein the electrolytic refining is carried out at 2.0 Amp / dm 2 .
JP7346998A 1995-12-14 1995-12-14 Low α-ray lead for semiconductor material and method for producing the same Expired - Lifetime JP3036422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346998A JP3036422B2 (en) 1995-12-14 1995-12-14 Low α-ray lead for semiconductor material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346998A JP3036422B2 (en) 1995-12-14 1995-12-14 Low α-ray lead for semiconductor material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09165692A true JPH09165692A (en) 1997-06-24
JP3036422B2 JP3036422B2 (en) 2000-04-24

Family

ID=18387237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346998A Expired - Lifetime JP3036422B2 (en) 1995-12-14 1995-12-14 Low α-ray lead for semiconductor material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3036422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248608A (en) * 2009-03-23 2010-11-04 Jx Nippon Mining & Metals Corp Lead electrolytic method (1)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248608A (en) * 2009-03-23 2010-11-04 Jx Nippon Mining & Metals Corp Lead electrolytic method (1)

Also Published As

Publication number Publication date
JP3036422B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
CN101525694B (en) Separation process for material containing lead, antimony, copper, bismuth and silver
US5932086A (en) Process for making manganese
CN106967884B (en) A kind of method of silver separating residue of copper anode slime step by step arithmetic
US4071421A (en) Process for the recovery of zinc
CN110172570A (en) A kind of processing method of precious metals containing lead
US4292147A (en) Zinc chloride electrolysis
EP0411687B1 (en) Process for producing electrolytic lead and elemental sulfur from galena
US3969202A (en) Process for the recovery of antimony values from ores containing sulfo-antimony compounds of copper, and arsenic
JP2642230B2 (en) Manufacturing method of high purity tin
JP3036422B2 (en) Low α-ray lead for semiconductor material and method for producing the same
US3515510A (en) Recovery of zinc values from sulfide ores
US4500398A (en) Production of lead from sulfides
EP0021809A1 (en) Chloride leaching
CN110629042A (en) Method for leaching antimony oxide material by tartaric acid system and producing metallic antimony by electrodeposition
JP2998623B2 (en) Method for producing low alpha ray lead
US5939042A (en) Tellurium extraction from copper electrorefining slimes
CN108893621A (en) A kind of method of pyro-refining lead bullion
JP2010222167A (en) Method for carbonating lead
JP2962207B2 (en) Lead smelting method
US3330646A (en) Method for producing molybdenum from molybdenite
JPS63496A (en) Method for purifying gallium electrolytic solution
US835052A (en) Process of producing molybdenum and its alloys.
JP2005179778A (en) High purity metal indium, and its production method and use
US4420380A (en) Method for extracting heavy metals from sulphurated mineral concentrates
US2319887A (en) Hydrometallurgical process for the recovery of tin

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term