JP2962207B2 - Lead smelting method - Google Patents

Lead smelting method

Info

Publication number
JP2962207B2
JP2962207B2 JP31948195A JP31948195A JP2962207B2 JP 2962207 B2 JP2962207 B2 JP 2962207B2 JP 31948195 A JP31948195 A JP 31948195A JP 31948195 A JP31948195 A JP 31948195A JP 2962207 B2 JP2962207 B2 JP 2962207B2
Authority
JP
Japan
Prior art keywords
lead
dose
sodium hydroxide
carbon
smelting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31948195A
Other languages
Japanese (ja)
Other versions
JPH09143585A (en
Inventor
裕美 持田
悦治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP31948195A priority Critical patent/JP2962207B2/en
Publication of JPH09143585A publication Critical patent/JPH09143585A/en
Application granted granted Critical
Publication of JP2962207B2 publication Critical patent/JP2962207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来の製錬方法に
比較して鉛の回収率が格段に高く、しかも得られる鉛の
低α化にも適する鉛の製錬方法に関する。本発明の製錬
方法によって得られる低α線鉛は、半導体素子の製造
等、電子産業において特に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead smelting method which has a much higher lead recovery rate than conventional smelting methods and is suitable for reducing the α of the obtained lead. Low α-ray lead obtained by the smelting method of the present invention is particularly useful in the electronics industry, such as in the manufacture of semiconductor devices.

【0002】[0002]

【従来技術】鉛は、ハンダの材料として電子機器の回路
の組立てに用いられるほかに、各種LSIのダイボンデ
ィングや装置部材接合用のろう材としてもその合金が多
用されている。またガラス成分としてパッケージの封止
材等にも用いられる。ところで、これらの電子機器で
は、半導体素子の高集積化に伴ない、ソフトエラーが問
題になっており、これは素子のパッケージ材などから放
出されるα線がその主な原因であることから、α線量
(放射性α粒子のカウント数)が極力少ない低α鉛が求
められており、例えば、半導体機器の材料用としてα線
量が0.02CPH/cm2 以下の鉛が要求されている。
2. Description of the Related Art Lead is used not only as a solder material for assembling circuits of electronic equipment, but also for its alloy as a brazing material for die bonding of various LSIs and bonding of device members. It is also used as a glass component as a sealing material for packages. By the way, in these electronic devices, a soft error has become a problem with the high integration of the semiconductor element, which is mainly caused by α rays emitted from a package material of the element. There is a demand for low α lead with as small an α dose (the number of counts of radioactive α particles) as possible. For example, lead with an α dose of 0.02 CPH / cm 2 or less is required for semiconductor device materials.

【0003】このようなα線量の少ない鉛を得る方法と
しては、スルファミン酸液を電解液として電解する方法
(特公昭62-47955号)や、鉛鉱石を重量分離してα線の
発生源となる母岩および脈石を除去し、酸素雰囲気下で
アルカリ還元する方法(特開平1-132725号)などが従来
知られている。
[0003] As a method of obtaining such a lead having a small α dose, a method of electrolyzing a sulfamic acid solution as an electrolytic solution (Japanese Patent Publication No. 62-47955) or a method of separating the weight of lead ore to a source of α rays is used. A method of removing host rocks and gangues and subjecting them to alkali reduction in an oxygen atmosphere (Japanese Patent Laid-Open No. 1-132725) and the like are conventionally known.

【0004】[0004]

【発明の解決課題】ここで、前者の電解精製方法によれ
ばフッ化水素酸を電解浴とする通常の電解法よりは格段
にα線量が少ない金属鉛を得ることができるが、電解に
供する鉛地金のα線量に大きく影響される。電解に供す
る鉛地金のα線量が高ければ、本電解方法による低α化
にも限界がある。鉛地金は、従来、方鉛鉱を主体とする
鉛鉱石を焙焼して酸化鉛に転化して溶融還元するか、あ
るいは酸化と同時に空気還元して得られるが、これらの
製錬方法では粗鉛の収率が低く、α線量の少ない鉛を低
コストで得るのが難しい。
According to the former electrolytic refining method, metallic lead having a much smaller α dose can be obtained as compared with a normal electrolytic method using hydrofluoric acid as an electrolytic bath. It is greatly affected by the alpha dose of lead metal. If the α dose of the lead metal used for electrolysis is high, there is a limit to the reduction of α by the electrolysis method. Conventionally, lead ingots are obtained by roasting lead ore mainly composed of galena and converting it to lead oxide for smelting reduction or air reduction simultaneously with oxidation. It is difficult to obtain lead with low yield of crude lead and low α dose at low cost.

【0005】また、上記アルカリ還元法でも、α線の発
生源となる母岩や脈石を重量分離処理によって除去し、
さらに鉛鉱石として出来るだけ粗く分散したものを用い
ているが、選鉱後の製錬方法は一般的な上記還元法に従
っており、従って、粗鉛の収率が低く、製造コストが嵩
む問題がある。
[0005] In the above-described alkali reduction method, host rocks and gangues which are sources of α-rays are removed by weight separation.
Further, lead ore dispersed as coarsely as possible is used, but the smelting method after beneficiation follows the above-mentioned general reduction method, and therefore, there is a problem that the yield of coarse lead is low and the production cost increases.

【0006】本発明は、従来の鉛製錬方法における上記
問題を解決したものであって、従来の製錬方法に比べて
金属鉛の回収率が格段に高く、α線量の少ない鉛を低コ
ストでかつ効率良く製造することができる製錬方法を提
供することを目的とする。
The present invention solves the above-mentioned problems in the conventional lead smelting method, and has a significantly higher recovery rate of metallic lead and a lower amount of α-rays than conventional smelting methods. It is an object of the present invention to provide a smelting method that can be manufactured efficiently.

【0007】[0007]

【課題の解決手段】本発明の製錬方法は、硫化鉛を焙焼
して酸化鉛に転じた後に還元する従来の焙焼還元法とは
異なり、あるいは還元剤として炭酸ナトリウムを単独に
用いる上記アルカリ還元剤と異なり、硫化鉛を水酸化ナ
トリウムまたは水酸化カリウムおよび炭素と共に加熱溶
融し、酸化焙焼を行わず直接に還元脱硫する方法であ
り、水酸化ナトリウム等の分解により硫化鉛の脱硫を促
進し、金属鉛の回収率を格段に高め、従来の製錬方法に
比較してα線量が大幅に少ない鉛地金を高収率で得られ
るようにしたものである。
The smelting method of the present invention is different from the conventional roasting reduction method in which lead sulfide is roasted, converted into lead oxide and then reduced, or alternatively, sodium carbonate alone is used as a reducing agent. Unlike alkaline reducing agents, lead sulfide is heated and melted together with sodium hydroxide or potassium hydroxide and carbon, and is directly subjected to reductive desulfurization without oxidizing and roasting. It promotes the recovery rate of metallic lead, and makes it possible to obtain a high yield of lead ingot with much lower α-dose than conventional smelting methods.

【0008】すなわち、本発明によれば以下の構成から
なる鉛の製錬方法が提供される。 (1)水酸化ナトリウムまたは水酸化カリウムと炭素
を、硫化鉛と共に非酸化性雰囲気下で加熱溶融すること
により、硫化鉛を脱硫還元してα線量が0.01CHP/cm2
以下の低α線鉛を製造することを特徴とする鉛の製錬方
法。 (2)α線量が1CHP/cm2以下の水酸化ナトリウムまた
は水酸化カリウムおよび炭素を用いる請求項1に記載す
る鉛の製錬方法。
That is, according to the present invention, there is provided a lead smelting method having the following constitution. (1) By heating and melting sodium hydroxide or potassium hydroxide and carbon together with lead sulfide in a non-oxidizing atmosphere, lead sulfide is desulfurized and reduced to obtain an α dose of 0.01 CHP / cm 2.
A lead smelting method characterized by producing the following low α-ray lead. (2) The lead smelting method according to claim 1, wherein sodium or potassium hydroxide and carbon having an α dose of 1 CHP / cm 2 or less are used.

【0009】[0009]

【発明の実施形態】以下に本発明の製錬方法を実施例と
共に詳細に説明する。原料の硫化鉛(方鉛鉱)は少量の銅
や亜鉛を含むものでも良い。この原料鉱石の硫化鉛を水
酸化ナトリウムまたは水酸化カリウムおよび炭素と共に
加熱溶融し、水酸化ナトリウム等を還元分解して硫化鉛
を脱硫還元する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The smelting method of the present invention will be described below in detail with reference to examples. The raw material lead sulfide (galena) may contain a small amount of copper or zinc. The lead sulfide of the raw ore is heated and melted together with sodium hydroxide or potassium hydroxide and carbon, and sodium hydroxide or the like is reductively decomposed to desulfurize and reduce the lead sulfide.

【0010】水酸化ナトリウムまたは水酸化カリウム
は、その分解により生じるアルカリ金属が硫化鉛を還元
し、硫黄と結合して硫化鉛を脱硫する。なお、アルカリ
土類金属塩を用いた場合にはアルカリ金属塩よりも金属
鉛の回収率が低いので好ましくない。低α鉛を得るに
は、上記水酸化ナトリウムまたは水酸化カリウムもα線
量が少ないものを用いる必要があり、具体的にはα線量
が1CPH/cm2以下のものが好ましい。入手し易い低α品
としては温度条件および経済性の点から水酸化ナトリウ
ムが最適である。
In sodium hydroxide or potassium hydroxide, an alkali metal generated by its decomposition reduces lead sulfide and combines with sulfur to desulfurize lead sulfide. The use of an alkaline earth metal salt is not preferred because the recovery rate of metallic lead is lower than that of the alkali metal salt. In order to obtain low α lead, it is necessary to use sodium hydroxide or potassium hydroxide having a small α dose, and more specifically, preferably having an α dose of 1 CPH / cm 2 or less. As an easily available low α product, sodium hydroxide is the best in terms of temperature conditions and economy.

【0011】還元剤は上記アルカリ金属塩を還元分解す
るものであり、還元力および反応生成物の点からグラフ
ァイト、石炭、コークスなどの炭素が好ましい。用いら
れた炭素は水酸化ナトリウムなどのアルカリ金属塩と反
応し、これを還元分解して自身は一酸化炭素や炭酸ガス
などになり、系外に出る。低α鉛を得るには、この還元
剤もα線源が少ないものを用いる必要があるが、炭素は
α線量が1CPH/cm2 以下の低α品を入手し易いので、こ
の点からも好ましい。
The reducing agent is for reducing and decomposing the above alkali metal salt, and is preferably carbon such as graphite, coal and coke from the viewpoint of reducing power and reaction products. The carbon used reacts with an alkali metal salt such as sodium hydroxide, which is reduced and decomposed to carbon monoxide, carbon dioxide gas, etc., and goes out of the system. In order to obtain low α lead, it is necessary to use a reducing agent with a small α ray source, but carbon is also preferable from this point because a low α product with an α dose of 1 CPH / cm 2 or less is easily available. .

【0012】硫化鉛にアルカリ金属塩として水酸化ナト
リウムを加え、還元剤の炭素と共に非酸化性雰囲気下で
加熱溶融すると、次式に従い水酸化ナトリウムが炭素に
よって分解され、ナトリウムが硫化鉛と反応して硫黄と
結合するので硫化鉛が還元脱硫されて鉛地金が得られ
る。炭素は一酸化炭素となり系外に抜ける。生じた硫化
ナトリウムはスラグとなる。なお、加熱温度が800℃
以下では次式の H2 O 、COに代えて水素ガスおよび炭酸
ガスが生じる。 PbS + 2NaOH + C → Pb + Na2 S + H2 O + CO↑ ---(1)
When sodium hydroxide is added to lead sulfide as an alkali metal salt and is heated and melted together with carbon as a reducing agent in a non-oxidizing atmosphere, sodium hydroxide is decomposed by carbon according to the following formula, and sodium reacts with lead sulfide. Lead sulfide is reductively desulfurized to obtain lead ingot. The carbon becomes carbon monoxide and escapes out of the system. The generated sodium sulfide becomes slag. The heating temperature is 800 ° C
In the following, hydrogen gas and carbon dioxide gas are generated instead of H 2 O and CO in the following formula. PbS + 2NaOH + C → Pb + Na 2 S + H 2 O + CO ↑ --- (1)

【0013】各原料の量は概ね上記反応式の当量比に従
うが、水酸化ナトリウムおよび炭素の量は当量比よりや
や過剰に用いるのが好ましい。具体的には、硫化鉛10
0重量部に対し、水酸化ナトリウム35〜60重量部お
よび炭素5〜9重量部を用いるのが適当である。これら
の原料を溶融炉ないしルツボに装入し、非酸化性雰囲気
下、700〜1200℃の温度範囲で加熱溶融する。こ
の反応により、溶融炉ないしルツボの底部に鉛地金が溜
り、その上に硫化ナトリウムのスラグが堆積する。この
硫化ナトリウムのスラグには原料硫化鉛中の他の不純物
元素や鉱石中のシリカ分も併せて吸収され、鉛地金から
除去される。
Although the amounts of the respective raw materials generally follow the equivalent ratio in the above reaction formula, it is preferable that the amounts of sodium hydroxide and carbon are used in slightly larger amounts than the equivalent ratio. Specifically, lead sulfide 10
It is appropriate to use 35 to 60 parts by weight of sodium hydroxide and 5 to 9 parts by weight of carbon with respect to 0 parts by weight. These raw materials are charged into a melting furnace or crucible, and are heated and melted in a non-oxidizing atmosphere at a temperature of 700 to 1200 ° C. By this reaction, lead metal accumulates at the bottom of the melting furnace or crucible, and slag of sodium sulfide is deposited thereon. This slag of sodium sulfide also absorbs other impurity elements in the raw material lead sulfide and silica in the ore, and is removed from the lead metal.

【0014】上記製錬方法における金属鉛の回収率は、
後述の実施例に示すように90%以上であり、従来の製
錬法の回収率に比較して格段に高い回収率が達成され
る。また、上記製錬方法においては、低α品の水酸化ナ
トリウム、水酸化カリウムおよび炭素を用いることによ
り、実施例1に示すようにα線量が0.01CPH/cm2以下
の極めて低いα線量の鉛が得られる。
The recovery rate of metallic lead in the above smelting method is as follows:
As shown in the examples described later, it is 90% or more, and a remarkably high recovery rate is achieved as compared with the recovery rate of the conventional smelting method. Further, in the above smelting method, by using low-alpha sodium hydroxide, potassium hydroxide, and carbon, as shown in Example 1, the α-dose of 0.01 CPH / cm 2 or less was used. Lead is obtained.

【0015】[0015]

【実施例および比較例】以下に本発明の実施例を比較例
と共に以下に示す。実施例1 表1に示す品位の原料鉛鉱石(方鉛鉱)1000gに水
酸化ナトリウム(純度97%、α線量 0.1CPH/cm2 )40
0gおよびグラファイト粉(純度99%、α線量0.3 CPH/
cm2 )70gをグラファイトルツボにて混合し、ルツボ
ごと窒素雰囲気下の加熱炉内に装入し、200℃に加熱
して水分および酸素を除いた後、さらに1000℃で2
時間加熱して原料を溶融した。徐冷後、スラグとメタル
分を分離し、鉛地金を得た。この粗鉛の回収率は93%
であり、品位は表1に示すとおりであり、またα線量も
低いものであった。
Examples and Comparative Examples Examples of the present invention are shown below together with comparative examples. EXAMPLE 1 40 g of sodium hydroxide (purity: 97%, α dose: 0.1 CPH / cm 2 ) was added to 1000 g of a raw material lead ore (galena) having a grade shown in Table 1.
0g and graphite powder (99% purity, α dose 0.3 CPH /
cm 2 ) 70 g was mixed in a graphite crucible, and the whole crucible was charged into a heating furnace under a nitrogen atmosphere, heated to 200 ° C. to remove moisture and oxygen, and further cooled at 1000 ° C.
The material was melted by heating for an hour. After slow cooling, the slag and the metal were separated to obtain a lead metal. The recovery rate of this crude lead is 93%
The quality was as shown in Table 1 and the α dose was low.

【0016】参考例 水酸化ナトリウムに代えて炭酸ナトリウム(純度98%)
500gを用いた他は実施例1と同様にして鉛地金を得
た。この粗鉛の回収率は92%であり、品位は表1に示
すとおりであった。
Reference Example Sodium carbonate (purity 98%) in place of sodium hydroxide
A lead metal was obtained in the same manner as in Example 1 except that 500 g was used. The recovery rate of the crude lead was 92%, and the quality was as shown in Table 1.

【0017】比較例1(酸化脱硫) 実施例1の水酸化ナトリウムとグラファイト粉に代え
て、特開平1-132725号公報の方法に準じて炭酸ナトリウ
ム500gと塩化ナトリウム200gを用い、空気を吹
き込みながら800〜1000℃の温度に6時間加熱し
て鉛地金を得た。この粗鉛の回収率は70%であり、α
線量は0.1CHP/cm2 であった。
Comparative Example 1 (Oxidative Desulfurization) In place of sodium hydroxide and graphite powder of Example 1, 500 g of sodium carbonate and 200 g of sodium chloride were used according to the method of JP-A-1-127725, while blowing air. The lead metal was obtained by heating at a temperature of 800 to 1000 ° C. for 6 hours. The recovery rate of this crude lead is 70%, α
The dose was 0.1 CHP / cm 2 .

【0018】比較例2(鉄釘法) 実施例1の水酸化ナトリウムとグラファイト粉に代えて
還元剤として鉄粉を用い、その他は実施例1と同一条件
で原料を加熱溶融し、粗鉛を得た。この粗鉛の回収率は
65%と低く、α線量は0.2CHP/cm2 であった。
Comparative Example 2 (Iron nailing method) In place of sodium hydroxide and graphite powder of Example 1, iron powder was used as a reducing agent. Obtained. The recovery rate of this crude lead was as low as 65%, and the α dose was 0.2 CHP / cm 2 .

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の製錬方法によれば、90%以上
の高率で金属鉛を回収することができる。従来の製錬法
における粗鉛の回収率が65〜70%程度であったのに
比較して格段に高い回収率が達成される。また、上記製
錬方法においては、低α品の水酸化ナトリウム等を用い
ることにより、α線量が0.01CPH/cm2以下のα線量が
極めて低い鉛が得られる。その他に、比較的低い温度で
製錬できるのでエネルギーコストを軽減でき、作業環境
にも有利である。
According to the smelting method of the present invention, metallic lead can be recovered at a high rate of 90% or more. A remarkably high recovery rate is achieved as compared with the recovery rate of crude lead in the conventional smelting method of about 65 to 70%. In addition, in the above-mentioned smelting method, by using a low-α product such as sodium hydroxide, lead having an α dose of 0.01 CPH / cm 2 or less and an extremely low α dose can be obtained. In addition, since smelting can be performed at a relatively low temperature, energy costs can be reduced and the working environment is advantageous.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22B 13/04 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22B 13/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化ナトリウムまたは水酸化カリウム
と炭素を、硫化鉛と共に非酸化性雰囲気下で加熱溶融す
ることにより、硫化鉛を脱硫還元してα線量が0.01C
HP/cm 2 以下の低α線鉛を製造することを特徴とする鉛の
製錬方法。
1. Sodium hydroxide or potassium hydroxide
And carbon are heated and melted together with lead sulfide in a non-oxidizing atmosphere, so that lead sulfide is desulfurized and reduced to obtain an α dose of 0.01C.
A lead smelting method characterized by producing low α-ray lead of HP / cm 2 or less .
【請求項2】 α線量が1CHP/cm 2 以下の水酸化ナトリ
ウムまたは水酸化カリウムおよび炭素を用いる請求項1
に記載する鉛の製錬方法。
2. A sodium hydroxide having an α dose of 1 CHP / cm 2 or less.
2. The method according to claim 1, wherein said metal or potassium hydroxide and carbon are used.
Lead smelting method described in the above.
JP31948195A 1995-11-14 1995-11-14 Lead smelting method Expired - Fee Related JP2962207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31948195A JP2962207B2 (en) 1995-11-14 1995-11-14 Lead smelting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31948195A JP2962207B2 (en) 1995-11-14 1995-11-14 Lead smelting method

Publications (2)

Publication Number Publication Date
JPH09143585A JPH09143585A (en) 1997-06-03
JP2962207B2 true JP2962207B2 (en) 1999-10-12

Family

ID=18110694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31948195A Expired - Fee Related JP2962207B2 (en) 1995-11-14 1995-11-14 Lead smelting method

Country Status (1)

Country Link
JP (1) JP2962207B2 (en)

Also Published As

Publication number Publication date
JPH09143585A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
SE460964B (en) PROCEDURES FOR PREPARING PURE SILICONE METAL
JP5446735B2 (en) Method for producing metal manganese
US4519836A (en) Method of processing lead sulphide or lead-zinc sulphide ores, or sulphide concentrates, or mixtures thereof
CN114369724A (en) Method for quickly producing antimony white from high-arsenic antimony-lead anode mud
EP0557312B1 (en) Direct sulphidization fuming of zinc
CA1086073A (en) Electric smelting of lead sulphate residues
JP2962207B2 (en) Lead smelting method
US3257199A (en) Thermal reduction
JP3036422B2 (en) Low α-ray lead for semiconductor material and method for producing the same
JP2998623B2 (en) Method for producing low alpha ray lead
WO2019138316A1 (en) Process for the recovery of copper and cobalt from a material sample
US3152886A (en) Preparation of metals and alloys of molybdenum, nickel, cobalt, and tungsten
US1945074A (en) Recovery of selenium
US835052A (en) Process of producing molybdenum and its alloys.
US1730548A (en) Method and apparatus for removing certain constituents from metalbearing materials
US2365177A (en) Process for refining lead or lead alloys
JPH10251772A (en) Production of high purity thallium metal
KR101619340B1 (en) Recovery method of Sn from Sn containing dross using dry reduction process
JP3292060B2 (en) Deoxygenation method of scandium metal
US4021235A (en) Operating method for slag cleaning furnace in copper refining
US1513200A (en) Treatment of vanadium ores
US20050132844A1 (en) Method for producing indium powder
CN1188533C (en) Smelting method for separating Cu, Zn and Co from each other
US2767075A (en) Process of directly reducing iron ore containing nickel
US1841207A (en) Treatment of ores, metallurgical products, residues, and the like, for the recovery of platinum metals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees