JPH09162684A - Piezoelectric resonator - Google Patents

Piezoelectric resonator

Info

Publication number
JPH09162684A
JPH09162684A JP32140795A JP32140795A JPH09162684A JP H09162684 A JPH09162684 A JP H09162684A JP 32140795 A JP32140795 A JP 32140795A JP 32140795 A JP32140795 A JP 32140795A JP H09162684 A JPH09162684 A JP H09162684A
Authority
JP
Japan
Prior art keywords
piezoelectric
thickness
substrate
frequency
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32140795A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ikeda
弘康 池田
Koji Matsuno
公二 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32140795A priority Critical patent/JPH09162684A/en
Publication of JPH09162684A publication Critical patent/JPH09162684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To select any of several kinds of widths even at the same frequency without occurrence of spurious radiation and deterioration in the characteristic relating to a shape of a piezoelectric substrate for the piezoelectric resonator used for an oscillator or a filter. SOLUTION: A 165±5 deg. rotation Y-substrate is adopted for an opposed major side of a lithium niobate single crystal, a short-side direction of the Y- piezoelectric substrate is selected to have an angle in excess of 5 deg. till 25 deg. and in excess of -5 deg. till -25 deg. with respect to the X-axis. Then the thickness of the piezoelectric substrate satisfies a relation of W/H=(3.3±0.5)+1.4n, where H is the thickness of the photoelectric conversion element substrate, W is the width and n is a natural number.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発振子やフィルタ
に用いられる圧電共振子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonator used for an oscillator or a filter.

【0002】[0002]

【従来の技術】近年、発振子に対しては、マイクロコン
ピュータの演算速度の高速化にともない発振子の高周波
化及び実装基板の高密度化にともなう小型化が要望され
ている。
2. Description of the Related Art In recent years, there has been a demand for oscillators to be miniaturized in accordance with higher operating frequencies of microcomputers and higher frequencies of oscillators and higher density of mounting boards.

【0003】以下に従来例について説明する。圧電セラ
ミック、圧電単結晶を用いたフィルタ、発振子等のスト
リップ形からなる厚みすべり圧電共振子の場合、共振周
波数がおよそ1〜2MHz以上の場合圧電基板の厚みH
は周波数に対して一義的に決まる。決定した厚みに対し
て素子幅寸法Wは、圧電共振子の形状に係わるスプリア
スの挙動により決定している。
A conventional example will be described below. Piezoelectric ceramics, filters using piezoelectric single crystals, thickness-slip piezoelectric resonators made of strips such as oscillators, and the resonance frequency of approximately 1 to 2 MHz or more.
Is uniquely determined with respect to frequency. With respect to the determined thickness, the element width dimension W is determined by the behavior of spurious associated with the shape of the piezoelectric resonator.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな従来の構成では、圧電共振子の基板形状、特にスプ
リアスの挙動に係わるW/Hの値について(特に9〜1
0MHz以上の高周波帯では)明確でなく、また規定し
ている場合でも周波数を決定すれば素子厚みが決まるこ
とより必然的に素子幅寸法Wも素子厚みHに対応してた
だ1つ決定してしまうため、共振子を実装するケース寸
法や工程における実装能力、圧電単結晶からの加工寸法
等の共用化が困難である。
However, in the conventional structure as described above, the substrate shape of the piezoelectric resonator, in particular, the value of W / H related to the behavior of spurious (especially 9 to 1).
It is not clear (in the high frequency band of 0 MHz or more), and even if it is specified, the element thickness is determined if the frequency is determined. Therefore, the element width dimension W is inevitably determined corresponding to the element thickness H. Therefore, it is difficult to share the case size for mounting the resonator, the mounting capability in the process, the processing size from the piezoelectric single crystal, and the like.

【0005】本発明は上記従来の問題点を解決するもの
で、高周波帯において十分な特性と品質を有するニオブ
酸リチウム単結晶の圧電共振子を提供することを目的と
する。
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a piezoelectric resonator of lithium niobate single crystal having sufficient characteristics and quality in a high frequency band.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明はニオブ酸リチウム単結晶の対向主面を165
±5度回転Y板とし圧電基板の短手方向と前記回転Y板
のX軸となす角度が5°を越え25°まで及び−5°を
越え−25°までとし、かつ前記対向主面両面に電極を
設けたストリップ形の圧電共振子において、前記圧電基
板の厚さがH、幅がWとしたときW/H=(3.3±
0.5)+1.4n(nは自然数)に設定するものであ
る。
In order to achieve this object, the present invention uses 165 as opposed major surfaces of a lithium niobate single crystal.
± 5 ° rotated Y plate, and the angle formed between the lateral direction of the piezoelectric substrate and the X axis of the rotated Y plate is more than 5 ° to 25 ° and more than −5 ° to −25 °, and both the opposing main surfaces are In a strip type piezoelectric resonator in which an electrode is provided on the substrate, W / H = (3.3 ± 3
It is set to 0.5) + 1.4n (n is a natural number).

【0007】[0007]

【発明の実施の形態】本発明の請求項1によって、任意
の自然数を設定することにより任意の周波数(つまり圧
電体素子の厚み)に対して、圧電素子の形状に係わるス
プリアスの発生や特性の劣化が発生することがなく同一
周波数でも設定した各々の自然数に対応した各々の素子
幅W寸法を有した数種の圧電共振子を実現することがで
きる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to claim 1 of the present invention, by setting an arbitrary natural number, the generation of spurious and the characteristics related to the shape of a piezoelectric element with respect to an arbitrary frequency (that is, the thickness of the piezoelectric element) is confirmed. It is possible to realize several types of piezoelectric resonators having respective element width W dimensions corresponding to respective natural numbers set even at the same frequency without causing deterioration.

【0008】以下本発明の一実施形態について、図面を
参照しながら説明する。図1は、厚みすべり振動子の斜
視図であり、ニオブ酸リチウム単結晶からなる基板1は
対向主面を165±5度回転Y板とし、短方向を前記Y
板のX軸となす角度を+10°方向としている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a thickness sliding oscillator. A substrate 1 made of a lithium niobate single crystal has a facing main surface of a Y plate rotated by 165 ± 5 degrees, and the Y direction is the Y direction.
The angle formed with the X axis of the plate is + 10 °.

【0009】図1において、素子厚みHは必要周波数に
より規定され、素子幅WはW/Hの関係から求めること
ができる。対向主面に形成された振動電極2は交差幅l
の寸法で対向している。
In FIG. 1, the element thickness H is defined by the required frequency, and the element width W can be obtained from the relationship of W / H. The vibrating electrode 2 formed on the opposite main surface has a crossing width l
It is opposite in size.

【0010】図1に示す共振子はW/H=(3.3±
0.5)+1.4n(nは自然数で1,2,3……)の
関係を満たす。n=0の場合W/H=3.3±0.5の
値を得ることができる。同様にn=1,2の場合はそれ
ぞれW/H=4.7±0.5、6.1±0.5の値を得
る。図2にこの関係による共振子の特性を示す。一例と
して厚みH=0.138mm(共振周波数としておおよ
そ14MHz)とした例を示す。素子幅Wは前記の関係
より得ることができ、n=0,1,2に対しそれぞれW
=0.46,0.65,0.84である。また、そのほ
かの素子寸法としては共振子長手寸法L=5.1mm、
l=0.7mmと共通とした。
The resonator shown in FIG. 1 has a W / H = (3.3 ±
0.5) + 1.4n (n is a natural number 1, 2, 3, ...) Is satisfied. When n = 0, a value of W / H = 3.3 ± 0.5 can be obtained. Similarly, when n = 1 and 2, W / H = 4.7 ± 0.5 and 6.1 ± 0.5 are obtained. FIG. 2 shows the characteristics of the resonator based on this relationship. As an example, an example in which the thickness H = 0.138 mm (resonance frequency is approximately 14 MHz) is shown. The element width W can be obtained from the above relation, and for n = 0, 1, 2 respectively, W
= 0.46, 0.65, 0.84. As other element dimensions, the resonator longitudinal dimension L = 5.1 mm,
1 = 0.7 mm is common.

【0011】これら三つの特性を図2の(a)〜(c)
に示し、いずれの場合も、各々素子幅寸法Wが異なるに
も係わらずいずれもスプリアスの少ない良好な特性を有
している。n=1の場合共振及び反共振の近傍、n=2
の場合、反共振近傍に小さなスプリアスが発生している
が特性上問題はない。W/Hの関係で厚みHは周波数に
より規定されるため幅寸法Wは許容差を有することが可
能であり、請求項に示す式より求められる範囲内であれ
ば図2同様良好な特性を有することができ、さらに多く
の素子幅寸法Wを選択することができる。さらに前記実
施形態の長手寸法Lはおおよそ3mm程度まで短くして
も問題なく、電極交差幅lは0.5≦l≦0.7mmの
場合特に良好な特性を得ることができた。
These three characteristics are shown in FIGS. 2 (a) to 2 (c).
In each case, despite having different element width dimensions W, all have good characteristics with little spurious. When n = 1, near resonance and antiresonance, n = 2
In the case of 1, a small spurious is generated near the anti-resonance, but there is no problem in characteristics. Since the thickness H is defined by the frequency in the relationship of W / H, the width dimension W can have a tolerance, and has good characteristics as in FIG. Therefore, it is possible to select more element width dimensions W. Further, there is no problem even if the longitudinal dimension L of the above embodiment is shortened to about 3 mm, and particularly good characteristics can be obtained when the electrode intersection width l is 0.5 ≦ l ≦ 0.7 mm.

【0012】ところで、本共振子は前記に示すようにn
=0のとき、W/H=3.3±0.5の関係を得るが、
この場合、W/Hの値の最大値は3.8、最小値は2.
8となる。前記の実施形態で示している、H=0.13
8mmの時W寸法の取ることのできる値は0.36mm
≦W≦0.52mmとなる。当然のことながら、前記の
実施形態に示したW寸法W=0.46mmはこの関係を
満たす。ここで、前記W寸法の範囲を満たさない場合
は、前記図2に示す良好な特性と比較し、共振反共振間
や、共振反共振各々の近傍に大きなスプリアスが発生
し、特性劣化が生じてしまう。図3に、一例を示す。こ
の場合、前記同様n=0の場合で、H=0.138mm
のときW=0.6mmとした。前記W=0.46mmと
比較し共振反共振間に大きなスプリアスが発生しており
良好な特性を得ることができない。この関係は、nの値
が他の自然数の場合でも同様である。つまり、必要とす
る周波数に対応した素子厚みHを決定した後、請求項1
に示す関係式より得ることのできるW寸法の範囲内でW
寸法を選択すれば良好な特性を得ることができ、逆にそ
の範囲外ではスプリアスが発生するなど特性劣化を生じ
る。また、nは、その値が、大きくなればそれに対応し
てW寸法も大きくなる。つまり、同一素子厚み(同一周
波数)に対応したW寸法が複数選択することが可能とな
る。この例を次に示す。
By the way, as described above, the present resonator has n
When = 0, the relationship of W / H = 3.3 ± 0.5 is obtained,
In this case, the maximum value of W / H is 3.8 and the minimum value is 2.
It becomes 8. In the above embodiment, H = 0.13
When W is 8mm, W value can be 0.36mm.
≦ W ≦ 0.52 mm. As a matter of course, the W dimension W = 0.46 mm shown in the above embodiment satisfies this relationship. Here, when the range of the W dimension is not satisfied, large spurious is generated between the resonance anti-resonance and in the vicinity of each of the resonance anti-resonance as compared with the good characteristics shown in FIG. I will end up. FIG. 3 shows an example. In this case, similarly to the above, when n = 0, H = 0.138 mm
At that time, W = 0.6 mm. Compared with W = 0.46 mm, a large spurious is generated between the resonance and anti-resonance, and good characteristics cannot be obtained. This relationship is the same even when the value of n is another natural number. That is, after the element thickness H corresponding to the required frequency is determined,
W within the range of W dimension that can be obtained from the relational expression
If the dimensions are selected, good characteristics can be obtained, and conversely, if the dimensions are out of the range, characteristic deterioration such as spurious generation occurs. Further, as the value of n increases, the W dimension also increases correspondingly. That is, it is possible to select a plurality of W dimensions corresponding to the same element thickness (same frequency). An example is shown below.

【0013】周波数により決定される素子厚みHに対し
て種々素子幅Wを選択することができるため異なる素子
厚み(周波数)に対してある任意の素子幅寸法幅に統一
化することも可能である。図4(a)〜(c)に素子厚
みH=0.123mm(共振周波数としておおよそ16
MHz)素子幅W=0.57mm(n=1)、素子厚み
H=0.165mm(共振周波数としておおよそ12M
Hz)素子幅W=0.55mm(n=0)、素子厚みH
=0.206mm(共振周波数としておおよそ9.6M
Hz)W=0.68mm(n=0)という寸法にて試作
した結果を示す。いずれのW寸法も請求項1の条件を満
たしていることは言うまでもない。また素子長手寸法L
=5.1mmとし電極交差幅は0.5≦l≦0.7mm
とした。ここで、素子幅寸法の範囲は、必要とする周波
数範囲に対応した素子厚み範囲とW/Hの関係より任意
に設定することができる。選択範囲としてはおおよそ
0.1≦H≦0.25、0.4≦W≦1mmの範囲から
選択可能であり、素子加工能力や、発振子等への組立能
力により選択すると良い。つまり、仮に組立能力の下限
値がW=0.4mmを満たす場合は前記の例で説明する
とH=0.123mmの場合のW寸法は同一部材からの
素子の取り数が多い(つまり材料費が少なくてすむ)よ
うにW=0.57(n=1の場合)でなくW=0.41
mm(n=0の場合)を選択すれば良い。一方組立能力
が十分にない場合(つまり幅の狭い素子を実装できない
場合)はW=0.57mm(n=1の場合)を選択すれ
ば良い。また回転Y板のX軸となす角度は請求項1に示
す範囲であれば、適用できる。
Since various element widths W can be selected with respect to the element thickness H determined by the frequency, it is possible to unify an arbitrary element width dimension width with respect to different element thickness (frequency). . 4A to 4C, the element thickness H = 0.123 mm (resonance frequency is approximately 16
MHz) Element width W = 0.57 mm (n = 1), element thickness H = 0.165 mm (approx. 12M as resonance frequency)
Hz) Element width W = 0.55 mm (n = 0), element thickness H
= 0.206mm (Approximately 9.6M as resonance frequency
(Hz) W = 0.68 mm (n = 0) is shown as a prototype. It goes without saying that any W dimension satisfies the condition of claim 1. Also, the element longitudinal dimension L
= 5.1 mm and the electrode crossing width is 0.5 ≦ l ≦ 0.7 mm
And Here, the range of the element width dimension can be arbitrarily set from the relationship between the element thickness range and W / H corresponding to the required frequency range. The selection range can be selected from a range of approximately 0.1 ≦ H ≦ 0.25 and 0.4 ≦ W ≦ 1 mm, and it is preferable to select the range depending on the element processing capability and the assembling capability to an oscillator or the like. That is, if the lower limit value of the assembly capacity satisfies W = 0.4 mm, the W dimension in the case of H = 0.123 mm has a large number of elements taken from the same member (that is, the material cost is high). W = 0.41 instead of W = 0.57 (when n = 1)
mm (when n = 0) may be selected. On the other hand, when the assembling ability is not sufficient (that is, when the narrow element cannot be mounted), W = 0.57 mm (in the case of n = 1) may be selected. Further, the angle formed with the X axis of the rotating Y plate can be applied within the range shown in claim 1.

【0014】[0014]

【発明の効果】以上のように本発明はニオブ酸リチウム
単結晶の対向主面を165±5度回転Y板とし、圧電基
板の短手方向と前記回転Y板のX軸となす角度が5°を
越え25°まで及び−5°を越え−25°までの方向と
した圧電基板の厚さがH、幅がWとしたときW/H=
(3.3±0.5)+1.4n(nは自然数)の関係を
満たすよう圧電共振子を設計することにより圧電素子の
形状に係わるスプリアスの発生や特性の劣化が発生する
ことがなく、同一周波数でも設定した各々の自然数に対
応した各々の幅W寸法を有した数種の圧電共振子を実現
することができるものである。
As described above, according to the present invention, the opposing main surface of the lithium niobate single crystal is a 165 ± 5 ° rotated Y plate, and the angle formed between the lateral direction of the piezoelectric substrate and the X axis of the rotated Y plate is 5. When the thickness of the piezoelectric substrate is H and the width is W in the directions of more than 25 ° and more than −25 ° and −5 ° to −25 °, W / H =
By designing the piezoelectric resonator so as to satisfy the relationship of (3.3 ± 0.5) + 1.4n (n is a natural number), there is no generation of spurious or deterioration of characteristics related to the shape of the piezoelectric element. It is possible to realize several types of piezoelectric resonators having respective width W dimensions corresponding to respective natural numbers set even at the same frequency.

【0015】これにより、共振子を実装するケース寸法
や工程における実装能力、圧電単結晶からの加工寸法等
の種々条件を考慮し最良の共振子寸法を選択することが
可能である。
Thus, it is possible to select the best resonator size in consideration of various conditions such as the case size for mounting the resonator, the mounting capability in the process, and the processing size from the piezoelectric single crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における圧電共振子を示す
斜視図
FIG. 1 is a perspective view showing a piezoelectric resonator according to an embodiment of the present invention.

【図2】(a)n=0の場合の周波数インピーダンス特
性を示すグラフ (b)n=1の場合の周波数インピーダンス特性を示す
グラフ (c)n=2の場合の周波数インピーダンス特性を示す
グラフ
2A is a graph showing frequency impedance characteristics when n = 0, FIG. 2B is a graph showing frequency impedance characteristics when n = 1, and FIG. 2C is a graph showing frequency impedance characteristics when n = 2.

【図3】図2の例でn=0の場合、W=0.6mmの場
合の周波数インピーダンス特性を示すグラフ
FIG. 3 is a graph showing frequency impedance characteristics when n = 0 and W = 0.6 mm in the example of FIG.

【図4】(a)W=0.57mmの場合の周波数インピ
ーダンス特性を示すグラフ (b)W=0.55mmの場合の周波数インピーダンス
特性を示すグラフ (c)W=0.68mmの場合の周波数インピーダンス
特性を示すグラフ
4A is a graph showing frequency impedance characteristics when W = 0.57 mm, and FIG. 4B is a graph showing frequency impedance characteristics when W = 0.55 mm, and FIG. 4C is frequency when W = 0.68 mm. Graph showing impedance characteristics

【符号の説明】[Explanation of symbols]

1 基板 2 振動電極 W 素子幅 H 素子厚み L 素子長 l 振動電極交差長 1 substrate 2 vibrating electrode W element width H element thickness L element length l vibrating electrode crossing length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ酸リチウム単結晶の対向主面を1
65±5度回転Y板とし、圧電基板の短手方向を前記回
転Y板のX軸となす角度が5°を越え25°まで及び−
5°を越え−25°までの方向とした圧電基板の厚さが
H、幅がWとしたときW/H=(3.3±0.5)+
1.4n(nは自然数)の関係を満たすことを特徴とし
た圧電共振子。
1. An opposing main surface of a lithium niobate single crystal is
The Y plate is a 65 ± 5 ° rotating Y plate, and the angle formed by the short-side direction of the piezoelectric substrate and the X axis of the rotating Y plate exceeds 5 ° to 25 °.
When the thickness of the piezoelectric substrate in the direction of more than 5 ° to −25 ° is H and the width is W, W / H = (3.3 ± 0.5) +
A piezoelectric resonator having a relationship of 1.4n (n is a natural number).
JP32140795A 1995-12-11 1995-12-11 Piezoelectric resonator Pending JPH09162684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32140795A JPH09162684A (en) 1995-12-11 1995-12-11 Piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32140795A JPH09162684A (en) 1995-12-11 1995-12-11 Piezoelectric resonator

Publications (1)

Publication Number Publication Date
JPH09162684A true JPH09162684A (en) 1997-06-20

Family

ID=18132213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32140795A Pending JPH09162684A (en) 1995-12-11 1995-12-11 Piezoelectric resonator

Country Status (1)

Country Link
JP (1) JPH09162684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093449A1 (en) * 2010-01-28 2011-08-04 株式会社村田製作所 Tunable filter
WO2017006923A1 (en) * 2015-07-09 2017-01-12 株式会社村田製作所 Quartz piece and quartz crystal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093449A1 (en) * 2010-01-28 2011-08-04 株式会社村田製作所 Tunable filter
JPWO2011093449A1 (en) * 2010-01-28 2013-06-06 株式会社村田製作所 Tunable filter
EP2533422A3 (en) * 2010-01-28 2013-07-17 Murata Manufacturing Co., Ltd. Tunable filter
US8552818B2 (en) 2010-01-28 2013-10-08 Murata Manufacturing Co., Ltd. Tunable filter
JP2013225945A (en) * 2010-01-28 2013-10-31 Murata Mfg Co Ltd Tunable filter
KR101350244B1 (en) * 2010-01-28 2014-01-13 가부시키가이샤 무라타 세이사쿠쇼 Tunable filter
EP2530838A4 (en) * 2010-01-28 2015-05-06 Murata Manufacturing Co Tunable filter
WO2017006923A1 (en) * 2015-07-09 2017-01-12 株式会社村田製作所 Quartz piece and quartz crystal
JPWO2017006923A1 (en) * 2015-07-09 2017-07-06 株式会社村田製作所 Crystal piece and crystal unit
US10027309B2 (en) 2015-07-09 2018-07-17 Murata Manufacturing Co., Ltd. Quartz crystal blank and quartz crystal resonator unit

Similar Documents

Publication Publication Date Title
EP1406385A1 (en) Surface acoustic wave device and method of adjusting a temperature characteristic of the same
US4176030A (en) Method for forming a quartz crystal vibrator
JPS60126907A (en) Single response composite piezoelectric oscillating element
US4670681A (en) Singly rotated orientation of quartz crystals for novel surface acoustic wave devices
US6274969B1 (en) Chip piezoelectric filter
JP3106912B2 (en) Method of manufacturing edge reflection type surface acoustic wave device
US6054793A (en) Piezoelectric resonator method for adjusting frequency of piezoelectric resonator and communication apparatus including piezoelectric resonator
JPH09162684A (en) Piezoelectric resonator
JPH0265518A (en) Piezoelectric resonator
JPS581563B2 (en) ceramic ceramics
JPH04269010A (en) Surface-wave resonator
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JP2855208B2 (en) LiTaO 3 Lower piezoelectric resonator
JPS61218214A (en) Piezoelectric thin film resonator
JPH09181556A (en) Piezoelectric vibrator
US4617488A (en) Composite piezoelectric vibrator with trapezoidal cross section
US6448699B1 (en) Octagonal electrode for crystals
JPS62128605A (en) Surface acoustic wave element and its production
JPH06268469A (en) Surface acoustic wave device
JP3552056B2 (en) Multi-mode piezoelectric filter element
JPS6382113A (en) Surface acoustic wave element
JPH0344451B2 (en)
JPH06104685A (en) Crystal resonator
JPH06104684A (en) Piezoelectric resonator
JPS62220012A (en) Piezoelectric vibration element