JP3552056B2 - Multi-mode piezoelectric filter element - Google Patents

Multi-mode piezoelectric filter element Download PDF

Info

Publication number
JP3552056B2
JP3552056B2 JP29085491A JP29085491A JP3552056B2 JP 3552056 B2 JP3552056 B2 JP 3552056B2 JP 29085491 A JP29085491 A JP 29085491A JP 29085491 A JP29085491 A JP 29085491A JP 3552056 B2 JP3552056 B2 JP 3552056B2
Authority
JP
Japan
Prior art keywords
filter element
electrode
piezoelectric filter
amount
mode piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29085491A
Other languages
Japanese (ja)
Other versions
JPH05102787A (en
Inventor
孝夫 森田
修 石井
武文 黒崎
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP29085491A priority Critical patent/JP3552056B2/en
Publication of JPH05102787A publication Critical patent/JPH05102787A/en
Application granted granted Critical
Publication of JP3552056B2 publication Critical patent/JP3552056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は圧電素板を用いた多重モ−ド圧電フィルタ素子の構造に関する。
【0002】
【従来の技術】
従来から図4に示す如く圧電素板例えばATカット水晶素板(AT板)1の主表面表裏に相対向する電極2を付着し、前記電極2の一方あるいは双方を所定の間隙(ギャップ)を介して分割することによって当該分割電極2による振動相互の音響結合の結果、前記AT板表面に発生する対称モ−ド及び反対称モ−ドと称する共振周波数がそれぞれf 及びf なる2つの振動モ−ドを利用し、中心周波数がほぼf であり通過帯域幅がほぼ2(f −f )となる所謂多重(2重)モ−ド水晶フィルタ素子が通信機等の分野で広く用いられている。
その製造に於いては、所定の大きさに加工した前記AT板表面に、電極と同一形状の孔を穿設した金属マスクを用い蒸着によって電極を形成するのが一般的であった。しかしこの方法では電極のエッジがぼけるため前記分割電極2の電極形状及びギャップ間隔gがばらつき、これらの寸法をパラメータとして変化するフィルタの通過帯域幅がばらつくという問題があった。これは例えばギャップ間隔gが狭くなると分割電極2の音響結合が強くなり通過帯域幅が広く、逆の場合は狭くなるといった周知の現象に起因するものである。
【0003】
そこで、通過帯域幅が前記分割電極のプレートバック量をパラメータとして変化することに着目し、電極膜厚を変化させることによって上述のばらつきを調整していた。
ここで、プレートバック量とは、水晶素板表面に電極のない無電極状態を基準として、その表面に電極を付着したことによる固有周波数の変化量を示すものであって、一般的には電極膜厚が厚くなるにつれてプレートバック量が大きくなる。
実際には、図5の実線で示す如きプレートバック量と通過帯域幅との周知の関係を示すグラフに於いて、その傾きが大きくなる○印の一方の近傍でプレートバック量を選択したとき、スペック等で与えられた目的とする通過帯域幅Δfが得られるよう電極形状及びギャップ間隔gを決定していた。
これは上述の理由から明らかなように、例えばギャップ間隔gを変化させると前記グラフが図5の点線で示す如く同図中上下方向に移動可能であることを利用すればよい。
このように構成すれば図5の○印近傍ではプレートバック量によって通過帯域幅を容易に変化させることができるから、電極形成後プレートバック量即ち電極膜厚を変化することによって電極寸法による通過帯域幅のばらつきを調整していた。
【0004】
ところで、近年の電子機器等に於ける小型化に伴い、上述の如き多重モ−ド圧電フィルタ素子に於いても一枚のAT板表面にホトリソグラフィによって微小な電極を複数個同時に形成し、これを小さなユニットごとに切断する所謂バッチ処理による製造が行われるようになった。これによって量産及びコストダウンが可能となるのはもちろん、ホトリソグラフィを用いたことにより分割電極のエッジが従来よりはるかにシャープになると共にギャップ間隔gのばらつきも大幅に縮減されるから、電極寸法による通過帯域幅のばらつきは極限され調整の必要がなくなった。
【0005】
しかしながら、このような多重モ−ド圧電フィルタ素子に於いて上述した如く図5の一方の○印近傍でプレートバック量を選択したとき、スペック等で与えられた目的の通過帯域幅Δfが得られるよう分割電極の電極形状及びギャップ間隔gを決定すると、従来は問題にならなかったプレートバック量即ち電極膜厚のばらつきによる通過帯域幅のばらつきが現出するため、電極寸法による通過帯域幅のばらつきを極限したにもかかわらず調整しなければならないという欠陥があった。
【0006】
【発明の目的】
本発明は上述した如き従来の多重モ−ド圧電フィルタ素子の有する欠陥を解決するためなされたものであって、分割電極の膜厚がばらついても通過帯域幅にばらつきが生じない多重モ−ド圧電フィルタ素子を提供することを目的とする。
【0007】
【発明の概要】
上述の目的を達成するため本発明に係る多重モ−ド圧電フィルタ素子は圧電素板の相対面する両面それぞれに付着する対向電極の一方或は双方を所定の間隙を隔して分割した分割電極とした多重モード圧電フィルタ素子に於いて、前記分割電極のプレートバック(plate back)量と通過帯域幅との関係を示すグラフの極点近傍にて前記プレートバック量を選択し、所望の通過帯域幅が得られるよう前記分割電極を構成したものである。
【0008】
【実施例】
以下本発明を実施例を示す図面によって詳細に説明する。
図1はAT板表面にホトリソグラフィによって分割電極を形成した中心周波数90MHzの多重モ−ド水晶フィルタ素子に於けるプレートバック量と通過帯域幅の関係を示すグラフであって、該グラフの極点(即ち同図中●印)近傍のプレートバック量pに相当する電極膜厚を選択したとき目的の通過帯域幅Δfとなるよう分割電極の電極形状及びギャップ間隔gを選択することによって、同図から明らかな如くプレートバック量の変化に対し通過帯域幅はほとんど変化しないから、たとえ電極膜厚の製造ばらつきが生じたとしてもほぼ無調整で製造することが可能となるから調整工程が不要となりコストダウンすることができる。
【0009】
ところで、多重モ−ド圧電フィルタ素子に於いては小型化と共に高周波化への要求が高まっているが、ATカット水晶振動子の如く厚みすべり振動を利用した圧電共振子の素板は一般に平板であり、その共振周波数は板厚と反比例するため製造技術及び機械的強度の観点から基本波振動においては40MHz程度が限界であった。
これを解決する手段の一として、以前より数10乃至数100MHzの高周波領域に於いて基本波振動が励振可能な超薄板圧電共振子を利用した多重モ−ド圧電フィルタ素子が提案されている。図2(a)及び(b)はそれぞれ本発明に係る多重モ−ド圧電フィルタ素子にこの超薄板圧電共振子を利用した一例を示す平面図及びABに於ける断面図であって、AT板1の一方の表面を例えばエッチングによって凹陥せしめ、その底面を薄板状の振動部3とすると共に前記振動部3の周囲を支持する厚肉の環状囲繞部4を前記振動部3と一体的に形成して前記振動部3の機械的強度を保持した超薄板水晶共振子に於いて、凹陥側に導電膜を蒸着して全面電極5を形成し、対向する平坦面の前記振動部3ほぼ中央に分割電極2を上述した如くプレートバック量と通過帯域幅との関係を示すグラフの極点近傍にて前記プレートバック量を選択し、所望の通過帯域幅が得られるよう形成することによって上述の実施例と同様の効果を高周波領域に於いても得ることができる。
【0010】
尚、上述した如き多重モード圧電フィルタに於いて、製造後通過帯域幅の微調整を必要とする場合には、図3に示す如く一方の電極のみを分割するタイプの分割電極2とし、そのギャップ真裏の分割しない側の電極表面に、蒸着等により金属6を付着することによって、分割電極2のギャップ近傍に於ける音響結合が高まり、その結果として通過帯域幅が広がる周知の技術を適用すればよい。
以上、ATカット水晶素板を用いた多重モ−ド圧電フィルタ素子を実施例に本発明を説明してきたが、本発明はこれのみに限定される必要はなく、明細書の煩雑を避ける為グラフは省略するが、他の圧電材料に於いてもプレートバック量と通過帯域幅との間に同様の関係を有することから、本発明をこれらに適用してもよいこと自明である。
【0011】
【発明の効果】
本発明は、以上説明した如く構成するものであるから、分割電極の形状即ちホトリソグラフィ用マスクの変更のみで調整工程を必要とすることなく通過帯域幅の製造ばらつきを極限する上で著しい効果を呈する。
【0012】
【図面の簡単な説明】
【図1】本発明に係る多重モ−ド圧電フィルタ素子のプレートバック量と通過帯域幅の関係を示す図。
【図2】(a)及び(b)はそれぞれ本発明に係る超薄板圧電共振子を利用した多重モ−ド圧電フィルタ素子の一例を示す平面図及びABに於ける断面図。
【図3】本発明に係る多重モ−ド圧電フィルタ素子の通過帯域幅の調整方法を説明する図。
【図4】多重モ−ド圧電フィルタ素子の基本的構成を示す斜視図。
【図5】従来の多重モ−ド圧電フィルタ素子のプレートバック量と通過帯域幅の関係を示す図。
【符号の説明】
1・・・ATカット水晶素板
2・・・分割電極
3・・・振動部
4・・・環状囲繞部
[0001]
[Industrial applications]
The present invention relates to a structure of a multi-mode piezoelectric filter element using a piezoelectric element plate.
[0002]
[Prior art]
Conventionally, as shown in FIG. 4, opposing electrodes 2 are attached to the front and back of the main surface of a piezoelectric element such as an AT-cut quartz element (AT sheet) 1 so that one or both of the electrodes 2 have a predetermined gap. through by dividing by the acoustic coupling of the vibration mutually by the divided electrodes 2 result, symmetric mode generated in the AT plate surface - de and antisymmetric mode - de referred to as the resonance frequency is two composed f s and f a respectively vibration mode - using de, become so-called multi (dual) center frequency is substantially f a pass bandwidth approximately 2 (f a -f s) mode - de crystal filter element is in the fields such as communication equipment Widely used.
In the manufacture thereof, an electrode was generally formed on the surface of the AT plate processed to a predetermined size by vapor deposition using a metal mask having a hole having the same shape as the electrode. However, in this method, since the edge of the electrode is blurred, the electrode shape and the gap interval g of the divided electrode 2 vary, and there is a problem that the pass band width of the filter that changes with these dimensions as parameters varies. This is due to a well-known phenomenon that, for example, when the gap g becomes narrower, the acoustic coupling of the divided electrodes 2 becomes stronger and the pass bandwidth becomes wider, and in the opposite case, it becomes narrower.
[0003]
Therefore, paying attention to the fact that the pass bandwidth changes using the plateback amount of the divided electrode as a parameter, the above-described variation is adjusted by changing the electrode film thickness.
Here, the plate back amount refers to the amount of change in the natural frequency due to the attachment of the electrode to the surface of the quartz crystal plate, with no electrode on the surface as a reference. The plateback amount increases as the film thickness increases.
Actually, in the graph showing the well-known relationship between the plateback amount and the pass bandwidth as shown by the solid line in FIG. 5, when the plateback amount is selected in the vicinity of one of the circles where the slope becomes large, The electrode shape and the gap g were determined so as to obtain the target pass band width Δf given by the specifications or the like.
As is apparent from the above-mentioned reason, it is only necessary to use the fact that, for example, when the gap interval g is changed, the graph can be moved up and down as shown by the dotted line in FIG.
With this configuration, the pass band width can be easily changed depending on the plate back amount in the vicinity of the mark in FIG. 5. The width variation was adjusted.
[0004]
By the way, with the recent miniaturization of electronic devices and the like, in the multi-mode piezoelectric filter element as described above, a plurality of minute electrodes are simultaneously formed on the surface of one AT plate by photolithography. Is manufactured by a so-called batch process in which is cut into small units. This enables mass production and cost reduction. Of course, the use of photolithography makes the edges of the divided electrodes much sharper than before and greatly reduces variations in the gap g. Variations in the passband are extremely limited and no adjustment is needed.
[0005]
However, in such a multi-mode piezoelectric filter element, when the plateback amount is selected in the vicinity of one of the circles in FIG. 5 as described above, the target pass band width Δf given by the specification or the like is obtained. When the electrode shape of the split electrode and the gap interval g are determined, the pass band width variation due to the plate back amount, that is, the variation in the electrode film thickness, which has not conventionally been a problem, appears. There was a defect that it had to be adjusted despite the extreme limitations.
[0006]
[Object of the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned defects of the conventional multi-mode piezoelectric filter element, and has a multi-mode in which the pass band width does not vary even if the thickness of the divided electrodes varies. An object is to provide a piezoelectric filter element.
[0007]
Summary of the Invention
In order to achieve the above object, a multi-mode piezoelectric filter element according to the present invention is a divided electrode obtained by dividing one or both of opposing electrodes attached to both opposing surfaces of a piezoelectric element with a predetermined gap. In the multi-mode piezoelectric filter element described above, the plateback amount is selected near an extreme point of a graph showing the relationship between the plateback amount of the divided electrode and the passband width, and the desired passband width is selected. The divided electrodes are configured to obtain the following.
[0008]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings showing examples.
FIG. 1 is a graph showing the relationship between the plateback amount and the pass band width in a multimode quartz filter element having a center frequency of 90 MHz and having a divided electrode formed on the AT plate surface by photolithography. That is, by selecting the electrode shape of the divided electrodes and the gap interval g so that the desired passband width Δf is obtained when the electrode film thickness corresponding to the plate back amount p in the vicinity of the mark (● in the figure) is selected. As is evident, the pass band width hardly changes with the change in the amount of plate back, so that even if there is a variation in the manufacturing of the electrode film thickness, it is possible to manufacture without any adjustment. can do.
[0009]
By the way, in the multi-mode piezoelectric filter element, there is an increasing demand for higher frequency as well as miniaturization. However, a base plate of a piezoelectric resonator utilizing a thickness shear vibration such as an AT-cut crystal resonator is generally a flat plate. Since the resonance frequency is inversely proportional to the plate thickness, the fundamental vibration has a limit of about 40 MHz from the viewpoint of manufacturing technology and mechanical strength.
As one means for solving this problem, there has been proposed a multi-mode piezoelectric filter element using an ultra-thin piezoelectric resonator capable of exciting a fundamental vibration in a high frequency range of several tens to several hundreds MHz. . FIGS. 2A and 2B are a plan view and an AB sectional view, respectively, showing an example in which this ultra-thin plate piezoelectric resonator is used in a multi-mode piezoelectric filter element according to the present invention. One surface of the plate 1 is recessed by, for example, etching, and the bottom surface is formed as a thin plate-shaped vibrating portion 3 and a thick annular surrounding portion 4 supporting the periphery of the vibrating portion 3 is integrally formed with the vibrating portion 3. In the ultra-thin sheet crystal resonator formed and maintaining the mechanical strength of the vibrating part 3, a conductive film is vapor-deposited on the concave side to form the entire surface electrode 5, and the vibrating part 3 on the opposing flat surface is substantially formed. As described above, by forming the divided electrode 2 at the center in the vicinity of the extreme point of the graph showing the relationship between the plateback amount and the passband width, and selecting the plateback amount so as to obtain a desired passband, as described above. The same effect as in the embodiment can be obtained in the high frequency region. In can also be obtained.
[0010]
In the above-described multi-mode piezoelectric filter, when fine adjustment of the pass bandwidth is required after manufacture, a split electrode 2 of a type in which only one electrode is split as shown in FIG. By attaching a metal 6 by vapor deposition or the like to the electrode surface directly behind the undivided side by evaporation or the like, acoustic coupling in the vicinity of the gap between the divided electrodes 2 is increased, and as a result, a well-known technique that widens the pass bandwidth can be applied. Good.
As described above, the present invention has been described by using the multi-mode piezoelectric filter element using the AT-cut quartz plate as an example. However, the present invention is not limited to this. Although the description is omitted, other piezoelectric materials have the same relationship between the plateback amount and the pass band width, and it is obvious that the present invention may be applied to these.
[0011]
【The invention's effect】
Since the present invention is configured as described above, it has a remarkable effect in minimizing the manufacturing variation of the pass bandwidth without changing the shape of the divided electrodes, that is, changing the photolithographic mask, and without requiring an adjustment step. Present.
[0012]
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a plateback amount and a pass bandwidth of a multi-mode piezoelectric filter element according to the present invention.
FIGS. 2A and 2B are a plan view and a cross-sectional view taken along AB, respectively, showing an example of a multi-mode piezoelectric filter element using an ultra-thin plate piezoelectric resonator according to the present invention.
FIG. 3 is a view for explaining a method of adjusting the pass bandwidth of the multi-mode piezoelectric filter element according to the present invention.
FIG. 4 is a perspective view showing a basic configuration of a multi-mode piezoelectric filter element.
FIG. 5 is a diagram showing a relationship between a plateback amount and a pass bandwidth of a conventional multi-mode piezoelectric filter element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AT cut quartz crystal plate 2 ... Division electrode 3 ... Vibration part 4 ... Circular surrounding part

Claims (3)

圧電素板の相対面する両面それぞれに付着する対向電極の一方或は双方を所定の間隙を隔して分割した分割電極とした多重モード圧電フィルタ素子に於いて、
前記分割電極の間隙の間隔gは、分割電極のプレートバック(plate back)量と通過帯域幅との関係が極大を呈する値の近傍に分割電極のプレートバック量を選択したとき所望の通過帯域幅が得られるよう設定されていると共に、前記分割電極のプレートバック量は、分割電極のプレートバック量と通過帯域幅との関係が極大を呈する値の近傍に設定されていることを特徴とする多重モード圧電フィルタ素子。
In a multi-mode piezoelectric filter element in which one or both of the opposing electrodes adhering to both opposing surfaces of the piezoelectric element are divided electrodes separated by a predetermined gap,
The gap g of the gap between the divided electrodes is determined by the plate back of the divided electrodes. (back) The relationship between the amount and the pass band width is set so that a desired pass bandwidth can be obtained when the plate back amount of the divided electrode is selected near a value at which the relation between the pass electrode and the pass band is maximized. Is a multi-mode piezoelectric filter element characterized in that the relationship between the plateback amount of the split electrode and the pass bandwidth is set near a value at which a maximum is exhibited .
前記圧電素板は、薄肉の振動部と該振動部の周囲を支持する厚肉の環状囲繞部とを一体的に構成したものであって、前記振動部表面に前記対向電極を設けたことを特徴とする請求項1記載の多重モード圧電フィルタ素子。The piezoelectric element has a structure in which a thin vibrating portion and a thick annular surrounding portion supporting the periphery of the vibrating portion are integrally formed, and the counter electrode is provided on the surface of the vibrating portion. The multi-mode piezoelectric filter element according to claim 1, wherein: 所望の通過帯域幅が得られるよう前記対向電極の分割しない側の電極表面であり且つ前記分割電極の間隙真裏に相当する位置に所要量の金属が付着されていることを特徴とする請求項1及び2記載の多重モード圧電フィルタ素子。Claim 1, characterized in that it is deposited the required amount of the metal at the position corresponding to the gap directly behind the desired a dividing not side electrode surface of the counter electrode so that the pass band width is obtained and the divided electrodes and 2 multi-mode piezoelectric filter element according.
JP29085491A 1991-10-09 1991-10-09 Multi-mode piezoelectric filter element Expired - Fee Related JP3552056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29085491A JP3552056B2 (en) 1991-10-09 1991-10-09 Multi-mode piezoelectric filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29085491A JP3552056B2 (en) 1991-10-09 1991-10-09 Multi-mode piezoelectric filter element

Publications (2)

Publication Number Publication Date
JPH05102787A JPH05102787A (en) 1993-04-23
JP3552056B2 true JP3552056B2 (en) 2004-08-11

Family

ID=17761354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29085491A Expired - Fee Related JP3552056B2 (en) 1991-10-09 1991-10-09 Multi-mode piezoelectric filter element

Country Status (1)

Country Link
JP (1) JP3552056B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929555A (en) * 1996-04-16 1999-07-27 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator and method for fabricating the same

Also Published As

Publication number Publication date
JPH05102787A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
US4447753A (en) Miniature GT-cut quartz resonator
US4443728A (en) GT-Cut quartz resonator
US4456850A (en) Piezoelectric composite thin film resonator
GB2072943A (en) Piezo-electric crystal vibrator
GB2091486A (en) Piezo-electric tuning fork resonator
US4771202A (en) Tuning fork resonator
GB2117968A (en) Gt-cut piezo-electric resonator
US5307034A (en) Ultrathin multimode quartz crystal filter element
US4649310A (en) Piezoelectric vibrating element
US7888849B2 (en) Piezoelectric resonator and method for producing the same
JP3552056B2 (en) Multi-mode piezoelectric filter element
JP4577041B2 (en) Method for adjusting frequency of piezoelectric vibrator
GB1594980A (en) Tuning fork-type quartz crystal vibrator and method of forming the same
US4617488A (en) Composite piezoelectric vibrator with trapezoidal cross section
JPH02301210A (en) Frequency adjustment method for surface acoustic wave device
JP4531953B2 (en) Small rectangular piezoelectric vibrator
JPS6192010A (en) Vapor deposition mask
JP3255456B2 (en) Manufacturing method of ultra-thin piezoelectric resonator element plate
JPS6019843B2 (en) Thickness shear oscillator
JP2004228674A (en) Piezoelectric filter
JP3454589B2 (en) Piezoelectric device and method of manufacturing the same
JPS5852366B2 (en) Havasu Berria Tsuden Shindoushi
JPH0238008B2 (en)
JPS62239707A (en) Crystal resonator
JPS58137319A (en) High frequency piezoelectric oscillator

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees