JPH09162376A - Dielectric isolation substrate manufacturing method - Google Patents

Dielectric isolation substrate manufacturing method

Info

Publication number
JPH09162376A
JPH09162376A JP31986795A JP31986795A JPH09162376A JP H09162376 A JPH09162376 A JP H09162376A JP 31986795 A JP31986795 A JP 31986795A JP 31986795 A JP31986795 A JP 31986795A JP H09162376 A JPH09162376 A JP H09162376A
Authority
JP
Japan
Prior art keywords
insulating film
layer
semiconductor layer
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31986795A
Other languages
Japanese (ja)
Other versions
JP3588882B2 (en
Inventor
Atsuo Hirabayashi
温夫 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31986795A priority Critical patent/JP3588882B2/en
Publication of JPH09162376A publication Critical patent/JPH09162376A/en
Application granted granted Critical
Publication of JP3588882B2 publication Critical patent/JP3588882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid the isolation voltage drop at isolating grooves. SOLUTION: A first insulation film 2 and semiconductor layer 3 are laminated on a support substrate 1, second insulation film 4 to be a buffer layer is laminated on a main face of the layer 3, trenches 9 are cut through this layer 3 to reach the film 2, sixth insulation film 10 is formed on the trenches 9 to be isolating grooves, and trenches are filled with a filler layer 11. Since the corners 40 of the layer 3 are covered with the layer 10, no drop of the isolation voltage never occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、低耐圧駆動の制
御回路と高耐圧素子を1チップ内に集積するパワーIC
および複数の高耐圧素子を1チップ内に集積する半導体
装置を形成する誘電体分離基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power IC in which a low breakdown voltage drive control circuit and a high breakdown voltage element are integrated in one chip.
And a method for manufacturing a dielectric isolation substrate for forming a semiconductor device in which a plurality of high breakdown voltage elements are integrated in one chip.

【0002】[0002]

【従来の技術】従来の誘電体分離基板の製造方法を工程
順に図14から図20まで示す。支持基板31上に第1
絶縁膜32を介して半導体層33を有するSOI(Sili
con on insulator) 基板にエッチングマスク層34を形
成し、図示されていないフォトレジストを用いてパター
ンニング(ここではフォトレジストのエッチングも含
む)を行い、エッチングマスク層34を開口する(図1
4)。これをマスクとして半導体層33表面から第1絶
縁膜32に到達する分離溝となるトレンチ35をリアク
ティブイオンエッチング(RIE)法(ドライエッチン
グ法)により形成する(図15)。このとき半導体層3
3の厚さは10μm程度でトレンチ35の溝幅は2〜6
μmである。次にエッチングマスク層34をフッ化水素
酸水溶液で除去する(図16)。このときトレンチ35
の底部の第1絶縁膜32も若干エッチングされるがこの
図では省略した。この後、熱酸化により2回目の絶縁膜
である第8絶縁膜36(後述の実施例の第6絶縁膜10
に相当する)を形成し(図17)、充填層37によりト
レンチ35内を充填する(図18)。この際、トレンチ
35部以外の第8絶縁膜36上にも充填層37が被着す
る。第8絶縁層36の厚さは1μmであり、充填層37
には多結晶シリコンが用いられ、その厚さは1〜3.5
μmである。さらに、プラズマエッチング法により、表
面に被着した充填層37をエッチバック(エッチングで
除去する)して第8絶縁膜36を露出させる(図1
9)。その後パターンニングされたフォトレジストをマ
スクとしてフッ化水素酸水溶液でトレンチ35部とその
近傍の第8絶縁膜36を残留させ、それ以外の領域の第
8絶縁膜35を除去し、素子形成領域の半導体層33を
露出させ誘電体分離基板が完成する(図20)。
2. Description of the Related Art A conventional method for manufacturing a dielectric isolation substrate is shown in the order of steps from FIGS. First on the support substrate 31
An SOI (Silicon) having a semiconductor layer 33 via an insulating film 32
(on insulator) The etching mask layer 34 is formed on the substrate, and patterning (including etching of the photoresist here) is performed using a photoresist (not shown) to open the etching mask layer 34 (FIG. 1).
4). Using this as a mask, a trench 35, which serves as an isolation groove reaching the first insulating film 32 from the surface of the semiconductor layer 33, is formed by a reactive ion etching (RIE) method (dry etching method) (FIG. 15). At this time, the semiconductor layer 3
3 has a thickness of about 10 μm and the trench 35 has a groove width of 2 to 6
μm. Next, the etching mask layer 34 is removed with a hydrofluoric acid aqueous solution (FIG. 16). At this time, the trench 35
Although the first insulating film 32 at the bottom of the is also slightly etched, it is omitted in this figure. After that, an eighth insulating film 36 (a sixth insulating film 10 of an example described later) which is a second insulating film is formed by thermal oxidation.
Is formed (FIG. 17), and the trench 35 is filled with the filling layer 37 (FIG. 18). At this time, the filling layer 37 is also deposited on the eighth insulating film 36 other than the trench 35. The thickness of the eighth insulating layer 36 is 1 μm, and the filling layer 37 is
Polycrystalline silicon is used for and its thickness is 1 to 3.5.
μm. Further, the filling layer 37 deposited on the surface is etched back (removed by etching) by the plasma etching method to expose the eighth insulating film 36 (FIG. 1).
9). Then, using the patterned photoresist as a mask, the eighth insulating film 36 in the trench 35 and its vicinity is left with a hydrofluoric acid aqueous solution, and the eighth insulating film 35 in the other regions is removed to remove the element forming region. The semiconductor layer 33 is exposed to complete the dielectric isolation substrate (FIG. 20).

【0003】[0003]

【発明が解決しようとする課題】図20に示す第8絶縁
膜36の除去工程において、フォトレジストによりトレ
ンチ35上部を被覆し、この領域の第8絶縁膜36を残
さなければならない。しかし、フォトレジストと第8絶
縁膜36との密着性が必ずしも良好でないため、フッ化
水素酸水溶液でエッチングすると、フォトレジストと第
8絶縁膜36との界面からエッチング液が浸透し、第8
絶縁層36はエッチングされ半導体層33の表面とトレ
ンチ35の上部の半導体層33のコーナー部40(円
内)が露出してしまう(図21)。このためトレンチ3
5で分離された対向する半導体層33間の絶縁耐圧すな
わち分離耐圧が低下する不都合が生じる。実験によれ
ば、コーナー部40が第8絶縁膜36で被覆される場合
に比べ、露出していると分離耐圧は700Vから400
V以下へと低下する。高耐圧素子と低耐圧の制御回路を
1チップに集積する場合、この分離耐圧の低下により、
高耐圧化が困難であり、また本来必要としていた制御回
路の機能が得られなくなり、信頼性の低下を招くという
不都合が生じる。
In the step of removing the eighth insulating film 36 shown in FIG. 20, the upper portion of the trench 35 must be covered with photoresist to leave the eighth insulating film 36 in this region. However, since the adhesiveness between the photoresist and the eighth insulating film 36 is not always good, the etching liquid permeates from the interface between the photoresist and the eighth insulating film 36 when etching with a hydrofluoric acid aqueous solution, and
The insulating layer 36 is etched to expose the surface of the semiconductor layer 33 and the corner portion 40 (in the circle) of the semiconductor layer 33 above the trench 35 (FIG. 21). For this reason trench 3
There is a problem that the insulation breakdown voltage between the opposing semiconductor layers 33 separated in step 5, that is, the separation breakdown voltage decreases. According to the experiment, compared with the case where the corner portion 40 is covered with the eighth insulating film 36, the isolation breakdown voltage is 700 V to 400 V when exposed.
It drops below V. When a high breakdown voltage element and a low breakdown voltage control circuit are integrated on a single chip, this separation breakdown voltage decreases
It is difficult to increase the breakdown voltage, and the originally required function of the control circuit cannot be obtained, which causes a problem that reliability is lowered.

【0004】この発明の目的は、前記の課題を解決し
て、設計通りの分離耐圧が得られ、高信頼性の半導体装
置を製作できる誘電体分離基板の製造方法を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a dielectric isolation substrate capable of producing a highly reliable semiconductor device which can obtain an isolation breakdown voltage as designed.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
めに、支持基板上に第1絶縁膜および半導体層が積層さ
れ、該半導体層の主面にバッファ層となる第2絶縁膜、
半導体層を酸化から防ぐ耐酸化層となる第3絶縁膜、エ
ッチングストップ層となる第4絶縁膜および素子形成の
平面領域を規定する素子領域規定層をそれぞれ積層する
前工程と、後工程で素子を形成する領域に素子領域規定
層を残留させる工程と、第4絶縁膜上および素子領域規
定層上にエッチングマスク層となる第5絶縁膜を被覆す
る工程と、半導体層に分離溝を形成するために第5絶縁
膜、第4絶縁膜、第3絶縁膜および第2絶縁膜のそれぞ
れを貫通する孔を開ける工程と、第1絶縁膜に到達する
分離溝を半導体層に形成する工程と、第5絶縁膜を除去
する工程と、素子領域規定層をマスクとして第3絶縁膜
を除去する工程と、分離溝の側壁と第2絶縁膜露出部と
に第6絶縁膜を形成するための工程と、分離溝を埋める
ための充填層を堆積する工程と、分離溝に充填層を残留
させる工程とを含む工程とする。
In order to achieve the above object, a first insulating film and a semiconductor layer are laminated on a supporting substrate, and a second insulating film serving as a buffer layer is formed on the main surface of the semiconductor layer.
A third insulating film that serves as an oxidation resistant layer that prevents the semiconductor layer from being oxidized, a fourth insulating film that serves as an etching stop layer, and an element region defining layer that defines a planar region for forming the device are laminated respectively in a pre-process and a post-process. A step of leaving the element region defining layer in the region where the film is formed, a step of covering the fourth insulating film and the element region defining layer with a fifth insulating film serving as an etching mask layer, and forming a separation groove in the semiconductor layer. A step of forming a hole penetrating each of the fifth insulating film, the fourth insulating film, the third insulating film, and the second insulating film, and a step of forming a separation groove reaching the first insulating film in the semiconductor layer, A step of removing the fifth insulating film, a step of removing the third insulating film using the element region defining layer as a mask, and a step of forming a sixth insulating film on the sidewall of the isolation trench and the exposed portion of the second insulating film. And a packing layer to fill the separation groove. A step of, the process comprising a step of leaving a packed bed separation grooves.

【0006】この分離溝に充填層を残留させる工程の後
に、充填層の表面を酸化する工程と、第3絶縁膜および
第4絶縁膜とを除去する工程とを追加してもよい。前記
の半導体層が単結晶シリコンで形成され、第2絶縁膜お
よび第4絶縁膜が酸化シリコン膜で形成され、第3絶縁
膜が窒化シリコン膜で形成され、素子領域規定層および
充填層が多結晶シリコンで形成されるとよい。
After the step of leaving the filling layer in the isolation trench, a step of oxidizing the surface of the filling layer and a step of removing the third insulating film and the fourth insulating film may be added. The semiconductor layer is formed of single crystal silicon, the second insulating film and the fourth insulating film are formed of a silicon oxide film, the third insulating film is formed of a silicon nitride film, and the element region defining layer and the filling layer are multi-layered. It is preferably formed of crystalline silicon.

【0007】この製造方法を採用することで、前記の半
導体層のコーナー部は第6絶縁膜で確実に被覆でき、分
離溝部での分離耐圧の低下を防止できる。
By adopting this manufacturing method, the corner portion of the semiconductor layer can be surely covered with the sixth insulating film, and the isolation breakdown voltage in the isolation trench portion can be prevented from lowering.

【0008】[0008]

【発明の実施の形態】図1から図12まではこの発明の
一実施例の製造方法で、工程順に示す。支持基板1上に
第1絶縁膜2を介して形成した半導体層3の主表面上に
バッファ層となる第2絶縁膜4、半導体層を酸化から防
ぐ耐酸化層となる第3絶縁膜5、エッチングストップ層
となる第4絶縁膜6および素子形成の平面領域を規定す
る素子領域規定層7をそれぞれ積層する(図1)。この
実施例においては支持基板1に単結晶シリコン板を用
い、半導体層3は単結晶シリコンで10μmの厚みに形
成され、第1絶縁膜2は酸化シリコンで2μmの厚さに
形成され、第2絶縁膜4は酸化シリコンで35nmの厚
さに形成され、第3絶縁膜5は窒化シリコンを減圧CV
D法で0.12μmの厚さに堆積させて形成され、第4
絶縁膜6は酸化シリコンを減圧CVD法で0.12μm
の厚さに堆積させて形成され、素子領域規定層7は多結
晶シリコンを減圧CVD法で0.3μmの厚さに堆積さ
せて形成される。
1 to 12 show a manufacturing method according to an embodiment of the present invention, which will be described in the order of steps. A second insulating film 4 serving as a buffer layer on the main surface of the semiconductor layer 3 formed on the supporting substrate 1 via the first insulating film 2, a third insulating film 5 serving as an oxidation resistant layer for preventing the semiconductor layer from being oxidized, A fourth insulating film 6 serving as an etching stop layer and an element region defining layer 7 that defines a planar region for device formation are laminated (FIG. 1). In this embodiment, a single crystal silicon plate is used for the support substrate 1, the semiconductor layer 3 is formed of single crystal silicon to a thickness of 10 μm, the first insulating film 2 is formed of silicon oxide to a thickness of 2 μm, The insulating film 4 is formed of silicon oxide to a thickness of 35 nm, and the third insulating film 5 is formed of silicon nitride under reduced pressure CV.
Formed by depositing to a thickness of 0.12 μm by the D method,
The insulating film 6 is made of silicon oxide with a low pressure CVD method of 0.12 μm.
The element region defining layer 7 is formed by depositing polycrystalline silicon to a thickness of 0.3 μm by the low pressure CVD method.

【0009】つぎにフォトレジストを用いたパターンニ
ングおよびドライエッチングにより素子を形成する領域
の半導体層3上の第4絶縁膜6表面に素子領域規定層7
を残留させる(図2)。分離溝となるトレンチを形成す
る際のエッチングマスクとなる第5絶縁膜8(エッチマ
スク層)は減圧CVD法で1.5μmの酸化シリコンを
堆積させて形成される(図3)。トレンチを形成する領
域9aにフォトレジストを用いてパターンニングを施
し、第5絶縁膜8および第4絶縁膜6、第3絶縁膜5お
よび第2絶縁膜4をそれぞれリアクティブイオンエッチ
ング法(RIE法)で開口する(図4)。このときの開
口幅は2μm程度である。
Next, the device region defining layer 7 is formed on the surface of the fourth insulating film 6 on the semiconductor layer 3 in the region where the device is formed by patterning using a photoresist and dry etching.
Remain (FIG. 2). The fifth insulating film 8 (etch mask layer), which serves as an etching mask when forming the trench to be the isolation groove, is formed by depositing silicon oxide of 1.5 μm by the low pressure CVD method (FIG. 3). The region 9a where the trench is to be formed is patterned by using a photoresist, and the fifth insulating film 8 and the fourth insulating film 6 and the third insulating film 5 and the second insulating film 4 are respectively subjected to the reactive ion etching method (RIE method). ) To open (Fig. 4). The opening width at this time is about 2 μm.

【0010】つぎに開口した第5絶縁膜8をマスクとし
て第1絶縁膜2に到達するトレンチ9をリアクティブイ
オンエッチング法により形成する(図5)。この第5絶
縁膜8をフッ化水素酸水溶液またはドライエッチング法
で除去する(図6)。このとき素子領域規定層7直下以
外の第4絶縁膜6も除去する。つぎに素子領域規定層7
および第4絶縁膜6をマスクとして、130℃に加熱し
た熱燐酸溶液で第3絶縁膜5を除去し、素子形成領域に
のみ第3絶縁膜5を残留させる。その後リアクティブイ
オンエッチング法により素子領域規定層7を除去する
(図7)。このとき素子領域規定層7との選択性の低い
ドライエッチング条件を用い、第3絶縁膜5と素子領域
規定層7の両者を同時に除去してもよい。このとき第3
絶縁膜5の実質的なエッチングマスクは第4絶縁膜6と
して用いた酸化シリコン膜である。
Next, a trench 9 reaching the first insulating film 2 is formed by the reactive ion etching method using the opened fifth insulating film 8 as a mask (FIG. 5). The fifth insulating film 8 is removed by a hydrofluoric acid aqueous solution or a dry etching method (FIG. 6). At this time, the fourth insulating film 6 other than immediately below the element region defining layer 7 is also removed. Next, the element region defining layer 7
Using the fourth insulating film 6 as a mask, the third insulating film 5 is removed with a hot phosphoric acid solution heated to 130 ° C., and the third insulating film 5 is left only in the element formation region. After that, the element region defining layer 7 is removed by the reactive ion etching method (FIG. 7). At this time, both the third insulating film 5 and the element region defining layer 7 may be removed at the same time by using dry etching conditions having low selectivity with the device region defining layer 7. At this time the third
The substantial etching mask of the insulating film 5 is the silicon oxide film used as the fourth insulating film 6.

【0011】つぎに熱酸化法により第3絶縁膜5が除去
された半導体層3に第6絶縁膜10を選択的に形成する
(図8)。この第6絶縁膜10の膜厚は0.8〜1.0
μmである。トレンチ9部の空隙を埋め込むため、充填
層11を0.5〜1.0μm堆積する(図9)。充填層
11には段差被覆性の優れた減圧CVD法による多結晶
シリコンを用いた。つぎにフォトレジストを用いたパタ
ーンニングによりトレンチ9部とその上部にのみ充填層
11を残留させ、他の領域に被着した充填層11を除去
する(図10)。
Next, the sixth insulating film 10 is selectively formed on the semiconductor layer 3 from which the third insulating film 5 has been removed by the thermal oxidation method (FIG. 8). The thickness of the sixth insulating film 10 is 0.8 to 1.0.
μm. A filling layer 11 is deposited in a thickness of 0.5 to 1.0 μm to fill the void in the trench 9 (FIG. 9). The filling layer 11 is made of polycrystalline silicon by the low pressure CVD method, which has excellent step coverage. Then, the filling layer 11 is left only in the trench 9 and its upper portion by patterning using a photoresist, and the filling layer 11 deposited on other regions is removed (FIG. 10).

【0012】つぎに熱酸化法により前記残留の充填層1
1の上部を酸化し、第7絶縁膜12を形成する(図1
1)。最後に表面の第4絶縁膜6をフッ化水素酸水溶液
またはドライエッチングにより除去し、さらに第3絶縁
膜5をドライエッチング法で除去する(図12)。この
とき第7絶縁膜12の表面層もエッチングされ薄くな
る。
Next, the remaining packed bed 1 is formed by a thermal oxidation method.
1 is oxidized to form the seventh insulating film 12 (see FIG. 1).
1). Finally, the fourth insulating film 6 on the surface is removed by a hydrofluoric acid aqueous solution or dry etching, and further the third insulating film 5 is removed by a dry etching method (FIG. 12). At this time, the surface layer of the seventh insulating film 12 is also etched and thinned.

【0013】以降は素子形成工程に従い、例えば高耐圧
ICを構成する各要素素子および配線を形成する(図1
3)。同図では一例としてpチャネルMOSFET17
とnチャネルMOSFET18が形成された図を示す。
ゲート電極14上に層間絶縁膜13を被覆し、金属電極
15をソース領域上に形成し、これらの表面を最終保護
膜16で被覆する。図示されていないがドレイン電極は
金属電極15(ソース電極)と同じ側に形成される。
Thereafter, in accordance with the element forming process, for example, each element element and wiring forming a high breakdown voltage IC are formed (see FIG. 1).
3). In the figure, as an example, p-channel MOSFET 17
And the n-channel MOSFET 18 is formed.
The gate electrode 14 is covered with the interlayer insulating film 13, the metal electrode 15 is formed on the source region, and the surface thereof is covered with the final protective film 16. Although not shown, the drain electrode is formed on the same side as the metal electrode 15 (source electrode).

【0014】以上説明したように、この発明の製造方法
では、第6絶縁膜10を選択的に形成するため、前記で
説明した分離溝と隣接する半導体層のコーナー部40
(図12の円内)が露出することはなく、必ず第6絶縁
膜10で被覆されているため、分離耐圧は設計通りの7
00Vが得られた。尚、この第6絶縁膜10は半導体層
3に形成される要素素子の活性領域以外の領域を被覆す
る絶縁膜(例えば層間絶縁膜など)としても利用でき
る。
As described above, in the manufacturing method of the present invention, since the sixth insulating film 10 is selectively formed, the corner portion 40 of the semiconductor layer adjacent to the isolation trench described above is formed.
(Circle in FIG. 12) is not exposed and is always covered with the sixth insulating film 10. Therefore, the isolation breakdown voltage is 7 as designed.
00V was obtained. The sixth insulating film 10 can also be used as an insulating film (for example, an interlayer insulating film) that covers regions other than the active regions of the element elements formed in the semiconductor layer 3.

【0015】この実施例では誘電体分離基板を製造する
工程と、各要素素子形成の不純物拡散工程とを分けてい
るが、要素素子としての所望の拡散深さや表面濃度が得
られるならば、分離溝であるトレンチ9を形成する前
に、要素素子形成のための不純物をイオン注入する工程
を入れてもよい。
In this embodiment, the step of manufacturing the dielectric isolation substrate and the impurity diffusion step of forming each element element are separated, but if the desired diffusion depth and surface concentration as the element element can be obtained, the isolation step is performed. Before forming the trench 9 which is a groove, a step of ion-implanting impurities for forming element elements may be performed.

【0016】[0016]

【発明の効果】この発明において、分離溝であるトレン
チ部の壁面とそれに隣接する半導体層のコーナー部に第
6絶縁膜を選択酸化法で形成することで、コーナー部が
確実に第6絶縁膜で被覆され、設計通りの分離耐圧を得
ることができる。そのため、この製造方法で製作された
誘電体分離基板を使用することで、高耐圧素子と低耐圧
の制御回路を1チップに集積する場合でも必要とする機
能が設計通りに得られ、半導体装置の高信頼化が図れ
る。また半導体装置の高耐圧化も可能となる。
According to the present invention, the sixth insulating film is formed on the wall surface of the trench portion which is the separation groove and the corner portion of the semiconductor layer adjacent thereto by the selective oxidation method, so that the corner portion can be surely formed. And the isolation withstand voltage as designed can be obtained. Therefore, by using the dielectric isolation substrate manufactured by this manufacturing method, the required functions can be obtained as designed even when the high breakdown voltage element and the low breakdown voltage control circuit are integrated on one chip, and the semiconductor device of the semiconductor device can be manufactured. High reliability can be achieved. Further, it is possible to increase the breakdown voltage of the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の製造方法を示す工程図FIG. 1 is a process diagram showing a manufacturing method according to an embodiment of the present invention.

【図2】図1に続く製造方法を示す工程図FIG. 2 is a process drawing showing the manufacturing method following FIG.

【図3】図2に続く製造方法を示す工程図FIG. 3 is a process drawing showing the manufacturing method following FIG.

【図4】図3に続く製造方法を示す工程図FIG. 4 is a process drawing showing the manufacturing method following FIG.

【図5】図4に続く製造方法を示す工程図FIG. 5 is a process drawing showing the manufacturing method following FIG.

【図6】図5に続く製造方法を示す工程図FIG. 6 is a process drawing showing the manufacturing method following FIG. 5;

【図7】図6に続く製造方法を示す工程図FIG. 7 is a process drawing showing the manufacturing method following FIG. 6;

【図8】図7に続く製造方法を示す工程図FIG. 8 is a process drawing showing the manufacturing method following FIG.

【図9】図8に続く製造方法を示す工程図FIG. 9 is a process drawing showing the manufacturing method following FIG. 8;

【図10】図9に続く製造方法を示す工程図FIG. 10 is a process drawing showing the manufacturing method following FIG. 9;

【図11】図10に続く製造方法を示す工程図11 is a process drawing showing the manufacturing method following FIG. 10. FIG.

【図12】図11に続く製造方法を示す工程図FIG. 12 is a process drawing showing the manufacturing method following FIG. 11.

【図13】要素素子を形成した要部断面図FIG. 13 is a cross-sectional view of a main part where element elements are formed.

【図14】従来の製造方法を示す工程図FIG. 14 is a process diagram showing a conventional manufacturing method.

【図15】図14に続く製造方法を示す工程図FIG. 15 is a process drawing showing the manufacturing method following FIG.

【図16】図15に続く製造方法を示す工程図16 is a process drawing showing the manufacturing method following FIG. 15. FIG.

【図17】図16に続く製造方法を示す工程図FIG. 17 is a process drawing showing the manufacturing method following FIG. 16;

【図18】図17に続く製造方法を示す工程図FIG. 18 is a process drawing showing the manufacturing method following FIG. 17;

【図19】図18に続く製造方法を示す工程図FIG. 19 is a process drawing showing the manufacturing method following FIG. 18;

【図20】図19に続く製造方法を示す工程図FIG. 20 is a process drawing showing the manufacturing method following FIG. 19;

【図21】従来の製造方法で半導体層のコーナー部が露
出した図
FIG. 21 is a view in which a corner portion of a semiconductor layer is exposed by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 支持基板 2 第1絶縁膜 3 半導体層 4 第2絶縁膜 5 第3絶縁膜 6 第4絶縁膜 7 素子領域規定層 8 第5絶縁膜 9 トレンチ 10 第6絶縁膜 11 充填層 12 第7絶縁膜 13 層間絶縁膜 14 ゲート電極 15 金属電極 16 最終保護膜 17 pチャネルMOSFET 18 nチャネルMOSFET 31 支持基板 32 第1絶縁膜 33 半導体層 34 エッチングマスク層 35 トレンチ 36 第8絶縁膜 37 充填層 40 半導体層のコーナー部 1 Support Substrate 2 First Insulating Film 3 Semiconductor Layer 4 Second Insulating Film 5 Third Insulating Film 6 Fourth Insulating Film 7 Element Area Defining Layer 8 Fifth Insulating Film 9 Trench 10 Sixth Insulating Film 11 Filling Layer 12 Seventh Insulation Film 13 Interlayer insulating film 14 Gate electrode 15 Metal electrode 16 Final protective film 17 p-channel MOSFET 18 n-channel MOSFET 31 Support substrate 32 First insulating film 33 Semiconductor layer 34 Etching mask layer 35 Trench 36 Eighth insulating film 37 Filling layer 40 Semiconductor Layer corners

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】支持基板上に第1絶縁膜および半導体層が
積層され、該半導体層の主面にバッファ層となる第2絶
縁膜、半導体層を酸化から防ぐ耐酸化層となる第3絶縁
膜、エッチングストップ層となる第4絶縁膜および素子
形成の平面領域を規定する素子領域規定層をそれぞれ積
層する前工程と、後工程で素子を形成する領域に素子領
域規定層を残留させる工程と、第4絶縁膜上および素子
領域規定層上にエッチングマスク層となる第5絶縁膜を
被覆する工程と、半導体層に分離溝を形成するために第
5絶縁膜、第4絶縁膜、第3絶縁膜および第2絶縁膜の
それぞれを貫通する孔を開ける工程と、第1絶縁膜に到
達する分離溝を半導体層に形成する工程と、第5絶縁膜
を除去する工程と、素子領域規定層をマスクとして第3
絶縁膜を除去する工程と、分離溝の側壁と第2絶縁膜露
出部とに第6絶縁膜を形成するための工程と、分離溝を
埋めるための充填層を堆積する工程と、分離溝に充填層
を残留させる工程とを含むことを特徴とする誘電体分離
基板の製造方法。
1. A first insulating film and a semiconductor layer are laminated on a supporting substrate, a second insulating film serving as a buffer layer on the main surface of the semiconductor layer, and a third insulating serving as an oxidation resistant layer for preventing the semiconductor layer from being oxidized. A film, a fourth insulating film serving as an etching stop layer, and a device region defining layer that defines a planar region for device formation, respectively, and a process of leaving the device region defining layer in a region where a device is formed in a subsequent process. A step of covering the fourth insulating film and the element region defining layer with a fifth insulating film serving as an etching mask layer, and a fifth insulating film, a fourth insulating film, and a third insulating film for forming isolation trenches in the semiconductor layer. A step of forming a hole penetrating each of the insulating film and the second insulating film, a step of forming a separation groove reaching the first insulating film in the semiconductor layer, a step of removing the fifth insulating film, and an element region defining layer As a mask
A step of removing the insulating film, a step of forming a sixth insulating film on the side wall of the isolation groove and the exposed portion of the second insulating film, a step of depositing a filling layer for filling the isolation groove, A method of manufacturing a dielectric isolation substrate, comprising the step of leaving a filling layer.
【請求項2】分離溝に充填層を残留させる工程の後に、
充填層の表面を酸化する工程と、第3絶縁膜および第4
絶縁膜とを除去する工程とを含む請求項1記載の誘電体
分離基板の製造方法。
2. After the step of leaving the filling layer in the separation groove,
The step of oxidizing the surface of the filling layer, the third insulating film, and the fourth
The method for manufacturing a dielectric isolation substrate according to claim 1, further comprising the step of removing the insulating film.
【請求項3】半導体層が単結晶シリコンで形成され、第
2絶縁膜および第4絶縁膜が酸化シリコン膜で形成さ
れ、第3絶縁膜が窒化シリコン膜で形成され、素子領域
規定層および充填層が多結晶シリコンで形成されること
を特徴とする請求項1記載の誘電体分離基板の製造方
法。
3. A semiconductor layer is formed of single crystal silicon, a second insulating film and a fourth insulating film are formed of a silicon oxide film, a third insulating film is formed of a silicon nitride film, an element region defining layer and a filling layer. 2. The method for manufacturing a dielectric isolation substrate according to claim 1, wherein the layer is made of polycrystalline silicon.
JP31986795A 1995-12-08 1995-12-08 Manufacturing method of dielectric isolation substrate Expired - Fee Related JP3588882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31986795A JP3588882B2 (en) 1995-12-08 1995-12-08 Manufacturing method of dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31986795A JP3588882B2 (en) 1995-12-08 1995-12-08 Manufacturing method of dielectric isolation substrate

Publications (2)

Publication Number Publication Date
JPH09162376A true JPH09162376A (en) 1997-06-20
JP3588882B2 JP3588882B2 (en) 2004-11-17

Family

ID=18115126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31986795A Expired - Fee Related JP3588882B2 (en) 1995-12-08 1995-12-08 Manufacturing method of dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JP3588882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523900A (en) * 1998-08-25 2002-07-30 コミツサリア タ レネルジー アトミーク Method of manufacturing an integrated electronic circuit comprising an electronic circuit and at least one power electronic component in a substrate
JP2009238980A (en) * 2008-03-27 2009-10-15 Hitachi Ltd Semiconductor device and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610930B2 (en) 2010-08-30 2014-10-22 三菱電機株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523900A (en) * 1998-08-25 2002-07-30 コミツサリア タ レネルジー アトミーク Method of manufacturing an integrated electronic circuit comprising an electronic circuit and at least one power electronic component in a substrate
JP2009238980A (en) * 2008-03-27 2009-10-15 Hitachi Ltd Semiconductor device and its manufacturing method
EP2317555A3 (en) * 2008-03-27 2013-03-13 Hitachi, Ltd. Production method of a semiconductor device

Also Published As

Publication number Publication date
JP3588882B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP4271901B2 (en) Method of forming a semiconductor device having a gate all-around transistor
US5920108A (en) Late process method and apparatus for trench isolation
US5459354A (en) Semiconductor device with improved insulation of wiring structure from a gate electrode
US20010021567A1 (en) Method of forming device isolation structure
JPH04342165A (en) Semiconductor device and its manufacture
JPH09129877A (en) Manufacture of semiconductor device, manufacture of insulated gate semiconductor device, and insulated gate semiconductor device
KR100276953B1 (en) Semiconductor device and manufacturing method
KR100388586B1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2010103242A (en) Semiconductor device production method and semiconductor device
KR100865365B1 (en) Semiconductor device manufacturing method and semiconductor device
US7625805B2 (en) Passivation of deep isolating separating trenches with sunk covering layers
JP2002076113A (en) Semiconductor device and its manufacturing method
JPH11260908A (en) Element isolation structure for semiconductor power integrated circuit and method for manufacturing the same
JP3588882B2 (en) Manufacturing method of dielectric isolation substrate
JPS6286838A (en) Manufacture of integrated circuit
JP2001156166A (en) Manufacturing method for semiconductor device
CN100477236C (en) Semiconductor device and manufacturing method thereof
JP2007048837A (en) Manufacturing method of semiconductor device
JP3264402B2 (en) Semiconductor device
JP2011049603A (en) Semiconductor device, and method of manufacturing the same
JP2000294623A (en) Manufacture of dielectric separating substrate
JP2000031489A (en) Manufacturing semiconductor device
JP2798953B2 (en) Semiconductor device and manufacturing method thereof
JP2001144174A (en) Method of manufacturing dielectric isolation substrate
JPH0547916A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090827

LAPS Cancellation because of no payment of annual fees