JPH09162015A - Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that - Google Patents

Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that

Info

Publication number
JPH09162015A
JPH09162015A JP7322679A JP32267995A JPH09162015A JP H09162015 A JPH09162015 A JP H09162015A JP 7322679 A JP7322679 A JP 7322679A JP 32267995 A JP32267995 A JP 32267995A JP H09162015 A JPH09162015 A JP H09162015A
Authority
JP
Japan
Prior art keywords
zinc oxide
pbo
glass
zno
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7322679A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7322679A priority Critical patent/JPH09162015A/en
Publication of JPH09162015A publication Critical patent/JPH09162015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc oxide varistor, which is superior in discharge breakdown current characteristics and moreover, inhibits the reduction in a voltage nonlinearity at the time of a glass baking treatment to the minimum, by a method wherein side surface high-resistance layers consisting of a crystalline glass layer, which contains PbO containing at least a specified wt.% of SnO2 as its main component, are respectively provided on the side surfaces of a sintered body containing ZnO as its main component. SOLUTION: Side surface high-resistance layer 3 consisting of a crystalline glass layer, which contains PbO containing at least 0.1 to 5.0wt.% of a tin oxide calculated in terms of the form of SnO2 as its main component, are respectively formed on the side surfaces of a sintered body 1, which contains ZnO as its main component and has varistor characteristics in the sintered body itself. The layers 3 are constituted of a PbO-ZnO-B2 O3 -SnO2 crystalline glass layer or a PbO-ZnO-B2 O3 -SiO2 -SnO2 crystalline glass layer. The linear expansion coefficient of the crystalline glass layer is set into 65 to 90×10<-7> 1 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として電力分野に
用いられる酸化亜鉛バリスタおよびその製造方法および
それに用いる被覆用結晶化ガラス組成物に関するもので
ある。
TECHNICAL FIELD The present invention relates to a zinc oxide varistor mainly used in the field of electric power, a method for producing the same, and a crystallized glass composition for coating used therein.

【0002】[0002]

【従来の技術】ZnOを主成分とし、Bi23,Co
O,Sb23,Cr23,MnO2を始めとする種類の
金属酸化物を副成分とする酸化亜鉛バリスタは、大きな
サージ耐量と優れた電圧非直線性を有し、近年ギャップ
レスアレスタ用の素子として、従来のシリコンカーバイ
トバリスタにとって代わって広く利用されていることは
周知の通りである。
BACKGROUND OF THE INVENTION ZnO as the main component, Bi 2 O 3, Co
Zinc oxide varistor which contains a metal oxide of a kind such as O, Sb 2 O 3 , Cr 2 O 3 and MnO 2 as a sub-component has a large surge resistance and an excellent voltage non-linearity. It is well known that the conventional silicon carbide varistor has been widely used as an element for the device instead of the conventional silicon carbide varistor.

【0003】従来より酸化亜鉛バリスタの製造方法とし
て、例えば特開昭62−101002号公報などが開示
されているが、前記先行例の内容は以下の通りである。
まず、主成分のZnOに、Bi23,Sb23,Cr2
3,CoO,MnO2などの金属酸化物をそれぞれ0.
01〜6.0モル%添加した原料粉を混合、造粒し、こ
の造粒粉を円柱状に加圧、形成し、電気炉で1200
℃、6時間焼成する。次に、得られた焼結体の側面に、
PbOを60重量%含有するPbO系ガラスフリットを
80重量%と、長石を20重量%と、有機バインダーと
からなるガラスペーストを、スクリーン印刷機で5〜5
00mg/cm2塗布した後、焼付処理を行う。このように
して得られた素子の両端面を平面研磨し、アルミニウム
のメタリコン電極を形成し、酸化亜鉛バリスタを得るも
のである。
Conventionally, as a method for producing a zinc oxide varistor, for example, Japanese Unexamined Patent Publication (Kokai) No. 62-101002 has been disclosed. The contents of the above-mentioned prior art are as follows.
First, ZnO as a main component is mixed with Bi 2 O 3 , Sb 2 O 3 , and Cr 2
Metal oxides such as O 3 , CoO, and MnO 2 are added to each of 0.
The raw material powder added with 01 to 6.0 mol% was mixed and granulated, and the granulated powder was pressed and formed into a columnar shape, and then 1200 mm in an electric furnace.
Baking for 6 hours at ℃. Next, on the side surface of the obtained sintered body,
A glass paste consisting of 80% by weight of PbO-based glass frit containing 60% by weight of PbO, 20% by weight of feldspar and an organic binder was used in a screen printing machine for 5 to 5%.
After applying 00 mg / cm 2 , baking treatment is performed. The both end faces of the element thus obtained are polished in a plane, an aluminum metallikon electrode is formed, and a zinc oxide varistor is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来の製造方法による酸化亜鉛バリスタは、スクリーン印
刷法を用いるため、側面ガラス層の厚みが均一に形成さ
れ、放電耐量特性のバラツキが小さいという長所を持つ
ものの、PbO系ガラスフリットと長石のコンポジット
ガラスであるため、放電耐量特性が低く、またガラス焼
付処理時に電圧非直線性が低下し、課電寿命特性も悪化
するという欠点を有していた。
However, since the zinc oxide varistor according to the above-mentioned conventional manufacturing method uses the screen printing method, the side glass layer is formed to have a uniform thickness and the variation in discharge withstand voltage characteristics is small. However, since it is a composite glass of PbO-based glass frit and feldspar, it has the drawbacks of low discharge withstand characteristic, voltage non-linearity at the time of glass baking treatment, and deterioration of voltage application life characteristic.

【0005】本発明は前記従来の課題を解決するもの
で、高信頼性の酸化亜鉛バリスタおよびその製造方法、
さらに酸化物系セラミック一般に用いられる被覆用結晶
化ガラス組成物を提供することを目的とするものであ
る。
The present invention solves the above-mentioned conventional problems, and provides a highly reliable zinc oxide varistor and its manufacturing method,
Another object of the present invention is to provide a crystallized glass composition for coating which is generally used for oxide ceramics.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明は、ZnOを主成分とする焼結体の側面に、少
なくともSnO2を0.1〜5.0重量%含むPbOを
主成分とする結晶化ガラスからなる側面高抵抗層を有す
る構成としたものである。また、前記焼結体の側面に少
なくともSnO2を0.1〜5.0重量%含むPbOを
主成分とする結晶化ガラスと有機バインダーからなるガ
ラスペーストを10.0〜150.0mg/cm2塗布し、
450〜650℃の温度範囲にて焼付処理し、側面高抵
抗層を形成するものである。
To achieve this object, the present invention mainly comprises PbO containing 0.1 to 5.0 wt% of SnO 2 on the side surface of a sintered body containing ZnO as a main component. The structure has a side surface high resistance layer made of crystallized glass as a component. Further, a glass paste composed of crystallized glass containing PbO as a main component containing 0.1 to 5.0% by weight of SnO 2 and an organic binder is provided on the side surface of the sintered body in an amount of 10.0 to 150.0 mg / cm 2. Apply
A side surface high resistance layer is formed by baking in a temperature range of 450 to 650 ° C.

【0007】さらに、側面高抵抗層用の少なくともSn
2を0.1〜5.0重量%含むPbO−ZnO−B2
3−SiO2−SnO2系の酸化物セラミック被覆用の結
晶化ガラス組成物を提供するものである。
Further, at least Sn for the side surface high resistance layer is used.
The O 2 containing 0.1 to 5.0 wt% PbO-ZnO-B 2 O
Provided is a crystallized glass composition for coating a 3- SiO 2 —SnO 2 -based oxide ceramic.

【0008】[0008]

【発明の実施の形態】本発明の請求項1によれば、Pb
O−長石系コンポジットガラスに較べ、PbOを主成分
とする結晶化ガラスは、SnO2の添加により結晶化が
促進され、SiO2の添加により被覆膜の強度が向上
し、焼結体との密着性もよいため放電耐量特性に優れ、
さらに絶縁性も高いため、焼付処理時の電圧非直線性の
低下を最小限に抑えることが可能となり、課電寿命特性
にも優れた高信頼性の酸化亜鉛バリスタを得ることがで
きる。
According to claim 1 of the present invention, Pb
Compared with O- feldspar-based composite glass, crystallized glass as a main component of PbO, the crystallization is promoted by the addition of SnO 2, with the addition of SiO 2 and strength of the coating film, the sintered body Good adhesion and excellent discharge withstand characteristics,
Further, since the insulating property is also high, it is possible to minimize the decrease in the voltage non-linearity during the baking process, and it is possible to obtain a highly reliable zinc oxide varistor which is excellent in the electric charge life characteristic.

【0009】[0009]

【実施例】以下、本発明の一実施例の酸化亜鉛バリスタ
およびその製造方法、さらに被覆用結晶化ガラス組成物
について実施例に基づき詳細に説明する。
EXAMPLES Hereinafter, a zinc oxide varistor, a method for producing the same, and a coated crystallized glass composition of one example of the present invention will be described in detail based on examples.

【0010】まず、ZnOの粉末に合計量に対し、Bi
23 0.5モル%、Co23 0.5モル%、MnO
2 0.5モル%、Sb23 1.0モル%、Cr23
0.5モル%、NiO 0.5モル%、SiO2
0.5モル%を加え、純水、バインダー、分散剤ととも
に例えばボールミルにて充分に混合、粉砕した後、スプ
レードライヤーにて乾燥、造粒して原料粉を得た。この
原料粉を直径40mm、厚さ30mmの大きさに圧縮成形
し、500℃以上の温度条件にて脱脂処理した。その
後、1100〜1250℃の温度範囲で焼成し、焼結体
を得た。
First, for the total amount of ZnO powder, Bi
2 O 3 0.5 mol%, Co 2 O 3 0.5 mol%, MnO
2 0.5 mol%, Sb 2 O 3 1.0 mol%, Cr 2 O 3
0.5 mol%, NiO 0.5 mol%, SiO 2
0.5 mol% was added, thoroughly mixed with pure water, a binder, and a dispersant by, for example, a ball mill, pulverized, dried by a spray dryer and granulated to obtain a raw material powder. This raw material powder was compression molded into a size of 40 mm in diameter and 30 mm in thickness, and degreased at a temperature of 500 ° C. or higher. Then, it baked in the temperature range of 1100-1250 degreeC, and obtained the sintered compact.

【0011】一方、被覆用結晶化ガラスは、PbO,Z
nO,B23,SiO2,SnO2を所定量秤量し、例え
ばボールミルにて混合、粉砕した後、白金ルツボにて1
000〜1200℃の温度条件で溶融し、急冷してガラ
ス化させた。このガラスを粗粉砕した後、ボールミルに
て微粉砕し、ガラスフリットを得た。なお、比較検討用
試料としてPbO 70.0重量%、ZnO 25.0
重量%、B23 5.0重量%からなるガラフスリット
80.0重量%と長石(長石はKAlSi38,NaA
lSi38,CaAl2Si28の固溶体)20.0重
量%からなるコンポジットガラスを同様の工程で作製し
た。
On the other hand, the crystallized glass for coating is made of PbO, Z
A predetermined amount of nO, B 2 O 3 , SiO 2 , and SnO 2 is weighed, mixed and crushed by, for example, a ball mill, and then mixed with a platinum crucible.
It was melted under the temperature condition of 000 to 1200 ° C. and rapidly cooled to be vitrified. This glass was roughly crushed and then finely crushed with a ball mill to obtain a glass frit. As a sample for comparison, PbO 70.0 wt%, ZnO 25.0
80.0% by weight of Garraf slit consisting of 5.0% by weight of B 2 O 3 and feldspar (feldspar is KAlSi 3 O 8 , NaA
A composite glass composed of 10.0 wt% of 1Si 3 O 8 and CaAl 2 Si 2 O 8 as a solid solution was prepared in the same process.

【0012】以上のように作製したガラスフリットの、
組成およびガラス転移点Tg、線膨脹係数αおよび結晶
性を下記の(表1)に示した。
Of the glass frit produced as described above,
The composition, glass transition point Tg, linear expansion coefficient α and crystallinity are shown in the following (Table 1).

【0013】なお、(表1)においてガラス転移点Tg
および線膨脹係数αは熱分析装置を用いて測定した。ま
た、結晶性は金属顕微鏡あるいは電子顕微鏡によりガラ
スの表面状態を観察し、結晶性の高い試料については○
印で、全く結晶の見られないものについては×印で表示
した。
In Table 1, the glass transition point Tg
The linear expansion coefficient α was measured by using a thermal analyzer. For crystallinity, observe the surface condition of glass with a metallographic microscope or electron microscope.
The mark indicates that no crystal was observed, and the mark indicates x.

【0014】[0014]

【表1】 [Table 1]

【0015】(表1)よりPbOの添加量が多い場合、
線膨脹係数αが高くなり、ZnOの添加量が多い場合、
ガラス転移点Tgが低くなり結晶化しやすくなる。ま
た、B 23の添加量が多い場合、ガラス転移点Tgが高
くなり、添加量が15.0重量%を超えた場合には結晶
化しにくくなる。さらに、SiO2の添加量が多くなる
に従いガラス転移点Tgは高くなる傾向があり、線膨脹
係数αは低くなる傾向がある。そして、SnO2の添加
量が増加するに従いガラスの結晶化が進行した。また、
PbO,B23が少ない系ではポーラスなガラスとなり
易かった。
When the amount of PbO added is larger than that shown in Table 1,
When the linear expansion coefficient α becomes high and the amount of ZnO added is large,
The glass transition point Tg becomes low, and crystallization becomes easy. Ma
B TwoOThreeWhen the addition amount of is large, the glass transition point Tg is high.
When the addition amount exceeds 15.0% by weight, crystals
It is difficult to convert. Furthermore, SiOTwoIncrease the amount of
Accordingly, the glass transition point Tg tends to increase and the linear expansion
The coefficient α tends to be low. And SnOTwoAddition of
Crystallization of the glass proceeded as the amount increased. Also,
PbO, BTwoOThreeIn a system with few
It was easy.

【0016】次に、このガラスフリット85重量%と、
有機バインダー(エチルセルロース、ブチルカルビトー
ルアセテートの混合物)15重量%を、例えば三本ロー
ルミルにて充分に混合し、被覆用ガラスペーストを得
た。この被覆用ガラスペーストを、例えば曲面スクリー
ン印刷機にて125〜250メッシュのスクリーンを用
いて前記焼結体の側面に印刷した。ここで、被覆用ガラ
スペーストの塗布量はペーストを塗布した後、150℃
で30分間乾燥して焼結体の重量差から求めた。また、
塗布量は被覆用ガラスペーストに有機バインダー、酢酸
n−ブチルを添加して調整した。その後、350〜70
0℃の温度条件にて被覆用ガラスペーストの焼付処理を
行い、焼結体に側面高抵抗層を形成した。次に、この焼
結体の両端面を平面研磨し、アルミニウムのメタリコン
電極を形成し、酸化亜鉛バリスタを得た。
Next, with 85% by weight of this glass frit,
15 wt% of an organic binder (a mixture of ethyl cellulose and butyl carbitol acetate) was sufficiently mixed with, for example, a three-roll mill to obtain a glass paste for coating. This coating glass paste was printed on the side surface of the sintered body using a screen of 125 to 250 mesh with a curved screen printer, for example. Here, the coating amount of the coating glass paste is 150 ° C. after coating the paste.
After drying for 30 minutes, the difference in weight of the sintered bodies was used. Also,
The coating amount was adjusted by adding an organic binder and n-butyl acetate to the coating glass paste. After that, 350-70
The coating glass paste was baked under the temperature condition of 0 ° C. to form a side surface high resistance layer on the sintered body. Next, both end surfaces of the sintered body were polished to form an aluminum metallikon electrode to obtain a zinc oxide varistor.

【0017】図1に、以上のようにして得られた本発明
の一実施例による酸化亜鉛バリスタの断面図を示す。図
1において、1は酸化亜鉛を主成分とする焼結体、2は
焼結体1の両端面に形成された電極、3は焼結体1の側
面に結晶化ガラスを焼付処理して得られた側面高抵抗層
である。
FIG. 1 is a sectional view of a zinc oxide varistor according to an embodiment of the present invention obtained as described above. In FIG. 1, 1 is a sintered body containing zinc oxide as a main component, 2 is electrodes formed on both end surfaces of the sintered body 1, and 3 is obtained by baking crystallized glass on the side surfaces of the sintered body 1. The side surface high resistance layer is formed.

【0018】次に、下記の(表2)に、(表1)の被覆
用ガラスを用いて作成して酸化亜鉛バリスタの外観、
Next, the following Table 2 shows the appearance of a zinc oxide varistor prepared by using the coating glass of Table 1.

【0019】[0019]

【外1】 [Outside 1]

【0020】、放電耐量特性および課電寿命特性を示
す。ここで、被覆用ガラスペーストの塗布量は、50mg
/cm2となるようペーストの粘度をコントロールした。
また、焼付処理条件は550℃、1時間である。ここ
で、試料数は各ロットn=5個である。また
The discharge withstanding characteristic and the charging life characteristic are shown. Here, the coating amount of the coating glass paste is 50 mg.
The viscosity of the paste was controlled to be / cm 2 .
The baking treatment condition is 550 ° C. for 1 hour. Here, the number of samples is n = 5 for each lot. Also

【0021】[0021]

【外2】 [Outside 2]

【0022】は直流定電流電源を用いて測定した。そし
て、放電耐量特性は4/10μSの衝撃電流を5分間隔
で同一方向に2回ずつ印加し、40kAよりステップア
ップし、外観の異常の有無を目視にて、必要な場合には
金属顕微鏡を用いて調べた。ここで、表中の○印は所定
電流を2回印加した後、サンプルに全く異常が認められ
なかったことを示し、△印は1〜2個に、×印は3〜5
個に異常が認められたことを示している。さらに、課電
寿命特性は周囲温度130℃、課電率95%(AC,ピ
ーク値)の条件で行い、漏れ電流が5mA(ピーク値)
に至るまでの時間を測定した。また、
Was measured using a DC constant current power supply. The discharge withstanding characteristic is that a shock current of 4/10 μS is applied twice in the same direction at 5-minute intervals, stepping up from 40 kA, and visually observing whether or not there is an abnormality in the external appearance. It was investigated using. Here, ○ in the table indicates that no abnormalities were observed in the sample after the predetermined current was applied twice, Δ indicates 1-2 pieces, and × indicates 3-5.
It indicates that an abnormality was found in the individual. Furthermore, the life characteristics of charging are performed under conditions of an ambient temperature of 130 ° C. and a charging rate of 95% (AC, peak value), and a leakage current of 5 mA (peak value).
The time to reach was measured. Also,

【0023】[0023]

【外3】 [Outside 3]

【0024】、課電寿命は5個の平均値で示している。
以上の試料数、
The applied voltage life is indicated by an average value of 5 pieces.
Number of samples above,

【0025】[0025]

【外4】 [Outside 4]

【0026】の測定方法、放電耐量の試験方法、課電寿
命特性の評価方法については、特別の記載がない限り、
以下の各実施例についても同様とする。
Unless otherwise specified, the measuring method, the test method of discharge withstanding capability, and the evaluating method of the electric discharge life characteristic are as follows.
The same applies to each of the following embodiments.

【0027】[0027]

【表2】 [Table 2]

【0028】(表1)および(表2)から、被覆用ガラ
スの線膨脹係数が65×10-7/℃より小さい場合(G
1,G5,G18ガラス)はガラスが剥離し易くなり、
90×10-7/℃を超えた場合(G4,G8ガラス)に
はクラックが発生し易くなることがわかる。これらクラ
ックやガラス剥離が発生した試料は、側面高抵抗層の絶
縁性が悪いため、放電耐量特性が低いと考えられる。
From (Table 1) and (Table 2), when the linear expansion coefficient of the coating glass is smaller than 65 × 10 -7 / ° C. (G
(1, G5, G18 glass), the glass is easy to peel off,
It can be seen that when it exceeds 90 × 10 −7 / ° C. (G4, G8 glass), cracks are likely to occur. It is considered that the sample in which these cracks and glass peeling have low discharge withstand characteristics because the insulating property of the side high-resistance layer is poor.

【0029】また、ZnOの添加は、酸化亜鉛バリスタ
の電気的諸特性、信頼性に大きな影響を及ぼさず、ガラ
スの物性中でもガラス転移点の低下に役立つ。また、先
行文献例であるPbO−ZnO−B23、長石のコンポ
ジットガラスを用いた場合、課電寿命特性は実用的なレ
ベルではあるが放電耐量特性が低いことがわかる。
Further, the addition of ZnO has no great influence on the electrical characteristics and reliability of the zinc oxide varistor, and is useful for lowering the glass transition point among the physical properties of glass. Further, the prior art example in which PbO-ZnO-B 2 O 3 , in the case of using the composite glass feldspar, voltage application life characteristic is it can be seen that a lower discharge withstand current rating characteristic is a practical level.

【0030】次に、SnO2の添加量について考察す
る。まず、SnO2の添加量が0.1重量%以上の組成
系においてはいずれの組成系であっても電圧非直線性が
向上し、それにともない課電寿命特性も向上する。これ
は、SnO2を0.1重量%以上添加することにより、
ガラス焼付処理時に焼結体側面にSnO2が若干拡散
し、ZnO粒子の抵抗が上昇するためであると考えられ
る。一方、SnO2の添加量が5.0重量%より多い場
合、放電耐量特性が低い。これは、焼付処理時のガラス
の流動性が悪いため、ポーラスになり易いためであると
考えられる。従って、酸化亜鉛バリスタの側面高抵抗層
用のPbO−ZnO−B23−SiO2−SnO2系結晶
化ガラスにおいて、少なくともSnO2を0.1〜5.
0重量%含む組成系であることが必要条件である。
Next, the amount of SnO 2 added will be considered. First, in the composition system in which the amount of SnO 2 added is 0.1% by weight or more, the voltage non-linearity is improved in any composition system, and accordingly, the life span characteristic is also improved. This is due to the addition of 0.1% by weight or more of SnO 2 .
It is considered that this is because SnO 2 slightly diffuses to the side surface of the sintered body during the glass baking treatment, and the resistance of the ZnO particles increases. On the other hand, when the added amount of SnO 2 is more than 5.0% by weight, the discharge withstand characteristic is low. This is considered to be because the fluidity of the glass during the baking process is poor, and the glass tends to be porous. Accordingly, in the PbO-ZnO-B 2 O 3 -SiO 2 -SnO 2 based crystallized glass for the side surface high-resistivity layer of zinc oxide varistors, at least SnO 2 and 0.1-5.
It is a necessary condition that the composition system contains 0% by weight.

【0031】以上の結果より、被覆用結晶化ガラスの組
成は、PbOが55.0〜75.0重量%、ZnOが1
0.0〜30.0重量%、B23が5.0〜10.0重
量%、SiO2が0〜15.0重量%、SnO2が0.1
〜5.0重量%の範囲が最適であることがわかる。ま
た、酸化亜鉛バリスタの側面高抵抗層用としては、線膨
脹係数が65〜90×10-7/℃の範囲であることが必
要である。
From the above results, the composition of the crystallized glass for coating is 55.0 to 75.0% by weight of PbO and 1% of ZnO.
0.0-30.0 wt%, B 2 O 3 5.0-10.0 wt%, SiO 2 0-15.0 wt%, SnO 2 0.1
It can be seen that the range of up to 5.0% by weight is optimal. Further, for the side surface high resistance layer of the zinc oxide varistor, it is necessary that the coefficient of linear expansion be in the range of 65 to 90 × 10 -7 / ° C.

【0032】次に、本発明例である(表1)のG16ガ
ラスを用いてガラスペーストの塗布量を検討した。この
結果を下記の(表3)に示した。この際、ガラスペース
トの塗布量は、1.0〜300.0mg/cm2で、ペース
トの粘度および塗布回数でコントロールした。この時、
塗布量が10.0mg/cm2より少ない場合、被覆膜の強
度が低いため、また塗布量が150.0mg/cm2より多
い場合にはガラスに流れが発生したり、ピンホールが発
生し易いため、放電耐量特性が悪い。従って、ガラスペ
ーストの塗布量は10.0〜150.0mg/cm2の範囲
が最適であることがわかる。
Next, the application amount of the glass paste was examined using the G16 glass of the present invention (Table 1). The results are shown in (Table 3) below. At this time, the application amount of the glass paste was 1.0 to 300.0 mg / cm 2 , and was controlled by the viscosity of the paste and the number of times of application. At this time,
If the coating amount is less than 10.0 mg / cm 2 , the strength of the coating film is low, and if the coating amount is more than 150.0 mg / cm 2 , flow or pinholes occur in the glass. Since it is easy, the discharge withstand characteristic is poor. Therefore, it is understood that the optimum amount of glass paste applied is in the range of 10.0 to 150.0 mg / cm 2 .

【0033】[0033]

【表3】 [Table 3]

【0034】次に、本発明例である(表1)のG16ガ
ラスを用いてガラスペーストの焼付処理条件を検討し
た。この結果を下記の(表4)に示した。この際、ガラ
スペーストの塗布量は50.0mg/cm2となるよう粘度
がコントロールした。また、ガラスペーストの焼付処理
は350〜700℃の温度範囲にて保持時間を1時間と
し空気中で行った。この結果、450℃より低温で焼付
処理を行った場合、ガラスペーストが充分に溶融しない
ため放電耐量特性が低く、650℃より高温で焼付処理
を行った場合、電圧比が著しく低下し、課電寿命特性が
悪化する。従って、ガラスペーストの焼付処理条件は4
50〜650℃の温度範囲が最適であることがわかる。
Next, the conditions for baking the glass paste were examined using the G16 glass of the present invention (Table 1). The results are shown in (Table 4) below. At this time, the viscosity was controlled so that the coating amount of the glass paste was 50.0 mg / cm 2 . Further, the baking treatment of the glass paste was performed in the air in the temperature range of 350 to 700 ° C. for a holding time of 1 hour. As a result, when the baking treatment is performed at a temperature lower than 450 ° C, the glass paste is not sufficiently melted, so the discharge withstand characteristic is low, and when the baking treatment is performed at a temperature higher than 650 ° C, the voltage ratio is remarkably reduced and The life characteristics deteriorate. Therefore, the baking condition for glass paste is 4
It can be seen that the temperature range of 50 to 650 ° C is optimum.

【0035】[0035]

【表4】 [Table 4]

【0036】なお、本実施例ではPbO−ZnO−B2
3−SnO2、PbO−ZnO−B23−SiO2−S
nO2の4および5成分系の被覆用結晶化ガラスについ
て述べたが、第6成分として、さらにガラスの結晶化を
促進する微量添加物、例えばAl23などを添加しても
本発明の効果に変わりはない。また、ガラス転移点を低
下させる物質として、前記実施例ではZnOを用いた
が、これはその他の物質で置き換えることもできるのは
もちろんである。さらに、本実施例では、酸化物セラミ
ックの代表例として、酸化亜鉛バリスタに本発明のPb
O−ZnO−B23−SiO2−SnO2系の被覆用結晶
化ガラスを用いたが、チタン酸ストロンチウム系のバリ
スタ、チタン酸バリウム系のコンデンサや正特性サーミ
スタ、金属酸化物系の負特性サーミスタなど、いずれの
酸化物セラミックにも全く同様に適用できるものであ
る。
In this example, PbO-ZnO-B 2
O 3 -SnO 2, PbO-ZnO -B 2 O 3 -SiO 2 -S
Although the crystallized glass for coating of 4- and 5-component system of nO 2 has been described, even if a trace amount additive that promotes crystallization of glass such as Al 2 O 3 is added as the sixth component, the present invention can be used. The effect is the same. Further, ZnO was used as the substance for lowering the glass transition point in the above-mentioned embodiment, but it is needless to say that it can be replaced with other substances. Furthermore, in the present embodiment, as a typical example of oxide ceramics, zinc oxide varistor is used in the Pb of the present invention.
O-ZnO-B 2 O 3 was used for coating crystallized glass -SiO 2 -SnO 2 based, strontium titanate-based varistor, barium titanate capacitors and PTC thermistors, the negative metal oxide It can be applied to any oxide ceramic such as a characteristic thermistor.

【0037】[0037]

【発明の効果】以上のように本発明によれば、酸化亜鉛
を主成分とする焼結体の側面に少なくともSnO2
0.1〜5.0重量%含むPbO−ZnO−B23−S
iO2−SnO2系の酸化物セラミック被覆用の結晶化ガ
ラスを450〜650℃の温度条件で焼付処理すること
により、放電耐量特性、課電寿命特性の優れた酸化亜鉛
バリスタを得ることができる。
According to the present invention as described above, according to the present invention, 2 PbO-ZnO-B comprises at least SnO 2 0.1 to 5.0 wt% on the side surface of the sintered body containing zinc oxide as the main component O 3 -S
By baking the crystallized glass for coating the iO 2 —SnO 2 oxide ceramics under the temperature condition of 450 to 650 ° C., it is possible to obtain a zinc oxide varistor having excellent discharge withstand characteristics and electric charge life characteristics. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による酸化亜鉛バリスタの断
面図
FIG. 1 is a sectional view of a zinc oxide varistor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焼結体 2 電極 3 側面高抵抗層 1 Sintered body 2 Electrode 3 Side high resistance layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とし、焼結体自身がバ
リスタ特性を有する焼結体の側面に、少なくとも酸化ス
ズをSnO2の形に換算して0.1〜5.0重量%含む
PbOを主成分とする結晶化ガラスからなる側面高抵抗
層を有する酸化亜鉛バリスタ。
1. A side surface of a sintered body containing zinc oxide as a main component and having a varistor property by itself, and at least 0.1 to 5.0% by weight of tin oxide in the form of SnO 2 is contained on the side surface. A zinc oxide varistor having a side surface high resistance layer made of crystallized glass containing PbO as a main component.
【請求項2】 側面高抵抗層がPbO−ZnO−B23
−SnO2系結晶化ガラスからなる請求項1記載の酸化
亜鉛バリスタ。
2. The lateral high resistance layer is PbO—ZnO—B 2 O 3
Zinc oxide varistor according to claim 1, wherein consisting -SnO 2 based crystallized glass.
【請求項3】 側面高抵抗層がPbO−ZnO−B23
−SiO2−SnO2系結晶化ガラスからなる請求項1記
載の酸化亜鉛バリスタ。
3. The lateral high resistance layer is PbO—ZnO—B 2 O 3
-SiO 2 -SnO 2 based zinc oxide varistor according to claim 1, wherein comprising a crystallized glass.
【請求項4】 酸化亜鉛を主成分とし、焼結体自身がバ
リスタ特性を有する焼結体の側面に、少なくとも酸化ス
ズをSnO2の形に換算して0.1〜5.0重量%含む
PbOを主成分とする結晶化ガラスと有機物からなるガ
ラスペーストを10.0〜150.0mg/cm2塗布し4
50〜650℃の温度範囲にて焼付処理する酸化亜鉛バ
リスタの製造方法。
4. At least 0.1 wt% tin oxide in terms of SnO 2 is contained on the side surface of the sintered body containing zinc oxide as a main component and the sintered body itself having varistor characteristics. A glass paste consisting of crystallized glass containing PbO as a main component and an organic substance is applied in an amount of 10.0 to 150.0 mg / cm 2 and 4
A method for producing a zinc oxide varistor, which comprises performing a baking treatment in a temperature range of 50 to 650 ° C.
【請求項5】 結晶化ガラスの線膨脹係数が65〜90
×10-7/℃である請求項4記載の酸化亜鉛バリスタの
製造方法。
5. The coefficient of linear expansion of crystallized glass is 65 to 90.
The method for producing a zinc oxide varistor according to claim 4, wherein the temperature is × 10 -7 / ° C.
【請求項6】 PbO 55.0〜75.0重量%,Z
nO 10.0〜30.0重量%,B23 5.0〜1
5.0重量%,SiO2 0〜15.0重量%,SnO2
0.1〜5.0重量%からなる被覆用結晶化ガラス組
成物。
6. PbO 55.0 to 75.0% by weight, Z
nO 10.0 to 30.0% by weight, B 2 O 3 5.0 to 1
5.0% by weight, SiO 2 0 to 15.0% by weight, SnO 2
A crystallized glass composition for coating, comprising 0.1 to 5.0% by weight.
JP7322679A 1995-12-12 1995-12-12 Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that Pending JPH09162015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7322679A JPH09162015A (en) 1995-12-12 1995-12-12 Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7322679A JPH09162015A (en) 1995-12-12 1995-12-12 Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that

Publications (1)

Publication Number Publication Date
JPH09162015A true JPH09162015A (en) 1997-06-20

Family

ID=18146411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7322679A Pending JPH09162015A (en) 1995-12-12 1995-12-12 Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that

Country Status (1)

Country Link
JP (1) JPH09162015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223893A (en) * 2009-03-25 2010-10-07 Fuji Electric Systems Co Ltd Thin-film gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223893A (en) * 2009-03-25 2010-10-07 Fuji Electric Systems Co Ltd Thin-film gas sensor

Similar Documents

Publication Publication Date Title
KR0164666B1 (en) Cadmium-free and lead-free thick film paste composition
KR960011155B1 (en) Zno varistor manufacturing method
US4031498A (en) Non-linear voltage-dependent resistor
US5610570A (en) Voltage non-linear resistor and fabricating method thereof
JP3003374B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
US4420737A (en) Potentially non-linear resistor and process for producing the same
JPH09162016A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JP3036202B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JPH09162015A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JP2850525B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2819714B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2819731B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JPH0547512A (en) Zinc oxide varistor, manufacture thereof, and crystal glass composition for coating
JP2727699B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2830264B2 (en) Zinc oxide varistor and method of manufacturing the same
JP2819691B2 (en) Manufacturing method of zinc oxide varistor
JPH0249524B2 (en)
JPH04170004A (en) Zinc oxide varistor and its manufacture and crystalline glass composition for coating
JP2510961B2 (en) Voltage nonlinear resistor
JPH04171701A (en) Zinc oxide varistor and its manufacture and crystallized glass composition for covering
JP2001052907A (en) Ceramic element and manufacturing method
JP2002305104A (en) Voltage nonlinear resistor and manufacturing method therefor
JP2531586B2 (en) Voltage nonlinear resistor
JPH0249522B2 (en)
JPS5951724B2 (en) Ceramic voltage nonlinear resistor