JP2850525B2 - Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic - Google Patents

Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Info

Publication number
JP2850525B2
JP2850525B2 JP2298031A JP29803190A JP2850525B2 JP 2850525 B2 JP2850525 B2 JP 2850525B2 JP 2298031 A JP2298031 A JP 2298031A JP 29803190 A JP29803190 A JP 29803190A JP 2850525 B2 JP2850525 B2 JP 2850525B2
Authority
JP
Japan
Prior art keywords
zinc oxide
glass
crystallized glass
pbo
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2298031A
Other languages
Japanese (ja)
Other versions
JPH04170005A (en
Inventor
雅昭 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2298031A priority Critical patent/JP2850525B2/en
Publication of JPH04170005A publication Critical patent/JPH04170005A/en
Application granted granted Critical
Publication of JP2850525B2 publication Critical patent/JP2850525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として電力分野に用いられる酸化亜鉛バ
リスタとその製造方法および酸化物セラミック被覆用結
晶化ガラス組成物に関するものである。
Description: TECHNICAL FIELD The present invention relates to a zinc oxide varistor mainly used in the electric power field, a method for producing the same, and a crystallized glass composition for coating an oxide ceramic.

従来の技術 ZnOを主成分とし、Bi2O3,CoO,Sb2O3,Cr2O3,MnO2を始
めとする種類の金属酸化物を副成分とする酸化亜鉛バリ
スタは、大きなサージ耐量と優れた電圧非直線性を有
し、近年ギャップレスアレスタ用の素子として、従来の
シリコンカーバイトバリスタにとって代わって広く利用
されていることは周知の通りである。
Conventional technology Zinc oxide varistors containing ZnO as a main component and metal oxides of various types including Bi 2 O 3 , CoO, Sb 2 O 3 , Cr 2 O 3 , and MnO 2 as sub-components have a large surge withstand capability. It is well known that it has been widely used in recent years as an element for a gapless arrester instead of a conventional silicon carbide varistor.

従来より、酸化亜鉛バリスタの製造方法として、例え
ば特開昭62−101002号公報などが開示されているが、前
記先行例の内容は以下の通りである。まず、主成分のZn
Oに、Bi2O3、Sb2O3、Cr2O3、CoO、MnO2などの金属酸化
物をそれぞれ0.01〜6.0モル%添加した原料粉を混合,
造粒し、この造粒粉を円柱状に加圧,形成し、電気炉で
1200℃、6時間焼成する。次に、得られた焼結体の側面
に、PbOを60重量%含有するPbO系ガラスフリットを80重
量%と、長石を20重量%と、有機バインダーとからなる
ガラスペーストを、スクリーン印刷機で5〜500mg/cm2
塗布した後、焼付処理を行う。このようにして得られた
素子の両端面を平面研磨し、アルミニウムのメタリコン
電極を形成し、酸化亜鉛バリスタを得るものである。
Conventionally, as a method for manufacturing a zinc oxide varistor, for example, Japanese Patent Application Laid-Open No. 62-101002 has been disclosed. The contents of the above-mentioned prior art are as follows. First, the main component Zn
O is mixed with a raw material powder in which metal oxides such as Bi 2 O 3 , Sb 2 O 3 , Cr 2 O 3 , CoO, and MnO 2 are added in an amount of 0.01 to 6.0 mol%,
Granulate, press and form this granulated powder into a columnar shape,
Bake at 1200 ° C for 6 hours. Next, a glass paste made of a PbO-based glass frit containing 60% by weight of PbO, 80% by weight of a PbO-based glass frit, 20% by weight of feldspar, and an organic binder was applied to a side surface of the obtained sintered body by a screen printing machine. 5-500 mg / cm 2
After the application, a baking treatment is performed. The both end faces of the element thus obtained are polished in a plane, an aluminum metallikon electrode is formed, and a zinc oxide varistor is obtained.

発明が解決しようとする課題 しかしながら、前記従来の製造方法による酸化亜鉛バ
リスタは、スクリーン印刷法を用いるため、側面ガラス
層の厚みが均一に形成され、放電耐量特性のバラツキが
小さいという長所を持つものの、PbO系ガラスフリット
と長石のコンポジットガラスであるため、放電耐量特性
が低く、またガラス焼付処理時に電圧非直線性を低下
し、課電寿命特性も悪化するという欠点を有していた。
However, since the zinc oxide varistor according to the conventional manufacturing method uses a screen printing method, the thickness of the side glass layer is uniformly formed, and the zinc oxide varistor has the advantage of having a small variation in discharge capability. Since it is a composite glass of a PbO-based glass frit and feldspar, it has a drawback that the discharge withstand capability is low, the voltage non-linearity is reduced during the glass baking treatment, and the charge life is deteriorated.

本発明は前記従来の課題を解決するもので、高信頼性
の酸化亜鉛バリスタおよびその製造方法、さらに酸化物
系セラミック一般に用いられる被覆用結晶化ガラス組成
物を提供することを目的とするものである。
An object of the present invention is to provide a highly reliable zinc oxide varistor and a method for producing the same, and a crystallized glass composition for coating generally used for oxide-based ceramics. is there.

課題を解決するための手段 本発明では前記従来の課題を解決するため、ZnOを主
成分とする焼結体の側面に、少なくともFe2O3を0.1〜5.
0重量%含むPbOを主成分とする結晶化ガラスからなる側
面高抵抗層を有する構成としたものである。また、前記
焼結体の側面に少なくともFe2O3を0.1〜5.0重量%含むP
bOを主成分とする結晶化ガラスと有機バインダーからな
るガラスペーストを10.0〜150.0mg/cm2塗布し、450〜60
0℃の温度範囲にて焼付処理し、側面高抵抗層を形成す
るものである。
Means for Solving the Problems In the present invention, in order to solve the above-mentioned conventional problems, at least Fe 2 O 3 is 0.1 to 5.
The structure has a side surface high resistance layer made of crystallized glass containing PbO containing 0% by weight as a main component. Further, P containing at least 0.1 to 5.0% by weight of Fe 2 O 3 on the side surface of the sintered body.
A glass paste consisting of crystallized glass and an organic binder mainly comprising bO 10.0~150.0mg / cm 2 was applied, 450-60
The baking treatment is performed in a temperature range of 0 ° C. to form a high resistance side surface layer.

さらに、側面高抵抗層用の、少なくともFe2O3を0.1〜
5.0重量%含むPbO−ZnO−B2O3−SiO2−Fe2O3系の酸化物
セラミック被覆用の結晶化ガラス組成物を提供するもの
である。
Further, at least Fe 2 O 3 for the side high resistance layer is 0.1 to
5.0 there is provided a PbO-ZnO-B 2 O 3 -SiO 2 -Fe 2 O 3 based oxide crystallized glass composition for a ceramic coating comprising by weight%.

作用 本発明によれば、PbO−長石系コンポジットガラスに
較べ、PbOを主成分とする結晶化ガラスは、Fe2O3の添加
により結晶化が促進され、SiO2の添加により被覆膜の強
度が向上し、焼結体との密着性もよいため放電耐量特性
に優れ、さらに絶縁性も高いため、焼付処理時の電圧非
直線性の低下を最小限に抑えることが可能となり、課電
寿命特性にも優れた高信頼性の酸化亜鉛バリスタを得る
ことができる。
Action According to the present invention, compared to PbO-feldspar-based composite glass, crystallized glass containing PbO as a main component promotes crystallization by addition of Fe 2 O 3 and strength of a coating film by addition of SiO 2. And has good adhesion to the sintered body, so it has excellent discharge withstand characteristics, and because of its high insulation properties, it is possible to minimize the decrease in voltage non-linearity during the baking process, and to improve the electrical life. A highly reliable zinc oxide varistor excellent in characteristics can be obtained.

実施例 以下、本発明の酸化亜鉛バリスタおよびその製造方
法、さらに被覆用結晶化ガラス組成物について実施例に
基づき詳細に説明する。
EXAMPLES Hereinafter, the zinc oxide varistor of the present invention, the method for producing the same, and the crystallized glass composition for coating will be described in detail based on examples.

まず、ZnOの粉末に合計量に対し、Bi2O30.5モル%、C
o2O30.5モル%、MnO20.5モル%、Sb2O31.0モル%、Cr2O
30.5モル%、NiO0.5モル%、SiO20.5モル%を加え、純
水、バインダー、分散剤とともに例えばボールミルにて
充分に混合、粉砕した後、スプレードライヤーにて乾
燥、造粒して原料粉を得た。この原料粉を直径40mm、厚
さ30mmの大きさに圧縮成形し、500℃以上の温度条件に
て脱脂処理した。その後、1100〜1250℃の温度範囲で焼
成し、焼結体を得た。
First, 0.5 mol% of Bi 2 O 3 and C
o 2 O 3 0.5 mol%, MnO 2 0.5 mol%, Sb 2 O 3 1.0 mol%, Cr 2 O
3 0.5 mol%, NiO0.5 mol%, SiO 2 0.5 mol% was added, pure water, a binder, thoroughly mixed in with a dispersant such as a ball mill, was pulverized, dried with a spray dryer, and granulated material Powder was obtained. This raw material powder was compression-molded to a size of 40 mm in diameter and 30 mm in thickness and degreased under a temperature condition of 500 ° C. or more. Then, it was fired in a temperature range of 1100 to 1250 ° C. to obtain a sintered body.

一方、被覆用結晶化ガラスは、PbO,ZnO,B2O3,SiO2,Fe
2O3を所定量秤量し、例えばボールミルにて混合、粉砕
した後、白金ルツボにて1000〜1200℃の温度条件で溶融
し、急冷してガラス化させた。このガラスを粗粉砕した
後、ボールミルにて微粉粉し、ガラスフリットを得た。
なお、比較検討用試料としてPbO 70.0重量%、ZnO 2
5.0重量%、B2O3 5.0重量%からなるガラスフリット8
0.0重量%の長石(長石はKAlSi3O8,NaAlSi3O8,CaAl2Si2
O8の固溶体)20.0重量%からなるコンポジットガラスを
同様の工程で作製した。
On the other hand, the crystallized glass for coating is PbO, ZnO, B 2 O 3 , SiO 2 , Fe
A predetermined amount of 2 O 3 was weighed, mixed and pulverized by, for example, a ball mill, then melted in a platinum crucible at a temperature of 1000 to 1200 ° C., rapidly cooled, and vitrified. After coarsely pulverizing this glass, it was pulverized with a ball mill to obtain a glass frit.
In addition, 70.0% by weight of PbO, ZnO 2
Glass frit 8 consisting of 5.0% by weight and 5.0% by weight of B 2 O 3
Feldspar 0.0% by weight (feldspars are KAlSi 3 O 8 , NaAlSi 3 O 8 , CaAl 2 Si 2
A composite glass consisting of 20.0% by weight of a solid solution of O 8 ) was produced in the same process.

以上のように作製したガラスフリットの、組成および
ガラス転移点(Tg)、線膨脹係数(α)および結晶性を
下記の第1表に示した。
The composition, glass transition point (Tg), linear expansion coefficient (α), and crystallinity of the glass frit prepared as described above are shown in Table 1 below.

なお、第1表においてガラス転移点Tgおよび線膨脹係
数αは熱分析装置を用いて測定した。また、結晶性は金
属顕微鏡あるいは電子顕微鏡によりガラスの表面状態を
観察し、結晶性の高い試料については○印で、全く結晶
の見られないものについては×印で表示した。
In Table 1, the glass transition point Tg and the coefficient of linear expansion α were measured using a thermal analyzer. The crystallinity was observed by observing the surface state of the glass with a metallographic microscope or an electron microscope. Samples with high crystallinity were marked with a circle, and those without any crystal were marked with a cross.

第1表によりPbOの添加量が多い場合、線膨脹係数
(α)が高くなり、ZnOの添加量が多い場合、ガラス転
移点(Tg)が低くなり結晶化しやすくなる。また、B2O3
の添加量が多い場合、ガラス転移点が高くなり、添加量
が15.0重量%を超えた場合には結晶化しにくくなる。さ
らに、SiO2の添加量が多くなるに従いガラス転移点は高
くなる傾向があり、線膨脹係数は低くなる傾向がある。
そして、Fe2O3の添加量が増加するに従いガラスの結晶
化が進行した。また、PbO,B2O3が少ない系ではポーラス
なガラスとなり易かった。
According to Table 1, when the added amount of PbO is large, the linear expansion coefficient (α) becomes high, and when the added amount of ZnO is large, the glass transition point (Tg) becomes low and crystallization becomes easy. Also, B 2 O 3
When the addition amount is large, the glass transition point increases, and when the addition amount exceeds 15.0% by weight, crystallization becomes difficult. Further, as the amount of added SiO 2 increases, the glass transition point tends to increase, and the coefficient of linear expansion tends to decrease.
Then, as the amount of Fe 2 O 3 added increased, the crystallization of the glass progressed. Further, in a system containing less PbO and B 2 O 3 , a porous glass was easily formed.

次に、このガラスフリット85重量%と、有機バインダ
ー(エチルセルロース、ブチルカルビトールアセテート
の混合物)15重量%を、例えば三本ロールミルにて充分
に混合し、被覆用ガラスペーストを得た。この被覆用ガ
ラスペーストを、例えば曲面スクリーン印刷機にて125
〜250メッシュのスクリーンを用いて前記焼結体の側面
に印刷した。ここで、被覆用ガラスペーストの塗布量は
ペーストを塗布した後、150℃で30分間乾燥して焼結体
の重量差から求めた。また、塗布量は被覆用ガラスペー
ストに有機バインダー、酢酸n−ブチルを添加して調整
した。その後、350〜700℃の温度条件にて被覆用ガラス
ペーストの焼付処理を行い、焼結体に側面高抵抗層を形
成した。次に、この焼結体の両端面を平面研磨し、アル
ミニウムのメタリコン電極を形成し、酸化亜鉛バリスタ
を得た。
Next, 85% by weight of this glass frit and 15% by weight of an organic binder (a mixture of ethyl cellulose and butyl carbitol acetate) were sufficiently mixed, for example, by a three-roll mill to obtain a glass paste for coating. The glass paste for coating is applied to a 125
Printing was performed on the side surface of the sintered body using a screen of 250250 mesh. Here, the application amount of the glass paste for coating was determined from the difference in weight of the sintered body after the paste was applied and dried at 150 ° C. for 30 minutes. The coating amount was adjusted by adding an organic binder and n-butyl acetate to the glass paste for coating. Thereafter, the coating glass paste was baked under a temperature condition of 350 to 700 ° C. to form a high-side resistance layer on the sintered body. Next, both end surfaces of the sintered body were polished to form an aluminum metallikon electrode to obtain a zinc oxide varistor.

第1図に、以上のようにして得られた本発明による酸
化亜鉛バリスタの断面図を示す。第1図において、1は
酸化亜鉛を主成分とする焼結体、2は焼結体1の両端面
に形成された電極、3は焼結体1の側面に結晶化ガラス
を焼付処理して得られた側面高抵抗層である。
FIG. 1 shows a sectional view of the zinc oxide varistor according to the present invention obtained as described above. In FIG. 1, 1 is a sintered body containing zinc oxide as a main component, 2 is an electrode formed on both end surfaces of the sintered body 1, and 3 is a crystallized glass on a side surface of the sintered body 1 by baking crystallized glass. It is a side surface high resistance layer obtained.

次に、下記の第2表に、第1表の被覆用ガラスを用い
て作成して酸化亜鉛バリスタの外観、V1mA/V10μA、放
電耐量特性および課電寿命特性を示す。ここで、被覆用
ガラスペーストの塗布量は、50mg/cm2となるようペース
トの粘度をコントロールした。また、焼付処理条件は55
0℃、1時間である。ここで、試料数は各ロットn=5
個である。またV1mA/V10μAは直流定電流電源を用いて
測定した。そして、放電耐量特性は4/10μSの衝撃電流
を5分間間隔で同一方向に2回ずつ印加し、40kAよりス
テップアップし、外観の異常の有無を目視にて、必要な
場合には金属顕微鏡を用いて調べた。ここで、表中の○
印は所定電流を2回印加した後、サンプルに全く異常が
認められなかったことを示し、△印は1〜2個に、×印
は3〜5個に異常が認められたことを示している。さら
に、課電寿命特性は周囲温度130℃,課電率95%(AC,ピ
ーク値)の条件で行い、漏れ電流が5mA(ピーク値)に
至るまでの時間を測定した。また、V1mA/V10μA,課電
寿命は5個の平均値で示している。
Next, Table 2 below shows the appearance, V 1 mA / V 10 μA , discharge withstand voltage characteristics, and charging life characteristics of zinc oxide varistors prepared using the coating glass of Table 1. Here, the viscosity of the paste was controlled so that the coating amount of the coating glass paste was 50 mg / cm 2 . The baking condition is 55
0 ° C., 1 hour. Here, the number of samples is n = 5 for each lot.
Individual. V 1 mA / V 10 μA was measured using a DC constant current power supply. The discharge withstand characteristics are as follows. Impulse current of 4 / 10μS is applied twice in the same direction at 5 minute intervals, step up from 40kA, and visually check for abnormalities in appearance. It examined using. Here, ○ in the table
The mark indicates that no abnormality was observed in the sample after applying the predetermined current twice, the mark Δ indicates that abnormality was observed in 1 to 2 pieces, and the cross mark indicates that abnormality was recognized in 3 to 5 pieces. I have. Further, the application life characteristics were performed under the conditions of an ambient temperature of 130 ° C. and an application rate of 95% (AC, peak value), and the time until the leakage current reached 5 mA (peak value) was measured. In addition, V 1mA / V 10 μA and the service life are shown by the average value of five devices .

以上の試料数,V1mA/V10μAの測定方法,放電耐量の
試験方法,課電寿命特性の評価方法については、特別の
記載がない限り、以下の各実施例についても同様とす
る。
The above-mentioned number of samples, the method of measuring V 1 mA / V 10 μA , the method of testing the discharge capability, and the method of evaluating the charge life characteristics are the same in each of the following examples unless otherwise specified.

第1表および第2表から、被覆用ガラスの線膨脹係数
が65×10-7/℃より小さい場合(G1,G5ガラス)はガラス
が剥離し易くなり、90×10-7/℃を超えた場合(G4ガラ
ス)にはクラックが発生し易くなることがわかる。これ
らクラックやガラス剥離が発生した試料は、側面高抵抗
層の絶縁性が悪いため、放電耐量特性が低いと考えられ
る。また、被覆用ガラスの線膨脹係数が65〜90×10-7/
℃の範囲であっても、結晶性の悪いガラス(G8ガラス)
については、クラックが入りやすく、放電耐量特性も低
い。これは、結晶性ガラスの方が非結晶性ガラスに較べ
被覆膜の強度が高いためと考えられる。また、ZnOの添
加は、酸化亜鉛バリスタの電気的諸特性、信頼性に大き
な影響を及ぼさず、ガラスの物性中でもガラス転移点の
低下に役立つ。また、先行文献例であるPbO−ZnO−B
2O3、長石のコンポジットガラスを用いた場合、課電寿
命特性は実用的なレベルではあるが放電耐量特性が低い
ことがわかる。
From Tables 1 and 2, when the coefficient of linear expansion of the coating glass is smaller than 65 × 10 -7 / ° C (G1, G5 glass), the glass is easily peeled and exceeds 90 × 10 -7 / ° C. In the case of (G4 glass), cracks are easily generated. It is considered that the sample in which these cracks and glass peeling have low discharge withstand characteristics because the insulating property of the side high-resistance layer is poor. In addition, the coefficient of linear expansion of the coating glass is 65 to 90 × 10 −7 /
Glass with poor crystallinity even in the range of ° C (G8 glass)
With regard to (1), cracks are likely to occur and the discharge withstand characteristics are low. This is presumably because crystalline glass has a higher coating film strength than amorphous glass. Further, the addition of ZnO does not significantly affect the electrical characteristics and reliability of the zinc oxide varistor, and helps to lower the glass transition point even in the physical properties of glass. In addition, PbO-ZnO-B
In the case of using 2 O 3 and feldspar composite glass, it can be seen that the charging service life characteristic is at a practical level but the discharge withstand characteristic is low.

次に、Fe2O3の添加量について考察する。まず、Fe2O3
の添加量が0.1重量%以上の組成系においてはいずれの
組成系であっても電圧非直線性が向上し、それにともな
い課電寿命特性も向上する。これは、Fe2O3を0.1重量%
以上添加することにより、ガラス焼付処理時に焼結耐側
面にFe2O3が若干拡散し、ZnO粒子の抵抗が上昇するため
であると考えられる。一方、Fe2O3の添加量が5.0重量%
より多い場合、放電耐量特性が低い。これは、焼付処理
時のガラスの流動性が悪いため、ポーラスになり易いた
めであると考えられる。従って、酸化亜鉛バリスタの側
面高抵抗層用のPbO−ZnO−B2O3−SiO2−Fe2O3系結晶化
ガラスにおいて、少なくともFe2O3を0.1〜5.0重量%含
む組成系であることが必要条件である。
Next, the amount of Fe 2 O 3 added will be considered. First, Fe 2 O 3
In the composition system containing 0.1% by weight or more, the voltage non-linearity is improved in any of the composition systems, and the charging life property is accordingly improved. It is Fe 2 O 3 0.1% by weight
This is presumably because the above addition causes Fe 2 O 3 to slightly diffuse into the sintering resistant surface during the glass baking treatment, thereby increasing the resistance of the ZnO particles. On the other hand, the addition amount of Fe 2 O 3 is 5.0% by weight.
If it is larger, the discharge withstand characteristics are low. This is considered to be because the fluidity of the glass during the baking process is poor, and the glass tends to be porous. Accordingly, in the PbO-ZnO-B 2 O 3 -SiO 2 -Fe 2 O 3 type crystallized glass for the side surface high-resistivity layer of zinc oxide varistor is a composition system comprising at least a Fe 2 O 3 0.1 to 5.0 wt% Is a necessary condition.

以上の結果より、被覆用結晶化ガラスの組成は、PbO
が55.0〜75.0重量%、ZnOが10.0〜30.0重量%、B2O3
5.0〜10.0重量%、SiO2が0〜15.0重量%、Fe2O3が0.1
〜5.0重量%の範囲が最適であることがわかる。また、
酸化亜鉛バリスタの側面高抵抗層用としては、線膨脹係
数が65〜90×10-7/℃の範囲内であることが必要であ
る。
From the above results, the composition of the crystallized glass for coating is PbO
55.0-75.0% by weight, ZnO 10.0-30.0% by weight, B 2 O 3
5.0-10.0 wt%, SiO 2 is 0 to 15.0 wt%, Fe 2 O 3 0.1
It turns out that the range of -5.0% by weight is optimal. Also,
For the side surface high resistance layer of the zinc oxide varistor, the linear expansion coefficient needs to be in the range of 65 to 90 × 10 −7 / ° C.

次に、本発明例である第1表のG16ガラスを用いてガ
ラスペーストの塗布量を検討した。この結果を下記の第
3表に示した。この際、ガラスペーストの塗布量は1.0
〜300.0mg/cm2で、ペーストの粘度および塗布回数でコ
ントロールした。この時、塗布量が10.0mg/cm2より少な
い場合、被覆膜の強度が低いため、また塗布量が150.0m
g/cm2より多い場合にはガラスに流れが発生したり、ピ
ンホールが発生し易いため、放電耐量特性が悪い。従っ
て、ガラスペーストの塗布量は10.0〜150.0mg/cm2の範
囲が最適であることがわかる。
Next, the application amount of the glass paste was examined using the G16 glass of Table 1 which is an example of the present invention. The results are shown in Table 3 below. At this time, the application amount of the glass paste was 1.0
〜300.0 mg / cm 2, which was controlled by the viscosity of the paste and the number of applications. In this case, if the coating amount is less than 10.0 mg / cm 2, the strength of the coating film is low, also the coating amount is 150.0m
When the amount is more than g / cm 2 , the glass tends to flow and pinholes are easily generated, so that the discharge capability is poor. Therefore, it is understood that the optimal amount of the glass paste applied is in the range of 10.0 to 150.0 mg / cm 2 .

次に、本発明例である第1表のG16ガラスを用いてガ
ラスペーストの焼付処理条件を検討した。この結果を下
記の第4表に示した。この際、ガラスペーストの塗布量
は50.0mg/cm2となるよう粘度がコントロールした。ま
た、ガラスペーストの焼付処理は350〜700℃の温度範囲
にて保持時間を1時間とし空気中で行った。この結果、
450℃より低温で焼付処理を行った場合、ガラスペース
トが充分に溶融しないため放電耐量特性が低く、600℃
より高温で焼付処理を行った場合、電圧比が著しく低下
し、課電寿命特性が悪化する。従って、ガラスペースト
の焼付処理条件は450〜600℃の温度範囲が最適であるこ
とがわかる。
Next, using the G16 glass shown in Table 1 as an example of the present invention, the baking conditions of the glass paste were examined. The results are shown in Table 4 below. At this time, the viscosity was controlled so that the application amount of the glass paste was 50.0 mg / cm 2 . Further, the baking treatment of the glass paste was performed in air at a temperature range of 350 to 700 ° C. with a holding time of 1 hour. As a result,
When the baking process is performed at a temperature lower than 450 ° C, the glass paste does not melt sufficiently and the discharge withstand capability is low.
When the baking treatment is performed at a higher temperature, the voltage ratio is remarkably reduced, and the charging life characteristic is deteriorated. Therefore, it is understood that the optimal temperature range for the baking treatment of the glass paste is 450 to 600 ° C.

なお、本実施例ではPbO−ZnO−B2O3−Fe2O3、PbO−Zn
O−B2O3−SiO2−Fe2O3の4および5成分系の被覆用結晶
化ガラスについて述べたが、第6成分として、さらにガ
ラスの結晶化を促進する微量添加物、例えばAl2O3,SnO2
などを添加しても本発明の効果に変わりはない。また、
ガラス転移点を低下させる物質として、前記実施例では
ZnOを用いたが、これはその他の物質で置き換えること
もできるのはもちろんである。さらに、本実施例では、
酸化物セラミックの代表例として、酸化亜鉛バリスタに
本発明のPbO−ZnO−B2O3−SiO2−Fe2O3の系の被覆用結
晶化ガラスを用いたが、チタン酸ストロンチウム系のバ
リスタ、チタン酸バリウム系のコンデンサや正特性サー
ミスタ、金属酸化物系の負特性サーミスタなど、いずれ
の酸化物セラミックにも全く同様に適用できるものであ
る。
Incidentally, PbO-ZnO-B 2 O 3 -Fe in this embodiment 2 O 3, PbO-Zn
The crystallized glass for coating of four-component and five-component system of O—B 2 O 3 —SiO 2 —Fe 2 O 3 has been described. As the sixth component, a trace additive that further promotes the crystallization of glass, for example, Al 2 O 3 , SnO 2
The effect of the present invention does not change even if such an additive is added. Also,
As the substance that lowers the glass transition point,
ZnO was used, but of course it could be replaced with other substances. Further, in this embodiment,
Representative examples of oxide ceramics, was used PbO-ZnO-B 2 O 3 -SiO 2 -Fe 2 O 3 systems covering the crystallized glass of the present invention zinc oxide varistor, of strontium titanate varistors The present invention can be applied to any oxide ceramic such as a barium titanate-based capacitor, a positive temperature coefficient thermistor, and a metal oxide type negative temperature coefficient thermistor.

発明の効果 以上のように本発明によれば、酸化亜鉛を主成分とす
る焼結体の側面に少なくともFe2O3を0.1〜5.0重量%含
むPbO−ZnO−B2O3−SiO2−Fe2O3系の酸化物セラミック
被覆用の結晶化ガラスを450〜600℃の温度条件で焼付処
理することにより、放電耐量特性、課電寿命特性の優れ
た酸化亜鉛バリスタを得ることができる。
According to the present invention as described above the effect of the invention, 2 PbO-ZnO-B comprises at least an Fe 2 O 3 0.1 to 5.0% by weight on the side surfaces of the sintered body containing zinc oxide as the main component O 3 -SiO 2 - By baking the crystallized glass for coating Fe 2 O 3 -based oxide ceramics at a temperature of 450 to 600 ° C., a zinc oxide varistor having excellent discharge withstand characteristics and charge-life characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の製造方法ならびに本発明の被覆用結晶
化ガラスを適用した一実施例による酸化亜鉛バリスタの
断面図である。 1……焼結体、2……電極、3……側面高抵抗層。
FIG. 1 is a sectional view of a zinc oxide varistor according to an embodiment to which the production method of the present invention and the crystallized glass for coating of the present invention are applied. 1 ... sintered body, 2 ... electrode, 3 ... side surface high resistance layer.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化亜鉛を主成分とし、焼結体自身がバリ
スタ特性を有する焼結体の側面に、少なくとも酸化鉄を
Fe2O3の形に換算して0.1〜5.0重量%を含むPbOを主成分
とする結晶化ガラスからなる側面高抵抗層を有する酸化
亜鉛バリスタ。
1. A sintered body containing zinc oxide as a main component and having a varistor characteristic on the side surface of the sintered body itself.
A zinc oxide varistor having a lateral high resistance layer made of crystallized glass containing PbO as a main component and containing 0.1 to 5.0% by weight in terms of Fe 2 O 3 .
【請求項2】側面高抵抗層がPbO−ZnO−B2O3−Fe2O3
結晶化ガラスからなる請求項1記載の酸化亜鉛バリス
タ。
2. A side high-resistance layer is composed of PbO-ZnO-B 2 O 3 -Fe 2 O 3 based crystallized glass claim 1 zinc oxide varistor according.
【請求項3】側面高抵抗層がPbO−ZnO−B2O3−SiO2−Fe
2O3系結晶化ガラスからなる請求項1記載の酸化亜鉛バ
リスタ。
3. A side surface high resistance layer is PbO-ZnO-B 2 O 3 -SiO 2 -Fe
The zinc oxide varistor according to claim 1, wherein the zinc oxide varistor is made of 2 O 3 -based crystallized glass.
【請求項4】酸化亜鉛を主成分とし、焼結体自身がバリ
スタ特性を有する焼結体の側面に、少なくとも酸化鉄を
Fe2O3の形に換算して0.1〜5.0重量%を含むPbOを主成分
とする結晶化ガラスと有機物からなるガラスペーストを
10.0〜150.0mg/cm2塗布し、450〜600℃の温度範囲にて
焼付処理する酸化亜鉛バリスタの製造方法。
4. A sintered body having zinc oxide as a main component and having a varistor characteristic, at least iron oxide is formed on a side surface of the sintered body.
Glass paste consisting of crystallized glass containing PbO as a main component containing 0.1 to 5.0% by weight in terms of Fe 2 O 3 and organic matter
A method for producing a zinc oxide varistor in which 10.0 to 150.0 mg / cm 2 is applied and baked in a temperature range of 450 to 600 ° C.
【請求項5】結晶化ガラスの線膨脹係数が65〜90×10-7
/℃である請求項4記載の酸化亜鉛バリスタの製造方
法。
5. The crystallized glass has a linear expansion coefficient of 65 to 90 × 10 −7.
The method for producing a zinc oxide varistor according to claim 4, wherein the temperature is / C.
【請求項6】PbO 55.0〜75.0重量%, ZnO 10.0〜30.0重量%, B2O3 5.0〜15.0重量%, SiO2 0 〜15.0重量%, Fe2O3 0.1〜5.0重量%からなる酸化物セラミック被覆
用結晶化ガラス組成物。
6. PbO 55.0 to 75.0 wt%, ZnO 10.0 to 30.0 wt%, B 2 O 3 5.0~15.0 wt%, SiO 2 0 to 15.0 wt%, Fe 2 O 3 0.1~5.0 oxide consisting wt% Crystallized glass composition for ceramic coating.
JP2298031A 1990-11-01 1990-11-01 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic Expired - Lifetime JP2850525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298031A JP2850525B2 (en) 1990-11-01 1990-11-01 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298031A JP2850525B2 (en) 1990-11-01 1990-11-01 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Publications (2)

Publication Number Publication Date
JPH04170005A JPH04170005A (en) 1992-06-17
JP2850525B2 true JP2850525B2 (en) 1999-01-27

Family

ID=17854226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298031A Expired - Lifetime JP2850525B2 (en) 1990-11-01 1990-11-01 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Country Status (1)

Country Link
JP (1) JP2850525B2 (en)

Also Published As

Publication number Publication date
JPH04170005A (en) 1992-06-17

Similar Documents

Publication Publication Date Title
KR910002260B1 (en) Voltage non - linear resistor and method of manufacture
KR960011155B1 (en) Zno varistor manufacturing method
EP0316015B1 (en) Material for resistor body and non-linear resistor made thereof
JPS62237703A (en) Manufacture of voltage nonlinear resistance element
US5610570A (en) Voltage non-linear resistor and fabricating method thereof
JP3003374B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
CA1129513A (en) Potentially non-linear resistor and process for producing the same
JP2850525B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2819714B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP3036202B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2727699B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2819731B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2830264B2 (en) Zinc oxide varistor and method of manufacturing the same
JP2819691B2 (en) Manufacturing method of zinc oxide varistor
JPH09162016A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JPH09162015A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JPH0547512A (en) Zinc oxide varistor, manufacture thereof, and crystal glass composition for coating
JP2510961B2 (en) Voltage nonlinear resistor
JPH04170004A (en) Zinc oxide varistor and its manufacture and crystalline glass composition for coating
JPH04171701A (en) Zinc oxide varistor and its manufacture and crystallized glass composition for covering
JP2001052907A (en) Ceramic element and manufacturing method
JPH0519802B2 (en)
JPS61294803A (en) Manufacture of voltage non-linear resistor
JP2531586B2 (en) Voltage nonlinear resistor
JPH07130506A (en) Manufacture of resisting body nonlinear in voltage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

EXPY Cancellation because of completion of term