JP2819731B2 - Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic - Google Patents

Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Info

Publication number
JP2819731B2
JP2819731B2 JP2035129A JP3512990A JP2819731B2 JP 2819731 B2 JP2819731 B2 JP 2819731B2 JP 2035129 A JP2035129 A JP 2035129A JP 3512990 A JP3512990 A JP 3512990A JP 2819731 B2 JP2819731 B2 JP 2819731B2
Authority
JP
Japan
Prior art keywords
glass
zinc oxide
crystallized glass
pbo
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2035129A
Other languages
Japanese (ja)
Other versions
JPH03238801A (en
Inventor
雅昭 勝又
昭宏 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2035129A priority Critical patent/JP2819731B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to DE69021552T priority patent/DE69021552T2/en
Priority to EP90916378A priority patent/EP0452511B1/en
Priority to PCT/JP1990/001442 priority patent/WO1991007763A1/en
Priority to DE69027866T priority patent/DE69027866T2/en
Priority to DE69027867T priority patent/DE69027867T2/en
Priority to EP94110295A priority patent/EP0620567B1/en
Priority to US07/689,948 priority patent/US5294908A/en
Priority to AU77879/91A priority patent/AU641249B2/en
Priority to EP94110291A priority patent/EP0620566B1/en
Priority to KR1019910700714A priority patent/KR960011155B1/en
Publication of JPH03238801A publication Critical patent/JPH03238801A/en
Priority to US08/147,182 priority patent/US5447892A/en
Priority to US08/388,086 priority patent/US5547907A/en
Application granted granted Critical
Publication of JP2819731B2 publication Critical patent/JP2819731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、主として電力分野に用いられる酸化亜鉛バ
リスタおよびその製造方法と、サーミスタ、バリスタ等
の酸化物セラミック被覆用結晶化ガラス組成物に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a zinc oxide varistor mainly used in the field of electric power, a method for producing the same, and a crystallized glass composition for coating an oxide ceramic such as a thermistor and a varistor. .

従来の技術 ZnOを主成分とし、Bi2O3,CoO,Sb2O3,Cr2O3,MnO2を始
めとする種類の金属酸化物を副成分とする酸化亜鉛バリ
スタは、大きなサージ耐量と優れた電圧非直線性を有
し、近年ギャップレスアレスタ用の素子として、従来の
シリコンカーバイトバリスタにとって代わって広く利用
されていることは周知の通りである。
Conventional technology Zinc oxide varistors containing ZnO as a main component and metal oxides of various types including Bi 2 O 3 , CoO, Sb 2 O 3 , Cr 2 O 3 , and MnO 2 as sub-components have a large surge withstand capability. It is well known that it has been widely used in recent years as an element for a gapless arrester instead of a conventional silicon carbide varistor.

従来より、酸化亜鉛バリスタの製造方法として、例え
ば特開昭62−101002号公報などが開示されているが、前
記先行例の内容は以下の通りである。まず、主成分のZn
Oに、Bi2O3、Sb2O3、Cr2O3、CoO、MnO2などの金属酸化
物をそれぞれ0.01〜6.0モル%添加した原料粉を混合,
造粒し、この造粒粉を円柱状に加圧,形成し、電気炉で
1200℃、6時間焼成する。次に、得られた焼結体の側面
に、PbOを60重量%含有するPbO系ガラスフリットを80重
量%と、長石を20重量%と、有機バインダーとからなる
ガラスペーストを、スクリーン印刷機で5〜500mg/cm2
塗布した後、焼付処理を行う。このようにして得られた
素子の両端面を平面研磨し、アルミニウムのメタリコン
電極を形成し、酸化亜鉛バリスタを得るものである。
Conventionally, as a method for manufacturing a zinc oxide varistor, for example, Japanese Patent Application Laid-Open No. 62-101002 has been disclosed. The contents of the above-mentioned prior art are as follows. First, the main component Zn
O is mixed with a raw material powder in which metal oxides such as Bi 2 O 3 , Sb 2 O 3 , Cr 2 O 3 , CoO, and MnO 2 are added in an amount of 0.01 to 6.0 mol%,
Granulate, press and form this granulated powder into a columnar shape,
Bake at 1200 ° C for 6 hours. Next, a glass paste made of a PbO-based glass frit containing 60% by weight of PbO, 80% by weight of a PbO-based glass frit, 20% by weight of feldspar, and an organic binder was applied to a side surface of the obtained sintered body by a screen printing machine. 5-500 mg / cm 2
After the application, a baking treatment is performed. The both end faces of the element thus obtained are polished in a plane, an aluminum metallikon electrode is formed, and a zinc oxide varistor is obtained.

発明が解決しようとする課題 しかしながら、前記従来の製造方法による酸化亜鉛バ
リスタは、スクリーン印刷法を用いるため、側面ガラス
層の厚みが均一に形成され、放電耐量特性のバラツキが
小さいという長所を持つものの、PbO系ガラスフリット
と長石のコンポジットガラスであるため、放電耐量特性
が低く、またガラス焼付処理時に電圧非直線性を低下
し、課電寿命特性も悪化するという欠点を有していた。
However, since the zinc oxide varistor according to the conventional manufacturing method uses a screen printing method, the thickness of the side glass layer is uniformly formed, and the zinc oxide varistor has the advantage of having a small variation in discharge capability. Since it is a composite glass of a PbO-based glass frit and feldspar, it has a drawback that the discharge withstand capability is low, the voltage non-linearity is reduced during the glass baking treatment, and the charge life is deteriorated.

そこで本発明は、高信頼性の酸化亜鉛バリスタおよび
その製造方法、さらに酸化物系セラミック一般に用いる
ことのできる酸化物セラミック被覆用結晶化ガラス組成
物を提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a highly reliable zinc oxide varistor, a method for producing the same, and a crystallized glass composition for coating an oxide ceramic which can be generally used for an oxide ceramic.

課題を解決するための手段 本発明では前記従来の課題を解決するため、ZnOを主
成分とする焼結体の側面に、少なくともNiOを0.5〜5.0
重量%含むPbOを主成分とする結晶化ガラスからなる側
面高抵抗層を有する構成としたものである。また、前記
焼結体の側面に少なくともNiOを0.5〜5.0重量%含むPbO
を主成分とする結晶化ガラスと有機バインダーからなる
ガラスペーストを10.0〜150.0mg/cm2塗布し、450℃〜60
0℃の温度範囲にて焼付処理し、側面高抵抗層を形成す
るものである。
Means for Solving the Problems In the present invention, in order to solve the above-mentioned conventional problems, at least NiO is 0.5 to 5.0 on the side surface of the sintered body containing ZnO as a main component.
It has a configuration in which a side surface high-resistance layer made of crystallized glass containing PbO as a main component is contained by weight%. PbO containing at least 0.5 to 5.0% by weight of NiO on the side surface of the sintered body
A glass paste composed of crystallized glass having a main component and an organic binder of 10.0 to 150.0 mg / cm 2 is applied, and 450 ° C. to 60 ° C.
The baking treatment is performed in a temperature range of 0 ° C. to form a high resistance side surface layer.

さらに、側面高抵抗層用の、少なくともNiOを0.5〜5.
0重量%含むPbO−ZnO−B2O3−SiO2−NiO系の酸化物セラ
ミック被覆用の結晶化ガラス組成物を提供するものであ
る。
Further, at least NiO of 0.5 to 5.
0 and provides a PbO-ZnO-B 2 O 3 -SiO 2 -NiO -based oxide crystallized glass composition for a ceramic coating comprising by weight%.

作用 本発明によれば、PbO−長石系コンポジットガラスに
較べ、PbOを主成分とする結晶化ガラスは、NiOの添加に
より結晶化が促進され、SiO2の添加により被覆膜の強度
が向上し、焼結体との密着性もよいため放電耐量特性に
優れ、さらに絶縁性も高いため、焼付処理時の電圧非直
線性の低下を最小限に抑えることが可能となり、課電寿
命特性にも優れた高信頼性の酸化亜鉛バリスタを得るこ
とができる。
According to the action present invention, compared with PbO- feldspar-based composite glass, crystallized glass as a main component PbO is crystallized accelerated by the addition of NiO, the strength of the coating film is improved by the addition of SiO 2 Also, because of its good adhesion to the sintered body, it has excellent discharge withstand characteristics, and because of its high insulation properties, it is possible to minimize the decrease in voltage non-linearity during the baking process. An excellent high reliability zinc oxide varistor can be obtained.

実施例 以下、本発明の酸化亜鉛バリスタおよびその製造方
法、さらに被覆用結晶化ガラス組成物について実施例に
基づいて詳細に説明する。
EXAMPLES Hereinafter, the zinc oxide varistor of the present invention, the method for producing the same, and the crystallized glass composition for coating will be described in detail based on examples.

まず、ZnOの粉末に合計量に対し、Bi2O3 0.5モル
%、Co2O3 0.5モル%、MnO2 0.5モル%、Sb2O3 1.0
モル%、Cr2O3 0.5モル%、NiO 0.5モル%、SiO2 0.
5モル%を加え、純水、バインダー、分散剤とともに例
えばボールミルにて充分に混合、粉砕した後、スプレー
ドライヤーにて乾燥、造粒して原料粉を得た。この原料
粉を直径40mm、厚さ30mmの大きさに圧縮形成し、500℃
以上の温度条件にて脱脂処理した。その後、1100℃〜12
50℃の温度範囲で焼成し、焼結体を得た。
First, 0.5 mol% of Bi 2 O 3, 0.5 mol% of Co 2 O 3, 0.5 mol% of MnO 2 , Sb 2 O 3
Mol%, Cr 2 O 3 0.5 mol%, NiO 0.5 mol%, SiO 2 0.
5 mol% was added, and the mixture was thoroughly mixed and pulverized with, for example, a ball mill together with pure water, a binder, and a dispersant, and then dried and granulated with a spray drier to obtain a raw material powder. This raw material powder is compression-formed to a size of 40mm in diameter and 30mm in thickness, and 500 ℃
Degreasing was performed under the above temperature conditions. Then 1100 ℃ ~ 12
It was fired in a temperature range of 50 ° C. to obtain a sintered body.

一方、被覆用結晶化ガラスは、PbO,ZnO,B2O3,SiO2,Ni
Oを所定量秤量し、例えばボールミルにて混合、粉砕し
た後、白金ルツボにて1000℃〜1200℃の温度条件で溶融
し、急冷してガラス化させた。このガラスを粗粉砕した
後、ボールミルにて微粉砕し、ガラスフリットを得た。
なお、比較検討用試料としてPbO 70.0重量%、ZnO 2
5.0重量%、B2O3 5.0重量%からなるガラスフリット8
0.0重量%の長石(長石はKAlSi3O8,NaAlAi3O8,CaAl2Si2
O8の固溶体)20.0重量%からなるコンポジットガラスを
同様の工程で作成した。
On the other hand, the crystallized glass for coating is PbO, ZnO, B 2 O 3 , SiO 2 , Ni
After a predetermined amount of O was weighed and mixed and pulverized by, for example, a ball mill, it was melted in a platinum crucible at a temperature of 1000 ° C. to 1200 ° C., rapidly cooled, and vitrified. The glass was roughly pulverized and then finely pulverized with a ball mill to obtain a glass frit.
In addition, 70.0% by weight of PbO, ZnO 2
Glass frit 8 consisting of 5.0% by weight and 5.0% by weight of B 2 O 3
Feldspar 0.0% by weight (feldspars are KAlSi 3 O 8 , NaAlAi 3 O 8 , CaAl 2 Si 2
A composite glass composed of 20.0% by weight (solid solution of O 8 ) was prepared in the same process.

以上のように作成したガラスフリットの、組成および
ガラス転移点(Tg)、線膨脹係数(α)を下記の第1表
に示した。
The composition, glass transition point (Tg), and coefficient of linear expansion (α) of the glass frit prepared as described above are shown in Table 1 below.

第1表よりPbOの添加量が多い場合、線膨脹係数
(α)が高くなり、ZnOの添加量が多い場合、ガラス転
移点(Tg)が低くなり結晶化しやすくなる。また、B2O3
の添加量が少ない場合、ガラス転移点が高くなり、添加
量が15.0重量%を超えた場合には結晶化しにくくなる。
さらに、SiO2の添加量が多くなるに従いガラス転移点は
高くなる傾向があり、線膨脹係数は低くなる傾向があ
る。そして、NiOの添加量が増加するに従いガラスの結
晶化が進行した。また、PbO,B2O3が少ない系ではポーラ
スなガラスとなり易かった。
As shown in Table 1, when the added amount of PbO is large, the linear expansion coefficient (α) becomes high, and when the added amount of ZnO is large, the glass transition point (Tg) becomes low and crystallization becomes easy. Also, B 2 O 3
When the addition amount is small, the glass transition point increases, and when the addition amount exceeds 15.0% by weight, crystallization becomes difficult.
Further, as the amount of added SiO 2 increases, the glass transition point tends to increase, and the coefficient of linear expansion tends to decrease. Then, as the amount of NiO added increased, crystallization of the glass progressed. Further, in a system containing less PbO and B 2 O 3 , a porous glass was easily formed.

次に、このガラスフリット85重量%と、有機バインダ
ー(エチルセルロース、ブチルカルビトールアセテート
の混合物)15重量%を、例えば三本ロールミルにて充分
に混合し、被覆用ガラスペーストを得た。この被覆用ガ
ルスペーストを、例えば曲面スクリーン印刷機にて125
〜250メッシュのスクリーンを用いて前記焼結体の側面
に印刷した。ここで被覆用ガラスペーストの塗布量はペ
ーストを塗布した後、150℃で30分間乾燥して焼結体の
重量差から求めた。また、塗布量は被覆用ガラスペース
トに有機バインダー、酢酸n−ブチルを添加して調整し
た。その後、350℃〜700℃の温度条件にて被覆用ガラス
ペーストの焼付処理を行い、焼結体に側面高抵抗層を形
成した。次に、この焼結体の両端面を平面研磨し、アル
ミニウムのメタリコン電極を形成し、酸化亜鉛バリスタ
を得た。
Next, 85% by weight of this glass frit and 15% by weight of an organic binder (a mixture of ethyl cellulose and butyl carbitol acetate) were sufficiently mixed, for example, by a three-roll mill to obtain a glass paste for coating. This coating gul paste is coated with a curved screen printing machine for 125
Printing was performed on the side surface of the sintered body using a screen of 250250 mesh. Here, the application amount of the glass paste for coating was determined from the difference in weight of the sintered body after the paste was applied and dried at 150 ° C. for 30 minutes. The coating amount was adjusted by adding an organic binder and n-butyl acetate to the glass paste for coating. Thereafter, the glass paste for coating was baked at a temperature of 350 ° C. to 700 ° C. to form a high-side resistance layer on the sintered body. Next, both end surfaces of the sintered body were polished to form an aluminum metallikon electrode to obtain a zinc oxide varistor.

第1図に、以上のようにして得られた本発明による酸
化亜鉛バリスタの断面図を示す。第1図において、1は
酸化亜鉛を主成分とする焼結体、2は焼結体1の両端面
に形成された電極、3は焼結体1の側面に結晶化ガラス
を焼付処理して得られた側面高抵抗層である。
FIG. 1 shows a sectional view of the zinc oxide varistor according to the present invention obtained as described above. In FIG. 1, 1 is a sintered body containing zinc oxide as a main component, 2 is an electrode formed on both end surfaces of the sintered body 1, and 3 is a crystallized glass on a side surface of the sintered body 1 by baking crystallized glass. It is a side surface high resistance layer obtained.

次に、下記の第2表に、第1表の被覆用ガラスを用い
て作成して酸化亜鉛バリスタの外観、V1mA/V10μA、放
電耐量特性および課電寿命特性を示す。ここで、被覆用
ガラスペーストの塗布量は、50mg/cm2となるようペース
トの粘度をコントロールした。また、焼付処理条件は55
0℃、1時間である。試料数は各ロットn=5個とし
た。また、V1mA,V10μAは直流定電流電源を用いて測定
した。さらに、放電耐量特性は4/10μSの衝撃電流を5
分間隔で同一方向に2回ずつ印加し、40kAよりステップ
アップした。そして、課電寿命特性は周囲温度130℃,
課電率95%(AC,ピーク値)の条件で行い、漏れ電流が5
mA(ピーク値)に至るまでの時間を測定した。
Next, Table 2 below shows the appearance, V 1 mA / V 10 μA , discharge withstand voltage characteristics, and charging life characteristics of zinc oxide varistors prepared using the coating glass of Table 1. Here, the viscosity of the paste was controlled so that the coating amount of the coating glass paste was 50 mg / cm 2 . The baking condition is 55
0 ° C., 1 hour. The number of samples was n = 5 for each lot. V 1mA and V 10 μA were measured using a DC constant current power supply. In addition, the discharge withstand characteristics show that a shock current of 4/10 μS is 5
It was applied twice in the same direction at minute intervals, and stepped up from 40 kA. And, the charging life characteristics are as follows: ambient temperature 130 ℃,
The test was performed under the conditions of a power application rate of 95% (AC, peak value).
The time to reach mA (peak value) was measured.

第1表および第2表から、被覆用ガラスの線膨脹係数
が65×10-7/℃より小さい場合(G1,G5ガラス)はガラス
が剥離し易くなり、90×10-7/℃を超えた場合(G4ガラ
ス)にはクラックが発生し易くなることがかわる。これ
らクラックやガラス剥離が発生した試料は、側面高抵抗
層の絶縁性が悪いため、放電耐量特性が低いと考えられ
る。また、被覆用ガラスの線膨脹係数が65×10-7/℃か
ら90×10-7/℃の範囲であっても、結晶性の悪いガラス
(G8ガラス)についてはクラッチが入りやすく、放電耐
量特性も低い。これは、結晶性ガラスの方が非結晶性ガ
ラスに較べ被覆膜の強度が高いためと考えられる。ま
た、ZnOの添加は、酸化亜鉛バリスタの電気的諸特性、
信頼性に大きな影響を及ぼさず、ガラスの物理中でもガ
ラス転移点の低下に役立つ。また、先行文献例であるPb
O−ZnO−B2O3、長石のコンポジットガラスを用いた場
合、課電寿命特性は実用的なレベルではあるが放電耐量
特性が低いことがわかる。
From Tables 1 and 2, when the coefficient of linear expansion of the coating glass is smaller than 65 × 10 -7 / ° C (G1, G5 glass), the glass is easily peeled and exceeds 90 × 10 -7 / ° C. In the case of (G4 glass), cracks are more likely to occur. It is considered that the sample in which these cracks and glass peeling have low discharge withstand characteristics because the insulating property of the side high-resistance layer is poor. Even if the linear expansion coefficient of the coating glass is in the range of 65 × 10 −7 / ° C. to 90 × 10 −7 / ° C., the glass with poor crystallinity (G8 glass) can be easily clutched, and the discharge withstand capacity can be improved. Characteristics are low. This is presumably because crystalline glass has a higher coating film strength than amorphous glass. In addition, the addition of ZnO depends on the electrical characteristics of the zinc oxide varistor,
It does not significantly affect the reliability and helps to lower the glass transition point even during the physics of glass. In addition, Pb
O-ZnO-B 2 O 3 , in the case of using the composite glass feldspar, voltage application life characteristic is it can be seen that a lower discharge withstand current rating characteristic is a practical level.

次に、NiOの添加量について考察する。まず、NiOの添
加量が0.5重量%以上の組成系においてはいずれの組成
系であっても電圧非直線性が向上し、それにともない課
電寿命特性が向上する。これは、NiOを0.5重量%以上添
加することにより、被覆膜の絶縁抵抗が高くなるためで
あると考えられる。一方、NiOの添加量が5.0重量%より
多い場合、放電耐量特性が低い。これは、焼付処理時の
ガラスの流動性が悪いため、ポーラスになり易いためで
あると考えられる。従って、酸化亜鉛バリスタの側面高
抵抗層用のPbO−ZnO−B2O3−SiO2−NiO系結晶化ガラス
において、少なくともNiOを0.5〜5.0重量%含む組成系
であることが必要条件である。
Next, the amount of NiO added will be considered. First, in the composition system in which the addition amount of NiO is 0.5% by weight or more, the voltage non-linearity is improved in any of the composition systems, and the charging life property is accordingly improved. This is considered to be because the addition of 0.5% by weight or more of NiO increases the insulation resistance of the coating film. On the other hand, when the addition amount of NiO is more than 5.0% by weight, discharge withstand characteristics are low. This is considered to be because the fluidity of the glass during the baking process is poor, and the glass tends to be porous. Therefore, in the PbO—ZnO—B 2 O 3 —SiO 2 —NiO-based crystallized glass for the side surface high resistance layer of the zinc oxide varistor, it is a necessary condition that the composition system contains at least 0.5 to 5.0% by weight of NiO. .

以上の結果より、被覆用結晶化ガラスの組成は、PbO
が55.0〜75.0重量%、ZnOが10.0〜30.0重量%、B2O3
5.0〜10.0重量%、SiO2が0〜15.0重量%、NiOが0.5〜
5.0重量%の範囲が最適であることがわかる。また、酸
化亜鉛バリスタの側面高抵抗層用としては、線膨脹係数
が65〜90×10-7/℃の範囲内であることが必要である。
From the above results, the composition of the crystallized glass for coating is PbO
55.0-75.0% by weight, ZnO 10.0-30.0% by weight, B 2 O 3
5.0 to 10.0 weight%, SiO 2 is 0 to 15.0 wt.%, NiO is 0.5
It can be seen that the range of 5.0% by weight is optimal. Further, for the side surface high resistance layer of the zinc oxide varistor, the linear expansion coefficient needs to be in the range of 65 to 90 × 10 −7 / ° C.

次に、本発明例である第1表のG16ガラスを用いてガ
ラスペーストの塗布量を検討した。この結果を下記の第
3表に示した。この際、ガラスペーストの塗布量は1.0
〜300.0mg/cm2で、ペーストの粘度および塗布回数でコ
ントロールした。この時、塗布量が10.0mg/cm2より少な
い場合、被覆膜の強度が低いため、また塗布量が150.0m
g/cm2より多い場合にはガラスに流れが発生したり、ピ
ンホールが発生し易いため、放電耐量特性が悪い。従っ
て、ガラスペーストの塗布量は10.0〜15.0mg/cm2の範囲
が最適であることがわかる。
Next, the application amount of the glass paste was examined using the G16 glass of Table 1 which is an example of the present invention. The results are shown in Table 3 below. At this time, the application amount of the glass paste was 1.0
〜300.0 mg / cm 2, which was controlled by the viscosity of the paste and the number of applications. In this case, if the coating amount is less than 10.0 mg / cm 2, the strength of the coating film is low, also the coating amount is 150.0m
When the amount is more than g / cm 2 , the glass tends to flow and pinholes are easily generated, so that the discharge capability is poor. Therefore, it is understood that the optimal amount of the glass paste applied is in the range of 10.0 to 15.0 mg / cm 2 .

次に、本発明例である第1表のG16ガラスを用いてガ
ラスペーストの焼付処理条件を検討した。この結果を下
記の第4表に示した。この際、ガラスペーストの塗布量
は50.0mg/cm2となるよう粘度をコントロールした。ま
た、ガラスペーストの焼付処理は350〜700℃の温度範囲
にて保持時間を1時間とし空気中で行った。この結果、
450℃より低温で焼付処理を行った場合、ガラスペース
トが充分に溶融しないため放電耐量特性が低く、60℃よ
り高温で焼付処理を行った場合、電圧比が著しく低下
し、課電寿命毒性が悪化する。従って、ガラスペースト
の焼付処理条件は450〜600℃の温度範囲が最適であるこ
とがわかる。
Next, using the G16 glass shown in Table 1 as an example of the present invention, the baking conditions of the glass paste were examined. The results are shown in Table 4 below. At this time, the viscosity was controlled so that the application amount of the glass paste was 50.0 mg / cm 2 . Further, the baking treatment of the glass paste was performed in air at a temperature range of 350 to 700 ° C. with a holding time of 1 hour. As a result,
When the baking treatment is performed at a temperature lower than 450 ° C, the glass paste does not melt sufficiently, resulting in low discharge withstand characteristics. Getting worse. Therefore, it is understood that the optimal temperature range for the baking treatment of the glass paste is 450 to 600 ° C.

なお、本実施例ではPbO−ZnO−B2O3−NiO、PbO−ZnO
−B2O3−SiO2−NiOの4および5成分系の被覆用結晶化
ガラスについて述べたが、第6成分として、さらにガラ
スの結晶化を促進する微量添加物、例えばAl2O3,SnO2
どを添加しても本発明の効果に変わりはない。また、ガ
ラス転移点を低下させる物質として、前記実施例ではZn
Oを用いたが、これはその他の物質で置き換えることも
できるのはもちろんである。さらに、本実施例では、酸
化物セラミックの代表例として、酸化亜鉛バリスタに本
発明のPbO−ZnO−B2O3−SiO2−NiO系の被覆用結晶化ガ
ラスを用いたが、チタン酸ストロンチウム系のバリス
タ、チタン酸バリウム系のコンデンサや正特性サーミス
タ、金属酸化物系の負特性サーミスタなど、いずれの酸
化物セラミックにも全く同様に適用できるものである。
Incidentally, PbO-ZnO-B 2 O 3 in the present embodiment -NiO, PbO-ZnO
-B 2 O 3 —SiO 2 —NiO 4 and 5 component system crystallized glass has been described. As the sixth component, a trace additive that further promotes crystallization of the glass, for example, Al 2 O 3 , Even if SnO 2 or the like is added, the effect of the present invention does not change. Further, as the substance for lowering the glass transition point, Zn
O was used, but of course it could be replaced with other substances. Further, in this embodiment, as a typical example of oxide ceramics, it was used PbO-ZnO-B 2 O 3 -SiO 2 -NiO -based coating for crystallized glass of the present invention zinc oxide varistor, strontium titanate The present invention can be applied to any oxide ceramic, such as a varistor of a system, a barium titanate-based capacitor or a positive temperature coefficient thermistor, and a metal oxide type negative temperature coefficient thermistor.

発明の効果 以上のように本発明によれば、酸化亜鉛を主成分とす
る焼結体の側面に少なくともNiOを0.5〜5.0重量%含むP
bO−ZnO−B2O3−SiO2−NiO系の酸化物セラミック被覆用
の結晶化ガラスを450〜600℃の温度条件で焼付処理する
ことにより、放電耐量特性、課電寿命特性の優れた酸化
亜鉛バリスタを得ることができる。
Effects of the Invention As described above, according to the present invention, P containing at least 0.5 to 5.0% by weight of NiO on the side surface of a sintered body containing zinc oxide as a main component
By baking at a temperature of the oxide crystallized glass ceramic coating of bO-ZnO-B 2 O 3 -SiO 2 -NiO system 450 to 600 ° C., discharge withstand current rating characteristic was excellent voltage application life characteristics A zinc oxide varistor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の製造方法ならびに本発明の被覆用結晶
化ガラスを適用した一実施例による酸化亜鉛バリスタの
断面図である。 1……焼結体、2……電極、3……側面高抵抗層。
FIG. 1 is a sectional view of a zinc oxide varistor according to an embodiment to which the production method of the present invention and the crystallized glass for coating of the present invention are applied. 1 ... sintered body, 2 ... electrode, 3 ... side surface high resistance layer.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化亜鉛を主成分とし、焼結体自身がバリ
スタ特性を有する焼結体の側面に、少なくとも酸化ニッ
ケルをNiOの形に換算して0.5〜5.0重量%含むPbOを主成
分とする結晶化ガラスからなる側面高抵抗層を有する酸
化亜鉛バリスタ。
1. PbO containing zinc oxide as a main component and containing at least 0.5 to 5.0% by weight of nickel oxide as NiO on a side surface of a sintered body having a varistor characteristic. Oxide varistor having a high-side resistance layer made of crystallized glass.
【請求項2】側面高抵抗層がPbO−ZnO−B2O3−NiO系結
晶化ガラスからなる請求項1記載の酸化亜鉛バリスタ。
2. The zinc oxide varistor according to claim 1, wherein the side surface high resistance layer is made of a PbO—ZnO—B 2 O 3 —NiO crystallized glass.
【請求項3】側面高抵抗層がPbO−ZnO−B2O3−SiO2−Ni
O系結晶化ガラスからなる請求項1記載の酸化亜鉛バリ
スタ。
3. A side surface high resistance layer is PbO-ZnO-B 2 O 3 -SiO 2 -Ni
The zinc oxide varistor according to claim 1, which is made of an O-based crystallized glass.
【請求項4】酸化亜鉛を主成分とし、焼結体自身がバリ
スタ特性を有する焼結体の側面に、少なくとも酸化ニッ
ケルをNiOの形に換算して0.5〜5.0重量%を含むPbOを主
成分とする結晶化ガラスと有機物からなるガラスペース
トを10.0〜150.0mg/cm2塗布し、450℃〜600℃の温度範
囲にて焼付処理する酸化亜鉛バリスタの製造方法。
4. PbO containing zinc oxide as a main component and containing at least 0.5 to 5.0% by weight of nickel oxide in NiO form on the side surface of the sintered body itself having varistor characteristics. A method for producing a zinc oxide varistor, in which a glass paste composed of crystallized glass and an organic substance is applied at 10.0 to 150.0 mg / cm 2 and baked at a temperature in a range of 450 ° C. to 600 ° C.
【請求項5】結晶化ガラスの線膨張係数が65〜90×10-7
/℃である請求項4記載の酸化亜鉛バリスタの製造方
法。
5. The crystallized glass has a coefficient of linear expansion of 65 to 90 × 10 −7.
The method for producing a zinc oxide varistor according to claim 4, wherein the temperature is / C.
【請求項6】PbO 55.0〜75.0重量%, ZnO 10.0〜30.0重量%, B2O3 5.0〜15.0重量%, SiO2 0〜15.0重量%, NiO 0.5〜 5.0重量%からなる酸化物セラミック被覆
用結晶化ガラス組成物。
6. PbO from 55.0 to 75.0 wt%, ZnO 10.0 to 30.0 wt%, B 2 O 3 5.0 to 15.0 wt%, SiO 2 from 0 to 15.0 wt%, the oxide ceramic coating of NiO 0.5 to 5.0 wt% Crystallized glass composition.
JP2035129A 1989-11-08 1990-02-15 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic Expired - Lifetime JP2819731B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2035129A JP2819731B2 (en) 1990-02-15 1990-02-15 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
US07/689,948 US5294908A (en) 1989-11-08 1990-11-07 Zinc oxide varistor, a method of preparing the same, and a crystallized glass composition for coating
PCT/JP1990/001442 WO1991007763A1 (en) 1989-11-08 1990-11-07 Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
DE69027866T DE69027866T2 (en) 1989-11-08 1990-11-07 Zinc oxide varistor, its manufacture and composition of a crystallized glass for coating
DE69027867T DE69027867T2 (en) 1989-11-08 1990-11-07 Zinc oxide varistor, its manufacture and composition of a crystallized glass for coating
EP94110295A EP0620567B1 (en) 1989-11-08 1990-11-07 A zinc oxide varistor, a method of preparing the same, and a crystallized glass composition for coating
DE69021552T DE69021552T2 (en) 1989-11-08 1990-11-07 ZINCOXIDE VARISTOR, ITS PRODUCTION AND COMPOSITION OF A CRYSTALLIZED GLASS FOR COATING.
AU77879/91A AU641249B2 (en) 1989-11-08 1990-11-07 Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
EP94110291A EP0620566B1 (en) 1989-11-08 1990-11-07 A zinc oxide varistor, a method of preparing the same, and a crystallized glass composition for coating
EP90916378A EP0452511B1 (en) 1989-11-08 1990-11-07 Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating
KR1019910700714A KR960011155B1 (en) 1989-11-08 1990-11-17 Zno varistor manufacturing method
US08/147,182 US5447892A (en) 1989-11-08 1993-11-01 Crystallized glass compositions for coating oxide-based ceramics
US08/388,086 US5547907A (en) 1989-11-08 1995-02-14 Crystallized glass compositions for coating oxide-based ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035129A JP2819731B2 (en) 1990-02-15 1990-02-15 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Publications (2)

Publication Number Publication Date
JPH03238801A JPH03238801A (en) 1991-10-24
JP2819731B2 true JP2819731B2 (en) 1998-11-05

Family

ID=12433324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035129A Expired - Lifetime JP2819731B2 (en) 1989-11-08 1990-02-15 Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic

Country Status (1)

Country Link
JP (1) JP2819731B2 (en)

Also Published As

Publication number Publication date
JPH03238801A (en) 1991-10-24

Similar Documents

Publication Publication Date Title
KR960011155B1 (en) Zno varistor manufacturing method
EP0316015B1 (en) Material for resistor body and non-linear resistor made thereof
JPS62237703A (en) Manufacture of voltage nonlinear resistance element
US5610570A (en) Voltage non-linear resistor and fabricating method thereof
JP3003374B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2819731B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2727699B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2819714B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2850525B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating oxide ceramic
JP2830264B2 (en) Zinc oxide varistor and method of manufacturing the same
JP3036202B2 (en) Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating
JP2819691B2 (en) Manufacturing method of zinc oxide varistor
JPH09162016A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JPH09162015A (en) Zinc oxide varistor, manufacture thereof and crystalline glass composition for coating use which is used for that
JP2510961B2 (en) Voltage nonlinear resistor
JPH04170004A (en) Zinc oxide varistor and its manufacture and crystalline glass composition for coating
JPH0547512A (en) Zinc oxide varistor, manufacture thereof, and crystal glass composition for coating
JPH04171701A (en) Zinc oxide varistor and its manufacture and crystallized glass composition for covering
JP2718176B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JP2001052907A (en) Ceramic element and manufacturing method
JP2687470B2 (en) Manufacturing method of zinc oxide type varistor
JP2531586B2 (en) Voltage nonlinear resistor
JP2978009B2 (en) Method of manufacturing voltage non-linear resistor
JP2621408B2 (en) Manufacturing method of zinc oxide type varistor
JPH0249522B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12