JPH09161788A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH09161788A
JPH09161788A JP7323202A JP32320295A JPH09161788A JP H09161788 A JPH09161788 A JP H09161788A JP 7323202 A JP7323202 A JP 7323202A JP 32320295 A JP32320295 A JP 32320295A JP H09161788 A JPH09161788 A JP H09161788A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
electrode
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7323202A
Other languages
Japanese (ja)
Inventor
Tadashi Ise
忠司 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7323202A priority Critical patent/JPH09161788A/en
Publication of JPH09161788A publication Critical patent/JPH09161788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the high-rate discharge characteristic and cycle characteristic by using the hydrogen storage alloy powder having a small grain size as an active material so that the total quantity of the hydrogen storage alloy powder accumulated from the small grain size side to the large grain size side after crushing becomes a specific quantity. SOLUTION: Hydrogen storage alloy lumps manufactured by quench solidification are crushed to obtain hydrogen storage alloy powder, and the hydrogen storage alloy powder satisfying the equation I within this hydrogen storage alloy powder is used as the active material of a hydrogen storage alloy electrode. Nearly all the hydrogen storage alloy used for the electrode is uniformly charged and discharged, and the hydrogen storage alloy can be prevented from being set to the inactive state or from being pulverized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属水素化物蓄電池の
負極として用いられる水素吸蔵合金電極に係わり、詳し
くは、サイクル特性と高率放電特性の向上を図ることを
目的とした、電極材料たる水素吸蔵合金の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a metal hydride storage battery, and more specifically, it is an electrode material for the purpose of improving cycle characteristics and high rate discharge characteristics. The present invention relates to improvement of hydrogen storage alloys.

【0002】[0002]

【従来の技術】近年、エレクトロニクス技術の進歩は目
覚ましく、今後もますます加速する傾向にある。これに
伴い、電子機器のポータブル化やコードレス化が進むと
同時に、これらの機器の電源として、小型で軽量でかつ
高エネルギー密度の高性能二次電池の開発が強く望まれ
ている。そこで、負極に水素吸蔵合金を用いた金属水素
化物蓄電池は、ニッケルカドミウム蓄電池や鉛蓄電池等
よりも高容量で高密度の上、クリーンな電源として最近
特に注目されている。
2. Description of the Related Art In recent years, the progress of electronics technology has been remarkable and tends to continue to accelerate. Along with this, portable and cordless electronic devices have been developed, and at the same time, there has been a strong demand for the development of small, lightweight, high-energy-density, high-performance secondary batteries as power supplies for these devices. Therefore, a metal hydride storage battery using a hydrogen storage alloy for the negative electrode has recently attracted particular attention as a clean power source having a higher capacity, higher density, and a higher capacity than nickel cadmium storage batteries, lead storage batteries, and the like.

【0003】ところで、アルカリ蓄電池用の水素吸蔵合
金としては、室温近傍で可逆的に水素を吸蔵放出し得る
ものでなければならない。水素吸蔵合金を用いた電極の
作製方法としては、以下のような方法が提案されてい
る。
By the way, a hydrogen storage alloy for alkaline storage batteries must be capable of reversibly storing and releasing hydrogen near room temperature. The following method has been proposed as a method for producing an electrode using a hydrogen storage alloy.

【0004】先ず、金属元素を秤量し、金属元素を溶解
炉内で溶融した後、この溶湯をロール法等の急冷凝固法
等で冷却して水素吸蔵合金鋳塊を作製する。次に、この
水素吸蔵合金鋳塊を機械的粉砕法または水素化粉砕法等
により粉砕して水素吸蔵合金粉末を作製した後、この水
素吸蔵合金粉末と結着剤とを混練して活物質ペーストを
作製する。しかる後、この活物質ペーストを集電体の両
面に圧着し、プレスするなどして作製していた。
First, a metal element is weighed, the metal element is melted in a melting furnace, and then this molten metal is cooled by a rapid solidification method such as a roll method to prepare a hydrogen storage alloy ingot. Next, this hydrogen storage alloy ingot is pulverized by a mechanical pulverization method or a hydrogenation pulverization method to prepare a hydrogen storage alloy powder, and then this hydrogen storage alloy powder and a binder are kneaded to form an active material paste. To make. Then, the active material paste was pressure-bonded to both sides of the current collector and pressed to produce the active material paste.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の水素吸蔵合金電極を用いた金属水素化物蓄電池
では、充放電時の水素原子を吸蔵、放出する際に、合金
の結晶格子に膨張、収縮の応力が加わる。このため、充
放電を繰り返し行うと水素吸蔵合金が次第に微粉化し、
新生面ができ、この新生面に露出した合金の元素が酸化
されて、合金表面に不活性な被膜が生じたり、合金の元
素が電解液中に溶解して合金組成が変化する。
However, in the above-mentioned conventional metal hydride storage battery using the hydrogen storage alloy electrode, when the hydrogen atoms are stored and released during charge and discharge, the crystal lattice of the alloy expands and contracts. Is applied. For this reason, when repeatedly charged and discharged, the hydrogen storage alloy gradually becomes finer,
A new surface is formed, and the element of the alloy exposed on the new surface is oxidized to form an inactive film on the surface of the alloy, or the element of the alloy is dissolved in the electrolytic solution to change the alloy composition.

【0006】特に、ロール法等の急冷凝固法によって作
製した水素吸蔵合金は、通常の鋳込み法(水冷された鋳
型に水素吸蔵合金溶湯を流し込んで冷却凝固させる方
法)と比べて冷却速度が大きいため、例えばロール法に
よる場合にあっては、ロール面側(ロールと接触してい
る側であって、水素吸蔵合金の溶湯が急冷される部分)
の合金と、ロール面と反対側(気体と接触している側で
あって、水素吸蔵合金の溶湯の冷却が若干遅い部分)の
合金とでは、合金組織と水素吸蔵合金を粉砕した後の水
素吸蔵合金粉末の粒径が異なる。具体的には、急冷部の
合金は組織が均一なチル晶となり、且つ、硬度が高く粉
砕した後の水素吸蔵合金粉末の粒径が大きくなる一方、
徐冷部の合金は組織が若干不均一となり、且つ、硬度が
低く粉砕した後の水素吸蔵合金粉末の粒径が小さくな
る。
In particular, a hydrogen storage alloy produced by a rapid solidification method such as a roll method has a higher cooling rate than a usual casting method (a method of pouring a molten hydrogen storage alloy into a water-cooled mold for cooling and solidification). , For example, in the case of the roll method, the roll surface side (the side in contact with the roll, where the molten metal of the hydrogen storage alloy is rapidly cooled)
Alloy and the alloy on the side opposite to the roll surface (on the side in contact with the gas, where cooling of the molten hydrogen storage alloy is slightly slower), the alloy structure and hydrogen after crushing the hydrogen storage alloy The particle size of the occlusion alloy powder is different. Specifically, the alloy of the quenching portion has a chilled crystal with a uniform structure, and the hardness is high, while the particle size of the hydrogen storage alloy powder after crushing is large,
The alloy of the slow cooling part has a slightly nonuniform structure, and the hardness is low, and the particle size of the hydrogen storage alloy powder after pulverization is small.

【0007】そして、大小全ての粒径の水素吸蔵合金粉
末を用いて電極及び電池を作製し、充放電サイクルを繰
り返した場合には、小粒径の水素吸蔵合金粉末が選択的
に充放電されて微粉化が促進され、しかも新生面に露出
した合金の元素が酸化される一方、大粒径の水素吸蔵合
金粉末は充放電されず不活性な状態となる。これらのこ
とから、高率放電特性やサイクル特性が低下するという
問題を有していた。
When an electrode and a battery are manufactured by using hydrogen storage alloy powders of all sizes, large and small, and the charging / discharging cycle is repeated, the hydrogen storage alloy powders of small size are selectively charged / discharged. As a result, the atomization of the alloy is promoted, and the elements of the alloy exposed on the new surface are oxidized, while the hydrogen-absorbing alloy powder having a large particle size is not charged / discharged and becomes inactive. For these reasons, there is a problem that the high rate discharge characteristics and the cycle characteristics are deteriorated.

【0008】本発明は、前記問題点に鑑みてなされたも
のであり、高率放電特性及びサイクル特性に優れた金属
水素化物蓄電池を得ることを可能にする、水素吸蔵合金
電極及びその製造方法を提供しようとすることを本発明
の課題とする。
The present invention has been made in view of the above problems, and provides a hydrogen storage alloy electrode and a method for manufacturing the same, which makes it possible to obtain a metal hydride storage battery excellent in high rate discharge characteristics and cycle characteristics. It is an object of the present invention to provide.

【0009】[0009]

【課題を解決するための手段】本発明に係る水素吸蔵合
金電極は、急冷凝固法により作製した水素吸蔵合金鋳塊
を粉砕して得た水素吸蔵合金粉末の内、下記数3を満足
する水素吸蔵合金粉末を活物質とすることを特徴とす
る。
The hydrogen storage alloy electrode according to the present invention is a hydrogen storage alloy powder obtained by crushing a hydrogen storage alloy ingot produced by a rapid solidification method, which satisfies the following formula 3. It is characterized in that a storage alloy powder is used as an active material.

【0010】[0010]

【数3】 (Equation 3)

【0011】また、本発明における水素吸蔵合金電極の
製造方法は、急冷凝固法により水素吸蔵合金鋳塊を作製
する第1ステップと、上記水素吸蔵合金鋳塊を粉砕して
水素吸蔵合金粉末を得る第2ステップと、上記水素吸蔵
合金粉末の内上記数3を満足する水素吸蔵合金粉末を選
択する第3ステップと、第3ステップにより得た水素吸
蔵合金粉末を活物質として電極を作製する第4ステップ
とよりなることを特徴とする。
The method for producing a hydrogen storage alloy electrode according to the present invention comprises a first step of producing a hydrogen storage alloy ingot by a rapid solidification method and a crushing of the hydrogen storage alloy ingot to obtain a hydrogen storage alloy powder. A second step, a third step of selecting a hydrogen storage alloy powder satisfying the above expression 3 among the hydrogen storage alloy powders, and a fourth step of producing an electrode using the hydrogen storage alloy powder obtained in the third step as an active material. It is characterized by comprising steps.

【0012】[0012]

【発明の実施の形態】ロール法やガスアトマイズ法等の
急冷凝固法においては、冷却速度が大きいために、冷却
速度が異なる部分、即ち急冷部と徐冷部が生じる。急冷
部(ロール法のロール面側、アトマイズ法の表面部)が
徐冷部に比べて、合金の組織が均一であり、且つ、硬度
が高く粉砕した後の水素吸蔵合金粉末の粒径が大きくな
る。
BEST MODE FOR CARRYING OUT THE INVENTION In a rapid solidification method such as a roll method or a gas atomizing method, since the cooling rate is high, a portion having a different cooling rate, that is, a quenching portion and a slow cooling portion are formed. The quenching part (roll surface side of the roll method, surface part of the atomizing method) has a more uniform alloy structure than the slow cooling part, and the hardness is high, and the particle size of the hydrogen-absorbing alloy powder after crushing is large. Become.

【0013】この急冷部の水素吸蔵合金、即ち大粒子側
の合金は、小粒子側の合金に比べて合金の組織が均一で
あるため活性化されにくく、高率放電特性が低下する。
また、充放電サイクル時には、小粒子側の合金部分が選
択的に充放電され、微粉化して酸化し、大粒子側は、充
放電されないために不活性状態となり、合金容量が減少
し、結局サイクル寿命が低下する。
The hydrogen storage alloy in the quenched portion, that is, the alloy on the large particle side, is less activated than the alloy on the small particle side because it has a more uniform structure, and the high rate discharge characteristics are deteriorated.
Also, during the charge / discharge cycle, the alloy part on the small particle side is selectively charged / discharged, pulverized and oxidized, and the large particle side becomes inactive because it is not charged / discharged, the alloy capacity decreases, and eventually the cycle Service life is reduced.

【0014】そこで、本発明の水素吸蔵合金電極は、急
冷凝固法により作製した水素吸蔵合金鋳塊を粉砕して得
た水素吸蔵合金粉末の内、下記数4の値が80wt%以
下となる水素吸蔵合金粉末を活物質とすることによっ
て、電極に使用される略全ての水素吸蔵合金が均一に充
放電され、水素吸蔵合金が不活性な状態となったり微粉
化したりするのを抑制することができる。
Therefore, in the hydrogen storage alloy electrode of the present invention, among the hydrogen storage alloy powder obtained by crushing the hydrogen storage alloy ingot produced by the rapid solidification method, the value of the following expression 4 is 80 wt% or less. By using the storage alloy powder as the active material, almost all hydrogen storage alloys used in the electrodes are uniformly charged and discharged, and it is possible to suppress the hydrogen storage alloy from becoming an inactive state or being pulverized. it can.

【0015】[0015]

【数4】 (Equation 4)

【0016】詳しくは、図1を用いて説明する。図1に
おいて縦軸は重量%、横軸は粒径を示し、また粉砕後の
水素吸蔵合金粉末の総量はA+Bで示され、小粒径側か
らの水素吸蔵合金粉末の総量はAで示され、不使用の水
素吸蔵合金粉末はBで示される。そして、上記数4で示
される値が80wt%以下となるように小粒径側の水素
吸蔵合金粉末のみを分離し、この分離した小粒径側の水
素吸蔵合金粉末のみを活物質として水素吸蔵合金電極に
用いるものである。
Details will be described with reference to FIG. In FIG. 1, the vertical axis represents% by weight, the horizontal axis represents particle size, the total amount of hydrogen storage alloy powder after pulverization is indicated by A + B, and the total amount of hydrogen storage alloy powder from the small particle size side is indicated by A. An unused hydrogen storage alloy powder is indicated by B. Then, only the hydrogen-storing alloy powder on the small particle size side is separated so that the value represented by the above mathematical expression 4 becomes 80 wt% or less, and only the separated hydrogen-storing alloy powder on the small particle size side is used as the active material for hydrogen storage. It is used for alloy electrodes.

【0017】上記急冷凝固法としては、ロール法、アト
マイズ法、遠心噴霧法、又は水中鋳込み法(通常の鋳込
み法と異なり、水中で水素吸蔵合金溶湯が冷却されるた
め急冷される)が例示されるが、これらの方法に限定さ
れるものではない。尚、上記ロール法を用いた場合に
は、ロール法は急冷凝固法の中でも特に冷却速度が大き
いため、合金の不活性状態防止及び微粉化防止等の作用
が一層発揮される。
Examples of the rapid solidification method include a roll method, an atomizing method, a centrifugal atomizing method, and an underwater casting method (unlike the ordinary casting method, the molten hydrogen storage alloy is cooled in water so that it is rapidly cooled). However, the method is not limited to these methods. When the roll method is used, the roll method has a particularly high cooling rate among the rapid solidification methods, so that the effects of preventing the inactive state of the alloy and preventing pulverization are further exhibited.

【0018】上記水素吸蔵合金鋳塊の粉砕方法としては
水素化粉砕法又は機械的粉砕法を用いることができる。
特に、水素化粉砕法を用いた場合には、水素化粉砕法は
電池の充放電と同様に水素の出し入れにより水素吸蔵合
金を粉砕するものであるため、合金の活性化が促進さ
れ、機械粉砕に比べ高率放電特性が向上し、サイクル初
期から高容量の電池が得られる。
As the method for crushing the above hydrogen storage alloy ingot, a hydrogenation crushing method or a mechanical crushing method can be used.
In particular, when the hydro-crushing method is used, the hydrogen-crushing method is for crushing the hydrogen storage alloy by taking in and out of hydrogen similarly to charging / discharging of the battery, so that activation of the alloy is promoted and mechanical crushing is performed. The high-rate discharge characteristics are improved compared to, and a high capacity battery can be obtained from the beginning of the cycle.

【0019】また、水素吸蔵合金としてはMm1.0Ni
3.4Co0.8Al0.2Mn0.6、LaNi5、MmNi5等が
例示されるが、これらの水素吸蔵合金に限定されないこ
とは勿論である。
Further, as a hydrogen storage alloy, Mm 1.0 Ni
Examples include 3.4 Co 0.8 Al 0.2 Mn 0.6 , LaNi 5 , MmNi 5 and the like, but it goes without saying that the hydrogen storage alloy is not limited to these.

【0020】尚、上記数4の値を余り小さく設定する
と、不使用の水素吸蔵合金粉末が多くなって製造コスト
が上昇する。従って、上記数4の値は60〜80wt%
の間であることが望ましい。
If the value of the above equation 4 is set too small, the amount of unused hydrogen storage alloy powder increases and the manufacturing cost rises. Therefore, the value of the above equation 4 is 60 to 80 wt%
It is desirable to be between.

【0021】また、活物質としての水素吸蔵合金粉末の
充放電反応をより均一にするため、急冷された合金部
分、即ち粉砕後の大粒径側の合金の20wt%以上を取
り除いた後、粉砕後の最小粒径付近の水素吸蔵合金粉末
を取り除いても良い。この場合の上記数4の粉砕後の小
粒径側とは、粉砕後の最小粒径付近の水素吸蔵合金粉末
を取り除いた後の残りの水素吸蔵合金粉末の最小粒径を
意味するものとする。
Further, in order to make the charge-discharge reaction of the hydrogen storage alloy powder as the active material more uniform, 20% by weight or more of the rapidly cooled alloy part, that is, the alloy on the large particle size side after crushing is removed and then crushed. After that, the hydrogen storage alloy powder around the minimum particle size may be removed. In this case, the small particle size side after pulverization of the above Equation 4 means the minimum particle size of the remaining hydrogen storage alloy powder after removing the hydrogen storage alloy powder near the minimum particle size after pulverization. .

【0022】[0022]

【実施例】【Example】

(第1実施例) (実施例I) [水素吸蔵合金の作製]Mm(希土類元素の混合物):
Ni:Co:Al:Mnの各金属元素を1.0:3.
4:0.8:0.2:0.6の割合となるように市販の
金属元素を秤量し、高周波溶解炉で溶融させて溶湯を作
製した後、この溶湯を高速回転するロールの周面に噴出
させる所謂ロール法によって凝固させた。この際、溶湯
の冷却速度が10×103℃/秒以上となるようにロー
ル周速度を調整した。以上の工程を経て、組成式MmN
3.4Co0.8Al0.2Mn0.6で表される水素吸蔵合金鋳
塊を得た。
(First Example) (Example I) [Preparation of hydrogen storage alloy] Mm (mixture of rare earth elements):
Each metal element of Ni: Co: Al: Mn was added in the ratio of 1.0: 3.
Commercially available metal elements were weighed so as to have a ratio of 4: 0.8: 0.2: 0.6, melted in a high-frequency melting furnace to prepare a molten metal, and then the peripheral surface of a roll rotating at a high speed. It was solidified by a so-called roll method in which it was jetted to the. At this time, the peripheral speed of the roll was adjusted so that the cooling rate of the molten metal was 10 × 10 3 ° C./sec or more. Through the above steps, the composition formula MmN
A hydrogen storage alloy ingot represented by i 3.4 Co 0.8 Al 0.2 Mn 0.6 was obtained.

【0023】〔水素吸蔵合金電極の作製〕上記水素吸蔵
合金鋳塊を不活性ガス中でボールミルにより機械的に粉
砕して水素吸蔵合金粉末を作製した。この際、粉砕時間
は8.4分とした。次に、上記水素吸蔵合金粉末を粒径
毎に分級した後、上記水素吸蔵合金粉末のうち、前記数
4で示される値が50wt%となるようにメッシュ分け
により分離した。このようにして作製した水素吸蔵合金
を本発明合金a1と称する。尚、このように分離された
水素吸蔵合金粉末の平均粒径は50μmである。
[Preparation of Hydrogen Storage Alloy Electrode] The above hydrogen storage alloy ingot was mechanically pulverized by a ball mill in an inert gas to prepare hydrogen storage alloy powder. At this time, the grinding time was 8.4 minutes. Next, the hydrogen-absorbing alloy powder was classified according to particle size, and then the hydrogen-absorbing alloy powder was separated by meshing so that the value represented by the formula 4 was 50 wt%. The hydrogen storage alloy produced in this manner is referred to as alloy a1 of the invention. The average particle diameter of the hydrogen storage alloy powder thus separated is 50 μm.

【0024】次に、活物質としての上記小粒径側の水素
吸蔵合金粉末a1に、結着剤としてのポリテトラフルオ
ロエチレン粉末を活物質重量に対して5重量%加えて活
物質ペーストを作製した後、この活物質ペーストをパン
チングメタルから成る集電体の両面に圧着し、更にプレ
スすることにより負極を作製した。
Next, 5 wt% of the polytetrafluoroethylene powder as a binder was added to the above-mentioned hydrogen-absorbing alloy powder a1 on the small particle size side as an active material to prepare an active material paste. After that, this active material paste was pressure-bonded to both sides of a current collector made of punching metal, and further pressed to produce a negative electrode.

【0025】このように作製した電極を、以下本発明電
極A1と称する。
The electrode thus manufactured is hereinafter referred to as an electrode A1 of the invention.

【0026】(実施例II)前記数4で示される値が60
wt%となるように調整して本発明合金a2を作製する
他は、上記実施例Iと同様にして電極及び電池を作製し
た。但し、上記実施例Iと同様に水素吸蔵合金粉末の平
均粒径を50μmとすべく、本実施例IIにおける水素吸
蔵合金の粉砕した時間は8.5分とした。
(Embodiment II) The value shown by the above equation 4 is 60.
An electrode and a battery were produced in the same manner as in Example I except that the alloy a2 of the present invention was produced by adjusting the content to be wt%. However, the grinding time of the hydrogen storage alloy in this Example II was 8.5 minutes so that the average particle size of the hydrogen storage alloy powder was 50 μm as in the above Example I.

【0027】このように作製した電極を、以下本発明電
極A2と称する。
The electrode thus manufactured is hereinafter referred to as an electrode A2 of the invention.

【0028】(実施例III)前記数4で示される値が7
0wt%となるように調整して本発明合金a3を作製す
る他は、上記実施例Iと同様にして電極及び電池を作製
した。但し、上記実施例Iと同様に水素吸蔵合金粉末の
平均粒径を50μmとすべく、本実施例IIIにおける水
素吸蔵合金の粉砕した時間は8.7分とした。
(Embodiment III) The value represented by the above-mentioned equation 4 is 7
An electrode and a battery were produced in the same manner as in Example I except that the alloy a3 of the invention was produced by adjusting the content to be 0 wt%. However, the grinding time of the hydrogen storage alloy in this Example III was set to 8.7 minutes so that the average particle size of the hydrogen storage alloy powder was set to 50 μm as in the above Example I.

【0029】このように作製した電極を、以下本発明電
極A3と称する。
The electrode thus manufactured is hereinafter referred to as an electrode A3 of the invention.

【0030】(実施例IV)前記数4で示される値が80
wt%となるように調整して本発明合金a4を作製する
他は、上記実施例Iと同様にして電極及び電池を作製し
た。但し、上記実施例Iと同様に水素吸蔵合金粉末の平
均粒径を50μmとすべく、本実施例IVにおける水素吸
蔵合金の粉砕した時間は9分とした。
(Embodiment IV) The value shown by the above equation 4 is 80.
An electrode and a battery were produced in the same manner as in Example I except that the alloy a4 of the invention was produced by adjusting the content to be wt%. However, the grinding time of the hydrogen storage alloy in the present Example IV was set to 9 minutes so that the average particle size of the hydrogen storage alloy powder was 50 μm as in the above Example I.

【0031】このように作製した電極を、以下本発明電
極A4と称する。
The electrode thus manufactured is hereinafter referred to as an electrode A4 of the invention.

【0032】(実施例V)平均粒径が40μmの水素吸
蔵合金粉末を用いて負極を作製する他は、上記実施例1
と同様にして電極及び電池を作製した。尚、上記実施例
IVと同様に前記数4で示される値が80wt%とすべ
く、本実施例5における水素吸蔵合金の粉砕時間を10
分とした。このように作製した合金及び電極を各々本発
明合金a5、本発明電極A5と称する。
(Example V) The above-mentioned Example 1 was repeated except that a negative electrode was prepared using a hydrogen storage alloy powder having an average particle size of 40 μm.
Electrodes and batteries were prepared in the same manner as in. The above embodiment
As with IV, the crushing time of the hydrogen storage alloy in Example 5 was set to 10 so that the value represented by the above mathematical expression 4 was 80 wt%.
Minutes. The alloy and the electrode thus produced are referred to as the present invention alloy a5 and the present invention electrode A5, respectively.

【0033】(比較例I、II)前記数4で示される値
が、各々90wt%、100wt%となるように調整し
て比較合金x1、x2を作製する他は、上記実施例Iと
同様にして電極及び電池を作製した。但し、上記実施例
Iと同様に水素吸蔵合金粉末の平均粒径を50μmとす
べく、水素吸蔵合金の粉砕時間を各9.5分、10分と
した。
(Comparative Examples I and II) Comparative Examples I and II were prepared in the same manner as in Example I, except that the comparative alloys x1 and x2 were prepared by adjusting the values shown in the equation 4 to be 90 wt% and 100 wt%, respectively. To produce electrodes and batteries. However, the grinding time of the hydrogen storage alloy was set to 9.5 minutes and 10 minutes, respectively, so that the average particle diameter of the hydrogen storage alloy powder was set to 50 μm as in Example I.

【0034】このようにして作製した電極を、以下それ
ぞれ比較電極X1、比較電極X2と称する。
The electrodes thus manufactured are hereinafter referred to as a reference electrode X1 and a reference electrode X2, respectively.

【0035】(比較例III)平均粒径が40μmの水素
吸蔵合金粉末を用いて負極を作製する他は、上記比較例
IIと同様に前記数4で示される値が100wt%とすべ
く、水素吸蔵合金の粉砕時間は11分とした。このよう
に作製した合金及び電極を各々比較合金x3、比較電極
X3と称する。
(Comparative Example III) The above Comparative Example except that a negative electrode was prepared using a hydrogen storage alloy powder having an average particle size of 40 μm.
As in II, the crushing time of the hydrogen storage alloy was set to 11 minutes so that the value expressed by the above equation 4 was 100 wt%. The alloy and the electrode thus manufactured are referred to as a comparative alloy x3 and a comparative electrode X3, respectively.

【0036】〔正極〕正極として、公知の焼結式ニッケ
ル正極を作製した。
[Positive Electrode] As a positive electrode, a known sintered nickel positive electrode was prepared.

【0037】〔電解液〕30重量%のKOH水溶液を調
整した。
[Electrolytic Solution] A 30% by weight KOH aqueous solution was prepared.

【0038】〔電池の作製〕以上の正負両極及びアルカ
リ電解液を用いて円筒型の本発明電池を作製した。な
お、セパレータとしては不織布を使用し、これに先の電
解液を含浸させた。
[Production of Battery] A cylindrical battery of the present invention was produced using the positive and negative electrodes and the alkaline electrolyte described above. A non-woven fabric was used as the separator, which was impregnated with the electrolytic solution.

【0039】図2は本発明電極A1を用いた電池を模式
的に示す断面図であり、図2の本発明電池は、正極1、
負極2、これら両電極を離間するセパレータ3、正極リ
ード4、負極リード5、正極外部端子6、負極缶7など
からなる。正極1及び負極2は、セパレータ3を介して
渦巻き状に巻き取られた状態で、負極缶7に挿入した
後、30重量%のKOH水溶液を注液した。また、正極
1は正極リード4を介して正極外部端子6に、また負極
2は負極リード5を介して負極缶7に接続され、電池内
部で生じた化学エネルギーを電気エネルギーとして外部
へ取り出し得るようになっている。
FIG. 2 is a sectional view schematically showing a battery using the electrode A1 of the present invention. The battery of the present invention shown in FIG.
The negative electrode 2, a separator 3 separating these two electrodes, a positive electrode lead 4, a negative electrode lead 5, a positive electrode external terminal 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 were inserted into the negative electrode can 7 while being wound in a spiral shape via the separator 3, and then a 30 wt% KOH aqueous solution was injected. Further, the positive electrode 1 is connected to the positive electrode external terminal 6 via the positive electrode lead 4, and the negative electrode 2 is connected to the negative electrode can 7 via the negative electrode lead 5, so that chemical energy generated inside the battery can be taken out as electric energy to the outside. It has become.

【0040】尚、このようにして作製した電池の理論容
量は1000mAhである。
The theoretical capacity of the battery thus manufactured is 1000 mAh.

【0041】〔試験セルの作製〕上記本発明合金a1〜
a5粉末及び比較合金粉末x1〜x3各1gに、導電剤
としてのカルボニルニッケル粉末1.2g及び結着剤と
してのポリテトラフルオロエチレン(PTFE)粉末を
0.2gを混合し、混練して合金ペーストを調整し、こ
の合金ペーストをニッケルメッシュで包みプレス加工
し、この電極よりも充分に大きな容量を持つ焼結式ニッ
ケル正極を密閉容器内に配置し、更に電解液としてのK
OHを過剰量入れて、試験セルを作製した。
[Preparation of Test Cell] The alloys a1 to a1 of the present invention
1.2 g of carbonyl nickel powder as a conductive agent and 0.2 g of polytetrafluoroethylene (PTFE) powder as a binder were mixed with 1 g of each of the a5 powder and the comparative alloy powders x1 to x3 and kneaded to obtain an alloy paste. The alloy paste is wrapped with nickel mesh and pressed, a sintered nickel positive electrode having a capacity sufficiently larger than that of the electrode is placed in a closed container, and K as an electrolytic solution is further added.
A test cell was prepared by adding an excess amount of OH.

【0042】[特性試験1] 高率放電特性 前記のように作製した試験セルを用いて、下記の条件で
充放電を行い、活性度を測定した。最初に合金1gあた
り50mAの電流値で8時間充電し、1時間休止をおい
て、合金1gあたり200mAの電流値で放電終止電圧
が、1.0Vに達するまで放電し、このときの放電容量
をCHとした。この後、1時間休止をおいて、即ち、電
圧を復帰させて、合金1gあたり50mAの電流値で放
電終止電圧が1.0Vに達するまで放電し、このときの
放電容量をCLとした。
[Characteristic Test 1] High Rate Discharge Characteristics Using the test cell prepared as described above, charging and discharging were performed under the following conditions, and the activity was measured. First, the alloy was charged with a current value of 50 mA per gram for 8 hours, and was left for 1 hour, and then discharged with a current value of 200 mA per gram of alloy until the discharge end voltage reached 1.0 V. It was designated as C H. Then, after a pause of 1 hour, that is, the voltage was restored, and discharge was performed at a current value of 50 mA per 1 g of the alloy until the discharge end voltage reached 1.0 V, and the discharge capacity at this time was taken as C L.

【0043】高率放電特性の評価は、活性度(%)=C
H/(CH+CL)×100を使用して行った。この結果
を下記表1に示す。
The evaluation of the high rate discharge characteristic is as follows: Activity (%) = C
Performed using H / (C H + C L ) × 100. The results are shown in Table 1 below.

【0044】合金容量測定試験 前記のように作製した試験セルを用いて、下記の条件で
充放電を行い、合金容量を測定した。合金1gあたり5
0mAの電流で4時間充電し、1時間休止をおいて、合
金1gあたり50mAの電流で放電終止電圧が1.0V
に達するまで放電した。これを3サイクル繰り返した
後、合金1gあたり50mAの電流で8時間充電し、1
時間休止をおいて、合金1gあたり50mAの電流で放
電終止電圧が1.0Vに達するまで放電し、このときの
容量を測定した。この結果を下記表1に示す。
Alloy Capacity Measurement Test Using the test cell prepared as described above, charging and discharging were performed under the following conditions to measure the alloy capacity. 5 per 1g alloy
Charge for 4 hours at 0mA current, rest for 1 hour, and discharge end voltage is 1.0V at 50mA current per 1g of alloy.
It was discharged until it reached. After repeating this for 3 cycles, the alloy was charged with a current of 50 mA / g for 8 hours, and
After a lapse of time, the alloy was discharged at a current of 50 mA per 1 g of the alloy until the discharge end voltage reached 1.0 V, and the capacity at this time was measured. The results are shown in Table 1 below.

【0045】充放電サイクル特性 まず、本発明電極A1〜A5及び比較電極X1〜X3を
用いた電池について、常温(25℃)下で、100mA
で16時間充電して1時間休止した後、200mAで放
電終止電圧1.0Vまで放電して1時間休止する工程を
1サイクルとするサイクルを3サイクル行い電池の活性
化を行った。
Charge / Discharge Cycle Characteristics First, with respect to the batteries using the electrodes A1 to A5 of the present invention and the reference electrodes X1 to X3, 100 mA at room temperature (25 ° C.)
After 16 hours of charging, the battery was activated for 1 hour and then discharged at 200 mA to a discharge end voltage of 1.0 V and stopped for 1 hour.

【0046】次に、各電池について、常温(25℃)下
で、1500mAで48分充電して1時間休止した後、
1500mAで放電終止電圧1.0Vまで放電して1時
間休止する工程を1サイクルとする充放電サイクル試験
を行い、電池容量が500mAh(初期容量の半分)と
なった時点を寿命とした。この結果を下記表1に示す。
Then, after charging each battery at room temperature (25 ° C.) at 1500 mA for 48 minutes and resting for 1 hour,
A charging / discharging cycle test in which one cycle includes a step of discharging at 1500 mA to a discharge end voltage of 1.0 V and resting for 1 hour was performed, and the time when the battery capacity reached 500 mAh (half the initial capacity) was defined as the life. The results are shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から明らかなように、前記数4で示さ
れる値が80wt%以下の本発明合金a1〜a5を用い
た試験セルでは、前記数4で示される値が80wt%を
越える比較合金x1〜x3を用いた試験セルに比べて、
高率放電特性、合金1gあたりの合金容量及びサイクル
寿命特性が優れることが認められる。これは、本発明合
金a1〜a5を用いた試験セルでは、略全ての水素吸蔵
合金が均一に充放電されるため電極全体の活性化が図ら
れ、不活性状態となる合金の割合が少ないのに対して、
比較合金x1〜x3を用いた試験セルでは、大径の水素
吸蔵合金が充放電されないため、電極全体の活性化が図
られず、また、不活性状態となる合金の割合が多くな
り、単位あたりの合金容量が低下するためにサイクル寿
命が低下したものと考えられる。
As is apparent from Table 1, in the test cell using the alloys a1 to a5 of the present invention whose value shown by the above-mentioned formula 4 is 80 wt% or less, the comparative alloy whose value shown by the above-mentioned formula 4 exceeds 80 wt%. Compared to the test cell using x1 to x3,
It is recognized that high rate discharge characteristics, alloy capacity per 1 g of alloy and cycle life characteristics are excellent. This is because in the test cells using the alloys a1 to a5 of the present invention, almost all the hydrogen storage alloys are uniformly charged and discharged, so that the activation of the entire electrode is achieved and the proportion of alloys in the inactive state is small. Against
In the test cells using the comparative alloys x1 to x3, since the large-diameter hydrogen storage alloy is not charged / discharged, activation of the entire electrode cannot be achieved, and the proportion of alloys in the inactive state increases, and It is considered that the cycle life was shortened because the alloy capacity of was reduced.

【0049】(実施例VI〜IX)水素吸蔵合金の鋳造方法
として、アトマイズ法を用いて合金を作製する他は、上
記実施例I〜IVと同様にして合金、電極、電池及び試験
セルを作製した。
(Examples VI to IX) Alloys, electrodes, batteries and test cells were produced in the same manner as in Examples I to IV except that the alloy was produced by using the atomizing method as the method for casting the hydrogen storage alloy. did.

【0050】尚、上記アトマイズ法は、上記実施例1と
同様にして作製した水素吸蔵合金溶湯をアルゴンガス圧
により細孔より噴霧し、急冷させるという方法である。
この噴霧終了後の水素吸蔵合金粉末の平均粒径は100
μmであり、その後これを機械的に粉砕した。
The atomizing method is a method of spraying the molten hydrogen-absorbing alloy produced in the same manner as in Example 1 through the pores by the argon gas pressure and quenching it.
The average particle size of the hydrogen storage alloy powder after the spraying is 100.
μm, which was then mechanically ground.

【0051】このように作製した合金及び電極を、以下
それぞれ本発明合金a6〜a9、本発明電極A6〜A9
と称する。
The alloys and electrodes produced in this manner are respectively referred to as alloys a6 to a9 of the present invention and electrodes A6 to A9 of the present invention.
Called.

【0052】(比較例IV、V)水素吸蔵合金の鋳造方法
として、アトマイズ法を用いて合金を作製する他は、上
記比較例I及びIIと同様にして合金、電極、電池及び試
験セルを作製した。
(Comparative Examples IV and V) Alloys, electrodes, batteries and test cells were produced in the same manner as in Comparative Examples I and II except that the alloy was produced by using the atomizing method as the method for casting the hydrogen storage alloy. did.

【0053】このように作製した合金及び電極を、以下
比較合金x4〜x5、比較電極X4〜X5と称する。
The alloys and electrodes prepared in this manner are hereinafter referred to as comparative alloys x4 to x5 and comparative electrodes X4 to X5.

【0054】[特性試験2]本発明合金a6〜a9、及
び比較合金x4〜x5を用いた電池及び試験セルについ
て、上記[特性試験1]に準じて、高率放電特性、
合金容量測定試験、充放電サイクル特性を測定し、そ
の結果を前記表1に併せて示す。
[Characteristics Test 2] Regarding the batteries and test cells using the alloys a6 to a9 of the present invention and the comparative alloys x4 to x5, the high rate discharge characteristics, according to the above [Characteristics Test 1],
The alloy capacity measurement test and the charge / discharge cycle characteristics were measured, and the results are also shown in Table 1 above.

【0055】前記表1に示すように、前記数4で示され
る値が80wt%以下の本発明合金a6〜a9を用いた
電池及び試験セルでは、前記数4で示される値が80w
t%を越える比較合金x4〜x5を用いた電池及び試験
セルに比べて合金の活性度、合金1gあたりの合金容量
及びサイクル特性が優れていることが認められる。これ
は、前記[特性試験1]で示す理由と同様の理由による
ものと考えられる。
As shown in Table 1, in the battery and the test cell using the alloys a6 to a9 of the present invention, the value of which is 80 wt% or less, the value of which 4 is 80 w.
It is recognized that the activity of the alloy, the alloy capacity per 1 g of the alloy, and the cycle characteristics are superior to the battery and the test cell using the comparative alloys x4 to x5 exceeding t%. It is considered that this is due to the same reason as that shown in [Characteristic test 1].

【0056】(比較例VI〜IX)水素吸蔵合金の鋳造方法
として通常の鋳込み法を用いて合金を作製する他は、上
記実施例III〜IV及び比較例I〜IIと同様にして合金、
電極、電池及び試験セルを作製した。
(Comparative Examples VI to IX) Alloys were prepared in the same manner as in Examples III to IV and Comparative Examples I to II, except that an ordinary casting method was used as a method for casting hydrogen storage alloys.
Electrodes, batteries and test cells were made.

【0057】尚、上記鋳込み法は、上記実施例Iと同様
に作製した水素吸蔵合金溶湯を水冷された鋼製の鋳型に
流し込んで、冷却させるという方法である。
The casting method is a method in which the molten hydrogen storage alloy prepared in the same manner as in Example I is poured into a water-cooled steel mold and cooled.

【0058】このように作製した合金及び電極を、以下
それぞれ比較合金x6〜x9、比較電極X6〜X9と称
する。
The alloys and electrodes prepared in this manner are hereinafter referred to as comparative alloys x6 to x9 and comparative electrodes X6 to X9, respectively.

【0059】[特性試験3]比較合金x6〜x9を用い
た電池及び試験セルについて、上記[特性試験1]に準
じて、高率放電特性、合金容量測定試験、充放電
サイクル特性を測定し、その結果を前記表1に併せて示
す。
[Characteristic test 3] With respect to the batteries and test cells using the comparative alloys x6 to x9, the high rate discharge characteristic, the alloy capacity measurement test, and the charge / discharge cycle characteristic were measured according to the above [Characteristic test 1]. The results are also shown in Table 1 above.

【0060】前記表1に示すように、前記数4で示され
る値が80wt%以下の比較合金x6〜x7を用いた電
池及び試験セルと、前記数4で示される値が80wt%
を超える比較合金x8〜x9を用いた電池及び試験セル
とでは、合金の活性度、合金1gあたりの合金容量及び
サイクル特性に差異が認められない。これは、水素吸蔵
合金溶湯を急冷しない鋳込み法では、粉砕が均一に行わ
れるため粒度による組織の差異が少ないということに起
因するものと考えられる。従って、本発明は水素吸蔵合
金溶湯を急冷する急冷凝固法を用いた場合に有用であ
る。
As shown in Table 1, the battery and the test cell using the comparative alloys x6 to x7 having the value shown by the formula 4 of 80 wt% or less and the value shown by the formula 4 are 80 wt%.
No difference is observed in the activity of the alloy, the alloy capacity per 1 g of the alloy, and the cycle characteristics of the battery and the test cell using the comparative alloys x8 to x9 exceeding the above range. It is considered that this is because in the casting method in which the molten hydrogen-absorbing alloy is not rapidly cooled, the pulverization is performed uniformly, so that the difference in the structure due to the grain size is small. Therefore, the present invention is useful when the rapid solidification method for quenching the molten hydrogen storage alloy is used.

【0061】(第2実施例) (実施例I〜IX)水素吸蔵合金の粉砕方法として、水素
吸蔵合金に水素を吸蔵放出させて粉砕する水素化粉砕法
を用いる他は、前記第1の形態の実施例I〜実施例IXと
同様にして合金、電極、電池及び試験セルを作製した。
(Second Embodiment) (Examples I to IX) The first embodiment except that the hydrogen storage alloy is pulverized by hydrogenation and pulverization in which hydrogen is absorbed and released in the hydrogen storage alloy. Alloys, electrodes, batteries and test cells were prepared in the same manner as in Examples I to IX.

【0062】このようにして作製した合金及び電極を、
以下それぞれ本発明合金b1〜b9、本発明電極B1〜
B9と称する。
The alloy and electrode thus produced were
The invention alloys b1 to b9 and the invention electrodes B1 to B1
It is called B9.

【0063】(比較例I〜IX)水素吸蔵合金の粉砕方法
として、水素吸蔵合金に水素を吸蔵放出させて粉砕する
水素化粉砕法を用いる他は、前記第1の形態の比較例I
〜比較例IXと同様にして合金、電極、電池及び試験セル
を作製した。
(Comparative Examples I to IX) As a method for pulverizing a hydrogen storage alloy, a hydrogenation pulverization method in which hydrogen is occluded and released in a hydrogen storage alloy is used for pulverization, and Comparative Example I of the first embodiment is used.
-Alloys, electrodes, batteries and test cells were prepared in the same manner as in Comparative Example IX.

【0064】このようにして作製した合金及び電極を、
以下それぞれ比較合金y1〜y9、比較電極Y1〜Y9
と称する。
The alloy and electrode thus produced were
Hereinafter, comparative alloys y1 to y9 and comparative electrodes Y1 to Y9, respectively.
Called.

【0065】[特性試験4]本発明合金b1〜b9及び
比較合金y1〜y9を用いた電池及び試験セルについ
て、上記[特性試験1]に準じて、高率放電特性、
合金容量測定試験、充放電サイクル特性を測定し、そ
の結果を下記表2に示す。
[Characteristic Test 4] Regarding the batteries and test cells using the alloys b1 to b9 of the present invention and the comparative alloys y1 to y9, according to the above [Characteristic Test 1], high rate discharge characteristics,
The alloy capacity measurement test and the charge / discharge cycle characteristics were measured, and the results are shown in Table 2 below.

【0066】[0066]

【表2】 [Table 2]

【0067】前記表2に示すように、前記数4で示され
る値が80wt%以下の本発明合金b1〜b9を用いた
電池及び試験セルでは、前記数4で示される値が80w
t%を超える比較合金y1〜y5を用いた電池及び試験
セルに比べて合金の活性度、合金1gあたりの合金容量
及びサイクル特性が優れていることが認められる。これ
は、前記[特性試験1]で示す理由と同様の理由による
ものと考えられる。
As shown in Table 2, in the battery and the test cell using the alloys b1 to b9 of the present invention in which the value represented by the formula 4 is 80 wt% or less, the value represented by the formula 4 is 80w.
It can be seen that the alloy activity, alloy capacity per gram of alloy, and cycle characteristics are superior to batteries and test cells using comparative alloys y1 to y5 exceeding t%. It is considered that this is due to the same reason as that shown in [Characteristic test 1].

【0068】ここで、前記機械粉砕法で作製した合金と
比較すると、サイクル寿命が低下しているが、高率放電
特性は向上している。これは、水素化粉砕法では電池の
充放電と同様に水素の出し入れより合金を粉砕するもの
であるため、耐食性の面では若干劣るが、合金の活性化
が促進されるため、高率放電特性が向上するものと考え
られる。また、水素化粉砕の方が機械粉砕に比べて、前
記数4で示される値が80wt%を超えると高率放電特
性及びサイクル寿命の落ち込みが大きく、特にサイクル
寿命の落ち込みが顕著である。このことから機械粉砕に
比べて水素化粉砕を用いる方が、本発明の効果がより明
確であることが分かる。
Here, compared with the alloy produced by the mechanical pulverization method, the cycle life is reduced, but the high rate discharge characteristics are improved. This is because in the hydrogenation pulverization method, the alloy is pulverized by taking in and out hydrogen in the same way as charging and discharging the battery, so the corrosion resistance is slightly inferior, but the activation of the alloy is promoted, so high rate discharge characteristics Is expected to improve. Further, in the case of hydrogenated pulverization, when the value represented by the above mathematical expression 4 exceeds 80 wt%, the high rate discharge characteristics and the cycle life are greatly reduced, and the cycle life is particularly significantly reduced, as compared with mechanical pulverization. From this, it can be seen that the effect of the present invention is more clear when using hydrogenation crushing as compared with mechanical crushing.

【0069】尚、前記数4で示される値が80wt%以
下の比較合金y6〜y7を用いた電池及び試験セルと、
前記数4で示される値が80wt%を超える比較合金y
8〜y9を用いた電池及び試験セルとでは、合金の活性
度、合金1gあたりの合金容量及びサイクル特性に差異
が認められない。これは、前記[特性試験3]で示す理
由と同様の理由によるものと考えられる。
A battery and a test cell using the comparative alloys y6 to y7 whose value shown by the equation 4 is 80 wt% or less,
Comparative alloy y in which the value represented by the above mathematical formula 4 exceeds 80 wt%
No difference is observed in the activity of the alloy, the alloy capacity per 1 g of the alloy, and the cycle characteristics between the battery using 8 to y9 and the test cell. It is considered that this is due to the same reason as the above-mentioned [Characteristic test 3].

【0070】[0070]

【発明の効果】以上から明らかなように、本発明によれ
ば、急冷凝固法にて作製した合金を使用した電池におい
て、略全ての水素吸蔵合金が均一に充放電され、不活性
状態となる合金の割合を減少することができるため、高
率放電特性や充放電サイクル寿命が優れており、その工
業的価値は極めて高い。
As is apparent from the above, according to the present invention, in a battery using an alloy produced by a rapid solidification method, almost all hydrogen storage alloys are uniformly charged and discharged to be in an inactive state. Since the proportion of the alloy can be reduced, the high rate discharge characteristics and charge / discharge cycle life are excellent, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素吸蔵合金を粉砕した後の粒径と重量%との
関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a particle size and a weight% after crushing a hydrogen storage alloy.

【図2】本発明電極を用いた電池を模式的に示す断面図
である。
FIG. 2 is a sectional view schematically showing a battery using the electrode of the present invention.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:セパレータ 1: Positive electrode 2: Negative electrode 3: Separator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 急冷凝固法により作製した水素吸蔵合金
鋳塊を粉砕して得た水素吸蔵合金粉末の内、下記数1を
満足する水素吸蔵合金粉末を活物質とすることを特徴と
する水素吸蔵合金電極。 【数1】
1. A hydrogen storage alloy powder obtained by crushing a hydrogen storage alloy ingot produced by a rapid solidification method, the hydrogen storage alloy powder satisfying the following formula 1 being used as an active material. Storage alloy electrode. [Equation 1]
【請求項2】 上記急冷凝固法がロール法であることを
特徴とする請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the rapid solidification method is a roll method.
【請求項3】 上記水素吸蔵合金の粉砕方法が、機械的
粉砕法及び/又は水素化粉砕法であることを特徴とする
請求項1記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the method for pulverizing the hydrogen storage alloy is a mechanical pulverization method and / or a hydrogenation pulverization method.
【請求項4】 急冷凝固法により水素吸蔵合金鋳塊を作
製する第1ステップと、上記水素吸蔵合金鋳塊を粉砕し
て水素吸蔵合金粉末を得る第2ステップと、上記水素吸
蔵合金粉末の内下記数2を満足する水素吸蔵合金粉末を
選択する第3ステップと、第3ステップにより得た水素
吸蔵合金粉末を活物質として電極を作製する第4ステッ
プとよりなる水素吸蔵合金電極の製造方法。 【数2】
4. A first step of producing a hydrogen storage alloy ingot by a rapid solidification method, a second step of crushing the hydrogen storage alloy ingot to obtain a hydrogen storage alloy powder, and the following steps: A method for producing a hydrogen storage alloy electrode, comprising: a third step of selecting a hydrogen storage alloy powder satisfying the following expression 2; and a fourth step of manufacturing an electrode using the hydrogen storage alloy powder obtained in the third step as an active material. (Equation 2)
【請求項5】 上記急冷凝固法がロール法であることを
特徴とする請求項4記載の水素吸蔵合金電極の製造方
法。
5. The method for producing a hydrogen storage alloy electrode according to claim 4, wherein the rapid solidification method is a roll method.
【請求項6】 上記水素吸蔵合金の粉砕方法が、機械的
粉砕法及び/又は水素化粉砕法であることを特徴とする
請求項4記載の水素吸蔵合金電極の製造方法。
6. The method for producing a hydrogen storage alloy electrode according to claim 4, wherein the method for pulverizing the hydrogen storage alloy is a mechanical pulverization method and / or a hydrogenation pulverization method.
JP7323202A 1995-12-12 1995-12-12 Hydrogen storage alloy electrode and manufacture thereof Pending JPH09161788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7323202A JPH09161788A (en) 1995-12-12 1995-12-12 Hydrogen storage alloy electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7323202A JPH09161788A (en) 1995-12-12 1995-12-12 Hydrogen storage alloy electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09161788A true JPH09161788A (en) 1997-06-20

Family

ID=18152189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7323202A Pending JPH09161788A (en) 1995-12-12 1995-12-12 Hydrogen storage alloy electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09161788A (en)

Similar Documents

Publication Publication Date Title
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP4815738B2 (en) Method for producing hydrogen storage alloy powder
JP2012102343A (en) Hydrogen-storage alloy, hydrogen-storage alloy electrode, and nickel-hydrogen secondary battery
JP5278411B2 (en) Hydrogen storage alloy powder and nickel metal hydride storage battery using the same.
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JPH09161788A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP3301792B2 (en) Hydrogen storage alloy electrode
JP7146710B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP2983564B2 (en) Hydrogen storage alloy electrode
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JPH07296810A (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH04319258A (en) Hydrogen storage alloy electrode
JP3351227B2 (en) Hydrogen storage alloy powder for battery and its manufacturing method
JP3695979B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3490800B2 (en) Hydrogen storage alloy electrode, method for producing the same, and metal hydride storage battery
JP2009064698A (en) Nickel-hydrogen storage battery, and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323