JP2012102343A - Hydrogen-storage alloy, hydrogen-storage alloy electrode, and nickel-hydrogen secondary battery - Google Patents

Hydrogen-storage alloy, hydrogen-storage alloy electrode, and nickel-hydrogen secondary battery Download PDF

Info

Publication number
JP2012102343A
JP2012102343A JP2010249016A JP2010249016A JP2012102343A JP 2012102343 A JP2012102343 A JP 2012102343A JP 2010249016 A JP2010249016 A JP 2010249016A JP 2010249016 A JP2010249016 A JP 2010249016A JP 2012102343 A JP2012102343 A JP 2012102343A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
hydrogen
crystal structure
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010249016A
Other languages
Japanese (ja)
Other versions
JP5703468B2 (en
Inventor
Tetsuo Sakai
哲男 境
Makoto Saito
誠 斉藤
Takashi Mukai
孝志 向井
Shigeru Tsunokake
繁 角掛
Masahito Osawa
雅人 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Japan Metals and Chemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2010249016A priority Critical patent/JP5703468B2/en
Publication of JP2012102343A publication Critical patent/JP2012102343A/en
Application granted granted Critical
Publication of JP5703468B2 publication Critical patent/JP5703468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen-storage alloy whose cost can be reduced while keeping good storage and discharge characteristics of hydrogen.SOLUTION: The hydrogen-storage alloy has a composition represented by a general composition formula: REMgNiAl(wherein, RE is one or more elements selected from a group composed of La, Ce, etc.; and subscripts of x, y, z, are in the range of 0.05≤x≤0.2, 4.0≤y≤4.4 and 0.1≤z≤0.3, respectively). The storage alloy is characterized in that a phase having CaCutype crystal structure is in the range of 40-90 wt.% of the total composition, a phase having CeCotype crystal structure is in the range of 5-39 wt.% of the total composition, and a phase having PrCotype crystal structure is in the range of 3-20 wt.% of the total composition.

Description

本発明は、水素吸蔵合金、水素吸蔵合金電極及びニッケル水素二次電池に関し、より詳しくは、一般組成式:RE(1−x)MgNiAlで表される組成を有する水素吸蔵合金、これを備える水素吸蔵合金電極及びニッケル水素二次電池に関する。 The present invention relates to a hydrogen storage alloy, a hydrogen storage alloy electrode, and a nickel-hydrogen secondary battery, and more specifically, a hydrogen storage alloy having a composition represented by a general composition formula: RE (1-x) Mg x Ni y Al z The present invention relates to a hydrogen storage alloy electrode and a nickel hydride secondary battery including the same.

水素吸蔵合金は、水素を吸蔵・放出することができることから、エネルギー変換材料やエネルギー貯蔵材料として広く注目されている。また、水素吸蔵合金を負極に採用したアルカリ二次電池、特にニッケル水素二次電池は、最も水素吸蔵合金の実用化が進んでいる分野であり、携帯用、電気自動車、ハイブリッド車、産業用等の広範囲にわたって利用されている。ニッケル水素二次電池は、ニッケル−カドミウム二次電池に代わって実施化された蓄電池であり、ニッケル−カドミウム二次電池と比較すると、低公害、高容量等の特徴を有する。   Hydrogen storage alloys are attracting widespread attention as energy conversion materials and energy storage materials because they can store and release hydrogen. In addition, alkaline secondary batteries using hydrogen storage alloys as negative electrodes, especially nickel hydride secondary batteries, are the fields where hydrogen storage alloys are most practically used. Portable, electric vehicles, hybrid vehicles, industrial use, etc. Has been used extensively. A nickel metal hydride secondary battery is a storage battery implemented in place of a nickel-cadmium secondary battery, and has characteristics such as low pollution and high capacity as compared with a nickel-cadmium secondary battery.

現在、主流のニッケル水素二次電池用の負極としては、MmNi系(AB系)水素吸蔵合金が既に実用化されている(Mm=La、Ce、Pr、Nd等の混合希土類元素)。AB系水素吸蔵合金の結晶構造は、CaCu型相を主たる結晶構造とし、MmNiのNiの一部をAl、Mn等の元素で置換している。該水素吸蔵合金の製法の一例を挙げれば、希土類の混合物Mm(La、Ce、Nd、Pr、及び他の希土類元素)、Al、Mn、Ni、Cu等を、合金組成が目的組成になるように各金属試料を秤量・調合し、該混合物を高周波溶解炉にて、不活性ガス雰囲気下、加熱溶解して得られることが知られている。 At present, as a negative electrode for a mainstream nickel-metal hydride secondary battery, an MmNi 5 (AB 5 ) hydrogen storage alloy has already been put into practical use (Mm = mixed rare earth elements such as La, Ce, Pr, and Nd). The crystal structure of the AB 5 -based hydrogen storage alloy has a CaCu 5 type phase as the main crystal structure, and a part of Ni in MmNi 5 is substituted with elements such as Al and Mn. As an example of the method for producing the hydrogen storage alloy, the alloy composition of the rare earth mixture Mm (La, Ce, Nd, Pr, and other rare earth elements), Al, Mn, Ni, Cu, etc. may be the target composition. It is known that each metal sample is weighed and prepared, and the mixture is obtained by heating and dissolving in a high-frequency melting furnace in an inert gas atmosphere.

さらに、MmNi系水素吸蔵合金にCoを含有させることで、水素吸蔵・放出サイクル寿命特性を向上させることができる。しかし、Coは高価であり、製造コストを上昇させる原因となっている。さらに、該系合金は、充放電初期の特性が劣っており、正極容量の2倍以上に相当する負極を搭載した電池であっても、負極容量規制になり、所定の放電容量が得られない問題があった。この問題は、合金負極の充放電サイクル初期充電効率が劣っているため、正極が充電を完了し、酸素を発生させる状態になっても、負極では、正極と同程度の充電がなされていことが原因である。酸素発生後は負極の充電反応よりも、正極及び負極から発生した酸素及び水素が水に変化する反応が優先的に進むため、正極よりも少ない容量となり、放電で負極規制となる。この様な状態では、正極規制の場合に比べて、電池電圧はやや低く、放電容量も少なくなる。また、場合によっては、充放電を繰り返すと、合金中に含まれるCoやMn等の元素がアルカリ電解液中に溶出し、セパレータ等に付着して微小短絡を引き起こすため、電池容量の低下や自己放電特性の低下が生じる。 Furthermore, hydrogen storage / release cycle life characteristics can be improved by adding Co to the MmNi 5- based hydrogen storage alloy. However, Co is expensive and causes the manufacturing cost to increase. Furthermore, the system alloy has inferior initial charge / discharge characteristics, and even a battery equipped with a negative electrode corresponding to more than twice the positive electrode capacity is regulated by negative electrode capacity, and a predetermined discharge capacity cannot be obtained. There was a problem. The problem is that the initial charge efficiency of the charge / discharge cycle of the alloy negative electrode is inferior, so even if the positive electrode completes charging and generates oxygen, the negative electrode may be charged to the same extent as the positive electrode. Responsible. After the generation of oxygen, the reaction in which oxygen and hydrogen generated from the positive electrode and the negative electrode change to water preferentially progresses over the negative electrode charging reaction, so that the capacity is smaller than that of the positive electrode, and the negative electrode is regulated by discharge. In such a state, the battery voltage is slightly lower and the discharge capacity is smaller than in the case of positive electrode regulation. Further, in some cases, when charging and discharging are repeated, elements such as Co and Mn contained in the alloy are eluted in the alkaline electrolyte and adhere to the separator and cause a short circuit. The discharge characteristics are degraded.

一方で、AB系合金の希土類元素の一部をMgで置換した希土類−Mg−Ni系合金が開発されている。希土類−Mg−Ni系合金は、常温付近で水素ガスを多量に吸蔵することができるが、耐アルカリ性が低いため、電池サイクル寿命特性が乏しい問題があった。そこで、特許文献1や特許文献2には、希土類−Mg−Ni系合金の希土類成分をLaやCeの含有量を制限することで、水素吸蔵合金に耐アルカリ性を付与することができるとしている。しかし、LaやCeの含有量を厳密に制御するためには、原材料として純粋なLaやCeが必要とされる。そのため、従来のAB系合金を作製する際に使用していた安価なMm(ミッシュメタル)を直接使用することができないため、製造コストが高いという問題がある。 On the other hand, rare earth -Mg-Ni alloy a part of the rare earth elements of AB 5 type alloy was replaced with Mg have been developed. The rare earth-Mg-Ni alloy can occlude a large amount of hydrogen gas at around room temperature, but has a problem of poor battery cycle life due to low alkali resistance. Therefore, Patent Document 1 and Patent Document 2 state that alkali resistance can be imparted to the hydrogen storage alloy by limiting the content of La and Ce in the rare earth component of the rare earth-Mg-Ni alloy. However, in order to strictly control the La and Ce contents, pure La and Ce are required as raw materials. Therefore, there is a problem that the manufacturing cost is high because the inexpensive Mm (Misch metal) used for producing the conventional AB 5 series alloy cannot be used directly.

そこで、特許文献3では、(LaPrNd1−xMgNiAl(但し、AはLa、Pr、Nd以外の希土類元素であり、添字a、b、c、dがそれぞれ、0.4≦a、0<b、0≦c、0≦d、c<b≦a、a+b+c+d=1で示される関係を満たし、添字x、y、zがそれぞれ、0.10≦x≦0.25、0.05≦z≦0.35、3.0≦y+z≦4.0)にて示される組成の水素吸蔵合金が、高容量で良好なサイクル寿命特性を有する旨が提案されている。ここで、Mg原子の数xは0.1≦x≦0.25、Al原子の数zは0.05≦z≦0.35であり、上記に示される範囲に設定することで、合金容量の低下を抑制し、且つ、合金の耐食性を向上させることができるとしている。加えて、AサイトとBサイトの比率を表すyとzとの和が3.0≦y+z≦4.0で示される範囲に設定される理由として、y+zが小さくなりすぎると、水素吸蔵合金内における水素の吸蔵安定性が高くなるため、水素放出能が劣化する一方、y+zが大きくなりすぎると、今度は水素吸蔵合金における水素の吸蔵サイトが減少して水素吸蔵能の劣化が起こり始めるためであると説明されている。 Therefore, in Patent Document 3, (La a Pr b Nd c Ad ) 1-x Mg x Ni y Al z (where A is a rare earth element other than La, Pr, Nd, and subscripts a, b, c, d satisfies the relationship represented by 0.4 ≦ a, 0 <b, 0 ≦ c, 0 ≦ d, c <b ≦ a, a + b + c + d = 1, and the subscripts x, y, and z are 0.10, respectively. ≦ x ≦ 0.25, 0.05 ≦ z ≦ 0.35, 3.0 ≦ y + z ≦ 4.0), the hydrogen storage alloy having a high capacity and good cycle life characteristics Proposed. Here, the number x of Mg atoms is 0.1 ≦ x ≦ 0.25, and the number z of Al atoms is 0.05 ≦ z ≦ 0.35, and the alloy capacity is set by setting the above range. It is said that the corrosion resistance of the alloy can be improved. In addition, as a reason why the sum of y and z representing the ratio of the A site and the B site is set in a range represented by 3.0 ≦ y + z ≦ 4.0, if y + z becomes too small, hydrogen occlusion Since the hydrogen storage stability in the alloy increases, the hydrogen releasing ability deteriorates. On the other hand, if y + z becomes too large, the hydrogen storage site in the hydrogen storage alloy decreases and the hydrogen storage ability starts to deteriorate. It is explained that.

しかし、自然界で産出される希土類元素の鉱物がPrよりNdを多く含むのに対し、特許文献3に開示された組成で表される水素吸蔵合金はNdよりPrがリッチであることが必要とされるため、安価なLaを主成分(0.4≦a)としても、結局は純粋なPrが必要となることは避けられず、材料コストの低減が困難であるという問題がある。   However, while the rare earth minerals produced in nature contain more Nd than Pr, the hydrogen storage alloy represented by the composition disclosed in Patent Document 3 is required to be richer in Pr than Nd. Therefore, even if inexpensive La is used as the main component (0.4 ≦ a), it is unavoidable that pure Pr is eventually required, and there is a problem that it is difficult to reduce the material cost.

また、水素吸蔵合金をニッケル水素二次電池の負極として使用する場合、一般に水素吸蔵合金の粒子表面には容量低下の原因となる酸化膜が存在するため、本来の電池容量を得るために活性化を行い、酸化皮膜を除去する必要がある。ニッケル水素二次電池を製造し、出荷する前に行われる活性化の工程(活性化処理)は、コストダウンの観点から時間の短縮が要望されている。通常、この活性化処理は、数十サイクルもの充放電を繰り返すか、0.1〜0.2C率のような緩充電−同じく緩放電を数回繰り返して行う(0.1〜0.2C率とは、電池の全容量を5〜10時間で放電又は充電できるだけの電流量である)。しかし、それでは1日以上の時間を要することから、活性化処理の時間等の短縮化が求められている。そこで、充放電サイクル数を極力減らすことを目的として、水素吸蔵合金を酸処理し、合金粒子表面に存在する酸化被膜を除去する表面改質処理方法が特許文献4に提案されている。   In addition, when using a hydrogen storage alloy as the negative electrode of a nickel-metal hydride secondary battery, it is generally activated to obtain the original battery capacity because there is an oxide film on the particle surface of the hydrogen storage alloy that causes a decrease in capacity. It is necessary to remove the oxide film. The activation process (activation process) performed before the nickel hydride secondary battery is manufactured and shipped is required to reduce the time from the viewpoint of cost reduction. Usually, this activation treatment is performed by repeating several tens of cycles of charging / discharging or by repeating slow charging-similarly slow discharging like 0.1 to 0.2C rate (similarly 0.1 to 0.2C rate). Is the amount of current that can discharge or charge the entire capacity of the battery in 5 to 10 hours). However, since it takes more than one day, there is a demand for shortening the activation processing time. Therefore, Patent Document 4 proposes a surface modification treatment method in which a hydrogen storage alloy is acid-treated and an oxide film present on the surface of the alloy particles is removed in order to reduce the number of charge / discharge cycles as much as possible.

しかし、酸処理による表面改質処理は、水素吸蔵合金に付着している処理液を除去するための水洗工程を後工程として設けなければならず、製造コストの増大を招くおそれがある。   However, in the surface modification treatment by acid treatment, a water washing step for removing the treatment liquid adhering to the hydrogen storage alloy must be provided as a subsequent step, which may increase the manufacturing cost.

特開2005−290473号公報JP 2005-290473 A 特開2006−040847号公報JP 2006-040847 A 特開2008−208428号公報JP 2008-208428 A 特開平5−225975号公報JP-A-5-225975

本発明は、上記の事情に鑑みなされたものあって、水素の吸蔵・放出特性を良好に維持しつつ低コスト化を図ることができる水素吸蔵合金を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hydrogen storage alloy capable of reducing the cost while maintaining good hydrogen storage / release characteristics.

また、本発明は、このような水素吸蔵合金を電極として用いることで、放電容量及びサイクル寿命特性を良好に維持しつつ、高率放電特性及び自己放電特性に優れるニッケル水素二次電池を低コストで提供することを目的とする。   In addition, the present invention uses such a hydrogen storage alloy as an electrode, so that a nickel-hydrogen secondary battery excellent in high rate discharge characteristics and self-discharge characteristics can be obtained at low cost while maintaining good discharge capacity and cycle life characteristics. The purpose is to provide in.

我々は、一般組成式:希土類(1−x)MgNiAlで示される水素吸蔵合金の結晶構造に注目し、添字x、y、zの値をそれぞれ所定の範囲に設定して、CaCu型結晶構造を有する相を主相とする2以上の結晶相の含有割合をそれぞれ所定の範囲とすることで、優れた特性が得られることを明らかにした。 We general composition formula: focusing on the crystal structure of the rare earth (1-x) Mg x Ni hydrogen-absorbing alloy represented by y Al z, subscripts x, y, by setting the value of z in the respective predetermined ranges, It has been clarified that excellent characteristics can be obtained by setting the content ratio of two or more crystal phases each having a phase having a CaCu 5 type crystal structure as a main phase within a predetermined range.

即ち、本発明は、下記の水素吸蔵合金、水素吸蔵合金電極及びニッケル水素二次電池を提供するものである。   That is, the present invention provides the following hydrogen storage alloy, hydrogen storage alloy electrode, and nickel-hydrogen secondary battery.

項1:
一般組成式:
RE(1−x)MgNiAl
(但し、式中REはLa,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群より選択される1種又は2種以上の元素であり、添字x、y、zはそれぞれ、0.05≦x≦0.2、4.0≦y≦4.4、0.1≦z≦0.3で示される範囲にある。)で表される組成を有し、
CaCu型結晶構造を有する相が全組成の40〜90重量%、CeCo19型結晶構造を有する相が全組成の5〜39重量%、PrCo19型結晶構造を有する相が全組成の3〜20重量%であることを特徴とする水素吸蔵合金。
項2:
CeCo19型結晶構造のa軸長さ、及び、PrCo19型結晶構造のa軸長さの、CaCu型結晶構造のa軸長さとの差が、いずれも±0.02Åの範囲にあることを特徴とする項1に記載の水素吸蔵合金。
項3:
全ての結晶相の結晶構造のa軸長さが、いずれも4.95〜5.05Åの範囲に存在し、
CaCu型結晶構造のc軸長さが、3.98〜4.02Åの範囲に存在することを特徴とする項1又は2に記載の水素吸蔵合金。
項4:
濃度が0.1mol/L〜10mol/Lの苛性アルカリ水溶液を用いて、温度60〜100℃でアルカリ加熱処理を施した項1から3のいずれか1項に記載の水素吸蔵合金。
項5:
残留磁化値が0.5〜0.9emu/gの範囲に存在することを特徴とする項4に記載の水素吸蔵合金。
項6:
項1から5のいずれか1項に記載の水素吸蔵合金からなる粒子と、前記粒子を保持した導電性を有する芯体とを備えることを特徴とする水素吸蔵合金電極。
項7:
項6に記載の水素吸蔵合金電極を負極として具備したことを特徴とするニッケル水素二次電池。
Item 1:
General composition formula:
RE (1-x) Mg x Ni y Al z
(Wherein, RE is one or more selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. And the subscripts x, y, and z are in the ranges indicated by 0.05 ≦ x ≦ 0.2, 4.0 ≦ y ≦ 4.4, and 0.1 ≦ z ≦ 0.3, respectively. Having a composition represented by
The phase having the CaCu 5 type crystal structure is 40 to 90% by weight of the total composition, the phase having the Ce 5 Co 19 type crystal structure is 5 to 39% by weight of the total composition, and the phase having the Pr 5 Co 19 type crystal structure is all A hydrogen storage alloy characterized by being 3 to 20% by weight of the composition.
Item 2:
The difference between the a-axis length of the Ce 5 Co 19 type crystal structure and the a-axis length of the Pr 5 Co 19 type crystal structure with the a-axis length of the CaCu 5 type crystal structure is ± 0.02 mm. Item 2. The hydrogen storage alloy according to Item 1, which is in a range.
Item 3:
The a-axis lengths of the crystal structures of all crystal phases are all in the range of 4.95 to 5.05 mm,
Item 3. The hydrogen storage alloy according to Item 1 or 2, wherein the c-axis length of the CaCu 5- type crystal structure is in the range of 3.98 to 4.02 mm.
Item 4:
Item 4. The hydrogen storage alloy according to any one of Items 1 to 3, which is subjected to an alkali heat treatment at a temperature of 60 to 100 ° C using a caustic aqueous solution having a concentration of 0.1 mol / L to 10 mol / L.
Item 5:
Item 5. The hydrogen storage alloy according to Item 4, wherein the residual magnetization value is in the range of 0.5 to 0.9 emu / g.
Item 6:
Item 6. A hydrogen storage alloy electrode comprising particles comprising the hydrogen storage alloy according to any one of Items 1 to 5 and a conductive core body that holds the particles.
Item 7:
A nickel hydride secondary battery comprising the hydrogen storage alloy electrode according to Item 6 as a negative electrode.

本発明の水素吸蔵合金によれば、水素の吸蔵・放出特性を良好に維持しつつ低コスト化を図ることができる。   According to the hydrogen storage alloy of the present invention, it is possible to reduce the cost while maintaining good hydrogen storage / release characteristics.

また、このような水素吸蔵合金をニッケル水素二次電池用の負極として具備することで、放電容量及びサイクル寿命特性を良好に維持しつつ、高率放電特性及び自己放電特性に優れるニッケル水素二次電池を低コストで提供することができる。   In addition, by providing such a hydrogen storage alloy as a negative electrode for a nickel metal hydride secondary battery, the nickel metal hydride secondary having excellent high rate discharge characteristics and self-discharge characteristics while maintaining good discharge capacity and cycle life characteristics. A battery can be provided at low cost.

実施例及び比較例のPCT特性を示す図である。It is a figure which shows the PCT characteristic of an Example and a comparative example. 実施例及び比較例の放射光XRDパターンを示す図である。It is a figure which shows the synchrotron radiation XRD pattern of an Example and a comparative example. 試験セルの概略構成図である。It is a schematic block diagram of a test cell. 実施例及び比較例の充放電寿命特性を示す図である。It is a figure which shows the charging / discharging lifetime characteristic of an Example and a comparative example. 実施例及び比較例の放電レートと平均電圧の関係を示す図である。It is a figure which shows the relationship between the discharge rate of an Example and a comparative example, and an average voltage. 実施例の残留磁化とアルカリ処理条件の関係を示す図である。It is a figure which shows the relationship between the residual magnetization of an Example, and alkali treatment conditions.

本発明に係る水素吸蔵合金の一般組成式は、
RE(1−x)MgNiAl・・・(1)
で表される。
The general composition formula of the hydrogen storage alloy according to the present invention is:
RE (1-x) Mg x Ni y Al z (1)
It is represented by

ここで、式(1)中のREは、希土類元素であるLa,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群より選択される1種又は2種以上の元素である。   Here, RE in the formula (1) is selected from the group consisting of rare earth elements La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Or one or more elements.

REは、Laを含み、更にLa以外の希土類元素を1種又は2種以上含むことが好ましい。この場合、水素吸蔵合金の一般組成式を、
(LaR1(1−x)MgNiAl・・・(2)
で表すことができる。(但し、R1は、La以外の前記希土類元素群から選択される1種又は2種以上の元素。また、a+b=1)
RE preferably contains La and further contains one or more rare earth elements other than La. In this case, the general composition formula of the hydrogen storage alloy is
(La a R1 b ) (1-x) Mg x Ni y Al z (2)
Can be expressed as (However, R1 is one or more elements selected from the rare earth element group other than La. Also, a + b = 1)

式(2)中の添字aは、好ましくは0.45≦a≦0.95、より好ましくは0.5≦a≦0.9、更に好ましくは、0.6≦a≦0.8である。希土類中に含まれるLaの割合が小さすぎると、水素吸蔵合金を負極として使用した場合に高温下における放電容量が不十分となり易い。すなわち、aの値を0.45以上とすることで、希土類全体の水素化熱の絶対量(△H )が低下して、水素吸蔵合金全体の平均解離圧を低下させることができ、高温下での放電容量の低下を抑制することができる。また、低コスト化の点からも、Laの割合を高めることが有利である。   The subscript a in the formula (2) is preferably 0.45 ≦ a ≦ 0.95, more preferably 0.5 ≦ a ≦ 0.9, and still more preferably 0.6 ≦ a ≦ 0.8. . If the proportion of La contained in the rare earth is too small, the discharge capacity at high temperatures tends to be insufficient when a hydrogen storage alloy is used as the negative electrode. That is, by setting the value of a to 0.45 or more, the absolute amount of heat of hydrogenation (ΔH 2) of the entire rare earth can be reduced, and the average dissociation pressure of the entire hydrogen storage alloy can be reduced. It is possible to suppress a decrease in discharge capacity. Moreover, it is advantageous to raise the ratio of La also from the point of cost reduction.

一方、希土類中に含まれるLaの割合が増加すると水素吸蔵量が増大するが、aの値が大きすぎると、得られる水素吸蔵合金の結晶相が分相しやすくなるため、水素吸蔵放出特性を良好に維持し難くなる。   On the other hand, the amount of hydrogen occlusion increases as the proportion of La contained in the rare earth increases. However, if the value of a is too large, the crystal phase of the obtained hydrogen occlusion alloy is likely to be phase-separated. It becomes difficult to maintain well.

また、式(2)におけるLa以外の希土類元素R1の添字bについては、例えば、Ceの場合はb≦0.5、Prの場合はb≦0.15、Ndの場合はb≦0.5の範囲にするのが良く、それぞれ0<b≦0.5(Ceの場合)、0.01≦b≦0.15(Prの場合)、0.05≦b≦0.5(Ndの場合)の範囲にするとさらに良い。これらの元素(Ce、Pr、Nd)は、いずれもLaよりも大きな水素化熱(ΔH)を有するため、大きすぎると水素吸蔵圧が上昇し、これに伴って水素吸蔵量が減少する。また、Ndは、例えばNd−Fe−B系磁石の原料としての需要が高く高価であるため、このような元素を多用することは工業的にコスト高となり、経済的に好ましくない。その他、Smは、例えばSm−Co系磁石の原料として、Tbは、蛍光体の原料としての需要が高く高価である。   In addition, the subscript b of the rare earth element R1 other than La in the formula (2) is, for example, b ≦ 0.5 in the case of Ce, b ≦ 0.15 in the case of Pr, and b ≦ 0.5 in the case of Nd. The range is preferably 0 <b ≦ 0.5 (in the case of Ce), 0.01 ≦ b ≦ 0.15 (in the case of Pr), and 0.05 ≦ b ≦ 0.5 (in the case of Nd). ) Is even better. Since all of these elements (Ce, Pr, Nd) have a heat of hydrogenation (ΔH) larger than that of La, if they are too large, the hydrogen storage pressure increases, and the hydrogen storage amount decreases accordingly. Moreover, since Nd is highly demanded and expensive as a raw material for Nd—Fe—B magnets, for example, it is industrially expensive to use such an element, which is not economically preferable. In addition, for example, Sm is expensive as a raw material for Sm—Co magnets, and Tb is expensive as a raw material for phosphors.

上記式(1)及び(2)中、Mg、Ni、Alの各添字x、y、zは、それぞれ0.05≦x≦0.3、4.0≦y≦4.4、0.1≦z≦0.3で示される範囲にある。ここで、xが、0.05未満であると、得られる水素吸蔵合金の結晶構造に超格子相(CeNi型、CeCo19型やPrCo19型)が含まれにくく、水素吸蔵時に結晶構造が崩壊しアモルファス化する。よって、電池の負極として用いた場合、サイクル寿命特性が乏しくなる。一方、xが0.3より大きいと、水素吸蔵し難くいMgNiラーベス相の偏析が大きくなり、水素吸蔵量の低下及び、サイクル寿命特性の劣化を引き起こす。より好ましいxの範囲は、0.1≦x≦0.2である。 In the above formulas (1) and (2), the subscripts x, y, and z of Mg, Ni, and Al are 0.05 ≦ x ≦ 0.3, 4.0 ≦ y ≦ 4.4, 0.1, respectively. ≦ z ≦ 0.3. Here, when x is less than 0.05, the crystal structure of the obtained hydrogen storage alloy does not easily include a superlattice phase (Ce 2 Ni 7 type, Ce 5 Co 19 type or Pr 5 Co 19 type), Crystal structure collapses and becomes amorphous during hydrogen storage. Therefore, when used as a negative electrode of a battery, the cycle life characteristics are poor. On the other hand, when x is larger than 0.3, segregation of the MgNi 2 Laves phase, which is difficult to store hydrogen, increases, resulting in a decrease in hydrogen storage amount and deterioration in cycle life characteristics. A more preferable range of x is 0.1 ≦ x ≦ 0.2.

また、yが4.0未満であると、水素吸蔵量の低下や放電電圧が低くなる。yが4.4を超える場合は、MgやAlを添加した効果が弱くなる。zが0.1未満であると、得られる水素吸蔵合金は格子間隔が小さい結晶構造となるので、水素解離圧が高くなる。そのため、電池として組んだ際に、負極の水素量が減少するばかりか、サイクル寿命特性が乏しくなる。逆にzが0.3を超えると、水素解離圧は低下するが、結晶構造の格子間隔が過剰に拡大し、平衡解離圧が低下して水素吸蔵量が低下する。   On the other hand, if y is less than 4.0, the hydrogen storage amount decreases and the discharge voltage decreases. When y exceeds 4.4, the effect of adding Mg or Al is weakened. If z is less than 0.1, the resulting hydrogen storage alloy has a crystal structure with a small lattice spacing, so that the hydrogen dissociation pressure increases. Therefore, when assembled as a battery, not only does the amount of hydrogen in the negative electrode decrease, but the cycle life characteristics become poor. Conversely, when z exceeds 0.3, the hydrogen dissociation pressure decreases, but the lattice spacing of the crystal structure excessively expands, the equilibrium dissociation pressure decreases, and the hydrogen storage capacity decreases.

y及びzをそれぞれ上記範囲に設定することで、AサイトとBサイトの比率を表すyとzの和は、4.1〜4.7で示される範囲となる。y+zが小さすぎると、必要となる希土類、特にNd、CeやPrの量が増えるため、合金の水素吸蔵安定性が高くなり水素放出能が劣化するだけでなく、材料コストも高くなる。逆に、y+zが大きくなりすぎると、合金の水素吸蔵サイトが減少して水素吸蔵能が劣化する。好ましいy+zは、4.2〜4.7であり、より好ましくは、4.25〜4.5である。   By setting y and z within the above ranges, the sum of y and z representing the ratio of the A site and the B site is in the range indicated by 4.1 to 4.7. If y + z is too small, the amount of rare earths required, particularly Nd, Ce, and Pr, increases, so that the hydrogen storage stability of the alloy increases and the hydrogen releasing ability deteriorates, and the material cost also increases. Conversely, if y + z becomes too large, the hydrogen storage sites of the alloy decrease and the hydrogen storage capacity deteriorates. Preferred y + z is 4.2 to 4.7, and more preferably 4.25 to 4.5.

以上の理由から、希土類中のLaを増加させ、Niの一部をAlで適当量置換することにより、水素吸蔵量が大きく、且つ、平衡解離圧の小さい水素吸蔵合金を得ることができる。もともと、水素酸化還元電位よりも卑な平衡電位を有するAlやLa等の元素は、電解液であるアルカリ水溶液中で溶出するため、合金が劣化する。したがって、Alを添加し、さらにLa量を増加すると、得られる水素吸蔵合金が劣化し易くなる。そこで、水素吸蔵合金中にMgを含ませることで、電極特性の低下が抑制される。   For the above reasons, by increasing La in the rare earth and substituting a suitable amount of Ni with Al, a hydrogen storage alloy having a large hydrogen storage capacity and a low equilibrium dissociation pressure can be obtained. Originally, elements such as Al and La having a lower equilibrium potential than the hydrogen oxidation-reduction potential are eluted in an alkaline aqueous solution as an electrolytic solution, so that the alloy deteriorates. Therefore, when Al is added and the amount of La is further increased, the resulting hydrogen storage alloy is likely to deteriorate. Therefore, by including Mg in the hydrogen storage alloy, deterioration of the electrode characteristics is suppressed.

合金の製造方法の一例を述べると、例えば、La、Pr、Nd、Mg、Ni、Alの各金属原料を目的の組成になるよう調整し、高周波加熱装置を用いて不活性雰囲気下で加熱処理を施した後、溶解した所定原料を冷却凝固する。そして、目的とする結晶相を所望の割合で生成させるために、不活性雰囲気下で熱処理を施し、熱処理温度(800〜1200℃)及び熱処理時間(5〜20時間)を制御することで、結晶構造が異なる2種以上の結晶相を有するインゴット状の水素吸蔵合金を得ることができる。   An example of an alloy manufacturing method is described as follows. For example, La, Pr, Nd, Mg, Ni, and Al metal raw materials are adjusted to have a desired composition, and heat treatment is performed in an inert atmosphere using a high-frequency heating device. Then, the melted predetermined raw material is cooled and solidified. And in order to produce | generate the target crystal phase in a desired ratio, it heat-processes in inert atmosphere, controls heat processing temperature (800-1200 degreeC) and heat processing time (5-20 hours), An ingot-like hydrogen storage alloy having two or more crystal phases having different structures can be obtained.

上記のように、一般組成式:RE(1−x)MgNiAl(但し、REは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群より選択される1種又は2種以上の元素)で表した場合の組成比x、y、zを、それぞれ上記の数値範囲に設定して合金を生成すると、得られる水素吸蔵合金は、例えばCaCu型結晶構造を有する相及びCeCo19型結晶構造を有する相の2相を含んだもの、CaCu型結晶構造を有する相及びPrCo19型結晶構造を有する相の2相を含んだもの、CaCu型結晶構造を有する相、CeCo19型結晶構造を有する相及びPrCo19型結晶構造を有する相の3相を含んだものとなる。 As described above, the general composition formula: RE (1-x) Mg x Ni y Al z (where RE is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Lu selected from the group consisting of one or more elements), the composition ratio x, y, z is set to the above numerical ranges, respectively, to produce an alloy. The obtained hydrogen storage alloy includes, for example, a phase having a CaCu 5 type crystal structure and a phase having a Ce 5 Co 19 type crystal structure, a phase having a CaCu 5 type crystal structure, and a Pr 5 Co 19 type crystal. Including three phases including a phase having a structure, a phase having a CaCu 5 type crystal structure, a phase having a Ce 5 Co 19 type crystal structure, and a phase having a Pr 5 Co 19 type crystal structure; Become.

各結晶相の含有割合は、不活性雰囲気下の熱処理条件(特に、熱処理温度)を制御することで、調整することができる。例えば、CaCu型結晶構造を有する相の割合を大きくして、CeCo19型結晶構造やPrCo19型結晶構造を有する相の割合を小さくするためには、熱処理温度を比較的高く(1100〜1200℃)する。一方、CaCu型結晶構造を有する相の割合を小さくして、CeCo19型結晶構造やPrCo19型結晶構造を有する相の割合を大きくするためには、熱処理温度を比較的低く(800〜1000℃)する。 The content ratio of each crystal phase can be adjusted by controlling the heat treatment conditions (particularly the heat treatment temperature) under an inert atmosphere. For example, in order to increase the proportion of a phase having a CaCu 5 type crystal structure and reduce the proportion of a phase having a Ce 5 Co 19 type crystal structure or a Pr 5 Co 19 type crystal structure, the heat treatment temperature is relatively high. (1100 to 1200 ° C.). On the other hand, in order to reduce the proportion of the phase having the CaCu 5 type crystal structure and increase the proportion of the phase having the Ce 5 Co 19 type crystal structure or the Pr 5 Co 19 type crystal structure, the heat treatment temperature is relatively low. (800-1000 ° C).

各結晶相は、CaCu型結晶構造を有する相を主相とし、CaCu型結晶構造を有する相が40〜90wt%、CeCo19型結晶構造を有する相が5〜39wt%、PrCo19型結晶構造を有する相が3〜20wt%の範囲にあることを必要とする。特に、CaCu型が45〜85wt%、CeCo19型が6〜35wt%、PrCo19型が6〜15wt%の範囲で存在することが好ましい。本明細書において、主相とは、合金を構成する結晶相のうち存在割合(重量比)が最も大きいものをいう。尚、CeNi型結晶構造など他の結晶構造を有する相を含んでもかまわない。 Each crystal phase has a phase having a CaCu 5 type crystal structure as a main phase, a phase having a CaCu 5 type crystal structure is 40 to 90 wt%, a phase having a Ce 5 Co 19 type crystal structure is 5 to 39 wt%, and Pr 5 The phase having the Co 19 type crystal structure needs to be in the range of 3 to 20 wt%. In particular, it is preferable that CaCu 5 type is present in the range of 45 to 85 wt%, Ce 5 Co 19 type is 6 to 35 wt%, and Pr 5 Co 19 type is 6 to 15 wt%. In the present specification, the main phase refers to the crystal phase constituting the alloy having the largest abundance ratio (weight ratio). A phase having another crystal structure such as a Ce 2 Ni 7 type crystal structure may be included.

各結晶相の重量比を上記範囲に設定することで、金属原子間の隙間の大きさを調整することができ、上記組成で表される合金の平衡水素圧を最適化できることが明らかになった。具体的には、水素吸蔵合金が有するCaCu型結晶構造のa軸長さに対して、CeCo19型結晶構造のa軸長さ、及び、PrCo19型結晶構造のa軸長さを略等しくすることが可能になった。また、CaCu型結晶構造の格子定数c軸長さを、従来のMmNi系(AB5型)水素吸蔵合金のCaCu型結晶構造の格子定数c軸長さと比較して小さくすることが可能になった。このように格子定数を最適化した水素吸蔵合金は、電気化学的に水素を多量に吸蔵することができると共に、水素を多量に放出することが可能になった。 It was clarified that by setting the weight ratio of each crystal phase within the above range, the size of the gap between metal atoms can be adjusted, and the equilibrium hydrogen pressure of the alloy represented by the above composition can be optimized. . Specifically, the a-axis length of the Ce 5 Co 19 type crystal structure and the a-axis length of the Pr 5 Co 19 type crystal structure with respect to the a-axis length of the CaCu 5 type crystal structure of the hydrogen storage alloy It became possible to make the lengths approximately equal. Also, the lattice constant c-axis length of the CaCu 5 type crystal structure, conventional MmNi 5 system (AB5 type) so can be reduced as compared with the lattice constant c-axis length of the CaCu 5 type crystal structure of the hydrogen storage alloy became. As described above, the hydrogen storage alloy with the optimized lattice constant can store a large amount of hydrogen electrochemically and release a large amount of hydrogen.

主相であるCaCu型結晶構造の格子定数c軸長さの範囲は、3.980〜4.020Åの範囲内が好ましく、3.982〜4.01Åの範囲内がより好ましい。また、CaCu型結晶構造の格子定数a軸長さと、CeCo19型及びPrCo19型結晶構造の格子定数a軸長さとの差が、いずれも±0.02Åの範囲内であることが好ましく、±0.01Åの範囲内であることがより好ましい。また、各結晶構造のa軸長さは、4.95〜5.05Åであることが好ましく、4.97〜5.03Åであることがより好ましい。 The range of the lattice constant c-axis length of the CaCu 5- type crystal structure which is the main phase is preferably in the range of 3.980 to 4.020 mm, and more preferably in the range of 3.982 to 4.01 mm. Also, the difference between the lattice constant a-axis length of the CaCu 5 type crystal structure and the lattice constant a-axis length of the Ce 5 Co 19 type and Pr 5 Co 19 type crystal structures is within a range of ± 0.02Å. It is preferable that it is within a range of ± 0.01 mm. The a-axis length of each crystal structure is preferably 4.95 to 5.05 cm, and more preferably 4.97 to 5.03 mm.

各結晶相の重量比やa軸長さ及びc軸長さは、例えば、大型放射光施設「SPring−8」によりX線回折パターンを測定し、リートベルト(Rietveld)法により構造解析を行うことで、求めることができる。   For the weight ratio, a-axis length, and c-axis length of each crystal phase, for example, an X-ray diffraction pattern is measured by a large synchrotron radiation facility “SPring-8” and structural analysis is performed by the Rietveld method. And you can ask for it.

CaCu型の存在が90wt%を超えると、CaCu型の格子定数c軸長さが小さくなりにくい。逆に、40wt%未満であると、CaCu型の格子定数c軸長さが大きくなりにくい。つまり、格子定数a軸長さやc軸長さを上記範囲とすることで、金属原子間の隙間の大きさが調整され、上記組成で表される合金の平衡水素圧が最適化される。例えば、合金の格子定数a軸やc軸の値が大きいと、単位格子体積が大きくなり、単位格子を構成する金属原子間の隙間は増大する。隙間が大きいと金属格子中に水素が入り易くなるが、水素を保持しにくくなる。よって、合金の単位格子の体積が大きいほど、平衡水素解離圧は低くなる。逆に、合金の格子定数a軸やc軸の値が小さいと、単位格子の体積が小さくなり、単位格子を構成する金属原子間の隙間は小さくなる。隙間が小さいと金属原子は密に詰まった状態となっているため、水素を保持しやすくなるが、金属格子中に水素が入り難くなる。よって、合金の単位格子の体積が小さいほど、平衡水素解離圧は高くなる。 When the presence of the CaCu 5 type exceeds 90 wt%, the lattice constant c-axis length of the CaCu 5 type is difficult to decrease. On the contrary, if it is less than 40 wt%, the CaCu 5 type lattice constant c-axis length is difficult to increase. That is, by setting the lattice constant a-axis length and c-axis length in the above ranges, the size of the gap between metal atoms is adjusted, and the equilibrium hydrogen pressure of the alloy represented by the above composition is optimized. For example, when the values of the lattice constant a-axis and c-axis of the alloy are large, the unit cell volume increases, and the gap between metal atoms constituting the unit cell increases. When the gap is large, hydrogen easily enters the metal lattice, but it is difficult to hold hydrogen. Thus, the higher the unit cell volume of the alloy, the lower the equilibrium hydrogen dissociation pressure. Conversely, when the values of the lattice constant a-axis and c-axis of the alloy are small, the volume of the unit cell is small, and the gap between the metal atoms constituting the unit cell is small. If the gap is small, the metal atoms are densely packed, so that it is easy to hold hydrogen, but it is difficult for hydrogen to enter the metal lattice. Thus, the smaller the unit cell volume of the alloy, the higher the equilibrium hydrogen dissociation pressure.

インゴット状の水素吸蔵合金は、不活性雰囲気下でクラッシャーにより粗粉砕し、続いて不活性雰囲気下でピンミルを用いて乾式粉砕することで、水素吸蔵合金の粉末状の粒子を得ることができる。この粒子は、製造工程における処理中の雰囲気や原料等の含有酸素の影響から、製造された合金表面にMgOが含有している場合がある。したがって、得られた粒子を水素吸蔵合金電極として用いる場合、負極活物質に含まれたMgOが電解液に溶出することで電解液が劣化しやすく、電池の寿命に影響する。   The ingot-like hydrogen storage alloy is coarsely pulverized by a crusher in an inert atmosphere, and then dry pulverized using a pin mill in an inert atmosphere, whereby powder particles of the hydrogen storage alloy can be obtained. These particles may contain MgO on the surface of the manufactured alloy due to the influence of oxygen contained in the atmosphere during processing and raw materials in the manufacturing process. Therefore, when the obtained particles are used as a hydrogen storage alloy electrode, MgO contained in the negative electrode active material is eluted into the electrolytic solution, so that the electrolytic solution is easily deteriorated, which affects the life of the battery.

そのため、水素吸蔵合金にアルカリ加熱処理を施して、合金表面に存在するMgOを除去し、電解液の劣化を防ぐことが好ましい。アルカリ加熱処理は、水素吸蔵合金を、粒状(粉末状)のまま或いは電極形成後に苛性アルカリ水溶液に浸漬させて煮沸すればよい。苛性アルカリ水溶液は、NaOH、KOH、LiOH等が挙げられ、濃度は0.1〜10mol/Lが好ましく、2〜8mol/Lがより好ましい。0.1mol/L未満の濃度であると、完全にMgOが除去されないおそれがある一方、10moLを超える高濃度であると、MgOのみならず、合金そのものまで溶解するおそれがある。処理時間は、0.1〜4時間が好ましい。0.1時間未満であると再現性が乏しく、4時間を超える過処理はMgOのみならず、合金そのものまで溶解するおそれがある。加熱処理温度は、後述するように、60〜100℃の範囲に設定することが好ましく、約80℃に設定することがより好ましい。また、後述するように、合金の残留磁化値が0.5〜0.9emu/gの範囲内が好ましく、0.6〜0.8emu/gがより好ましい。ここで、残留磁化値は、振動試料型磁力計(VSM)を用い、18koeの外部磁場を与えた時の値である。   Therefore, it is preferable to subject the hydrogen storage alloy to alkali heat treatment to remove MgO present on the alloy surface and prevent deterioration of the electrolytic solution. The alkali heat treatment may be performed by immersing the hydrogen storage alloy in a granular (powdered) form or dipping it in a caustic aqueous solution after electrode formation. Examples of the caustic aqueous solution include NaOH, KOH, LiOH and the like, and the concentration is preferably 0.1 to 10 mol / L, and more preferably 2 to 8 mol / L. If the concentration is less than 0.1 mol / L, MgO may not be completely removed. On the other hand, if the concentration exceeds 10 mol, not only MgO but also the alloy itself may be dissolved. The treatment time is preferably 0.1 to 4 hours. If it is less than 0.1 hour, reproducibility is poor, and overtreatment exceeding 4 hours may dissolve not only MgO but also the alloy itself. As will be described later, the heat treatment temperature is preferably set in the range of 60 to 100 ° C, more preferably about 80 ° C. Further, as will be described later, the residual magnetization value of the alloy is preferably in the range of 0.5 to 0.9 emu / g, more preferably 0.6 to 0.8 emu / g. Here, the residual magnetization value is a value when an external magnetic field of 18 koe is applied using a vibrating sample magnetometer (VSM).

本発明の水素吸蔵合金は、アルカリ電池用の負極、例えば、ニッケル−水素二次電池用負極活物質、空気−水素二次電池等として有効に使用することができる。この水素吸蔵合金を用いた負極は、通常の電池と同様の構造とすることができる。例えば、ニッケル−水素二次電池では、水素吸蔵合金を活物質とする負極と正極との間に電気絶縁性を有するセパレータを介して電槽缶内に収容し、アルカリ電解液を充填して構成することができる。   The hydrogen storage alloy of the present invention can be effectively used as a negative electrode for an alkaline battery, for example, a negative electrode active material for a nickel-hydrogen secondary battery, an air-hydrogen secondary battery, or the like. A negative electrode using this hydrogen storage alloy can have the same structure as a normal battery. For example, in a nickel-hydrogen secondary battery, the battery is accommodated in a battery can through a separator having electrical insulation between a negative electrode and a positive electrode using a hydrogen storage alloy as an active material, and filled with an alkaline electrolyte. can do.

前記負極は、以下に説明するペースト式および圧着式(非ペースト式)のものが採用できる。   As the negative electrode, a paste type and a pressure type (non-paste type) described below can be adopted.

ペースト式水素吸蔵合金電極は、上記水素吸蔵合金を粉砕することにより得た水素吸蔵合金粉末と結着剤と必要に応じて添加される導電性粉末とを混合してペースト状とし、このペーストを集電体に塗布、充填、乾燥した後、ローラープレス等で圧延することにより製造できる。   The paste-type hydrogen storage alloy electrode is prepared by mixing a hydrogen storage alloy powder obtained by pulverizing the hydrogen storage alloy, a binder, and a conductive powder added as necessary. After applying, filling, and drying the current collector, it can be produced by rolling with a roller press or the like.

圧着式水素吸蔵合金電極は、上記水素吸蔵合金粉末と結着剤と必要に応じて添加される導電性粉末とを撹拌し、集電体に塗着した後、ローラープレス等で圧延することにより製造できる。   The pressure-bonding type hydrogen storage alloy electrode is prepared by stirring the hydrogen storage alloy powder, the binder, and the conductive powder added as necessary, coating the current collector, and rolling with a roller press or the like. Can be manufactured.

水素吸蔵合金の粉砕方法は、例えばボールミル、パルペライザー、ジェットミル等の機械的粉砕方法、または高圧の水素ガスを吸蔵・放出させ、その際の体積膨張により粉砕する方法が採用することができる。   As a method for pulverizing the hydrogen storage alloy, for example, a mechanical pulverization method such as a ball mill, a pulverizer, a jet mill or the like, or a method in which high-pressure hydrogen gas is occluded / released and pulverized by volume expansion at that time can be adopted.

結着剤は、例えば、ポリアクリル酸ソーダ、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、スチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVdF)、等を挙げることができる。このような結着剤は、前記水素吸蔵合金100wt%に対して0.1〜5wt%で配合することが好ましい。ただし、圧着式水素吸蔵合金電極を作製する場合は、撹拌により繊維化して前記水素吸蔵合金粉末および必要に応じて添加される導電助剤を網目状に固定することが可能なポリテトラフルオロエチレン(PTFE)を結着剤として用いることが好ましい。   Examples of the binder include polyacrylic acid soda, polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), styrene butadiene rubber (SBR), and polyvinylidene fluoride (PVdF). Can do. Such a binder is preferably blended at 0.1 to 5 wt% with respect to 100 wt% of the hydrogen storage alloy. However, in the case of producing a pressure bonding type hydrogen storage alloy electrode, polytetrafluoroethylene (which can be fixed into a network by fibrosis by stirring and fixing the hydrogen storage alloy powder and the conductive additive added as necessary, in a network form. It is preferable to use PTFE) as a binder.

導電助剤は、導電性を有する粉末であればよく、例えば黒鉛粉末、カーボンブラック等の炭素材料、またはニッケル、銅などの金属粉末を挙げることができる。このような導電助剤は、前記水素吸蔵合金100wt%に対して0.1〜5wt%の範囲で配合することが好ましい。   The conductive auxiliary agent may be any conductive powder, and examples thereof include carbon materials such as graphite powder and carbon black, and metal powders such as nickel and copper. Such a conductive additive is preferably blended in the range of 0.1 to 5 wt% with respect to 100 wt% of the hydrogen storage alloy.

集電体は、例えばパンチングメタル、エキスパンドメタル、金網等の二次元基板、箔状、板状、または発泡金属基板、網状焼結繊維基板、織布・不織布へ金属をめっきした基板等の三次元基板等を挙げることができる。ただし、圧着式水素吸蔵合金電極を作製する場合には、水素吸蔵合金粉末を含む合剤が塗着されることから二次元基板を導電性基板として用いることが好ましい。   The current collector is, for example, a two-dimensional substrate such as a punching metal, an expanded metal, a wire mesh, a foil shape, a plate shape, or a foam metal substrate, a mesh-like sintered fiber substrate, a substrate obtained by plating a metal on a woven / nonwoven fabric, etc. A substrate etc. can be mentioned. However, in the case of producing a pressure bonding type hydrogen storage alloy electrode, it is preferable to use a two-dimensional substrate as a conductive substrate because a mixture containing hydrogen storage alloy powder is applied.

上述した水素吸蔵合金電極と組み合される正極は、汎用のものが用いられる。例えば、公知の正極として、非焼結式ニッケル正極がある。非焼結式ニッケル正極は、例えば水酸化ニッケルと必要に応じて添加される水酸化コバルト(Co(OH))、一酸化コバルト(CoO)、金属コバルト等との混合物にカルボキシメチルセルロース(CMC)、ポリアクリル酸ソーダなどのポリアクリル酸塩を適宜配合してペーストとし、このペーストを発泡金属基板、網状焼結繊維基板、不織布へ金属をめっきしたフェルトめっき基板などの三次元構造の基板に充填し、乾燥した後、ローラープレス等により圧延することにより製造することができる。 A general-purpose thing is used for the positive electrode combined with the hydrogen storage alloy electrode mentioned above. For example, as a known positive electrode, there is a non-sintered nickel positive electrode. The non-sintered nickel positive electrode is made of, for example, a mixture of nickel hydroxide and cobalt hydroxide (Co (OH) 2 ), cobalt monoxide (CoO), metallic cobalt and the like which are added as necessary. Carboxymethyl cellulose (CMC) In addition, polyacrylates such as sodium polyacrylate are appropriately blended into a paste, and this paste is filled into a three-dimensional substrate such as a foamed metal substrate, a reticulated sintered fiber substrate, or a felt-plated substrate obtained by plating a metal onto a nonwoven fabric. And after drying, it can manufacture by rolling with a roller press etc.

セパレータは電気絶縁性を有し、水酸化物イオンが透過できればよい。たとえば、ナイロン、ポリプロピレン(PP)、ポリエチレン(PE)などの単体高分子繊維、またはこれら高分子繊維に親水化処理を施したもの、及びこれらの繊維を混紡した複合高分子繊維を挙げられる。   The separator only needs to have electrical insulation and allow hydroxide ions to pass therethrough. Examples thereof include single polymer fibers such as nylon, polypropylene (PP), and polyethylene (PE), those obtained by subjecting these polymer fibers to a hydrophilic treatment, and composite polymer fibers obtained by blending these fibers.

アルカリ電解液としては、例えば20〜40wt%の濃度を有する水酸化カリウム溶液または前記水酸化カリウム溶液に水酸化リチウム、水酸化ナトリウムなどを混合したものが使用される。   As the alkaline electrolyte, for example, a potassium hydroxide solution having a concentration of 20 to 40 wt% or a mixture of lithium hydroxide, sodium hydroxide or the like in the potassium hydroxide solution is used.

本発明の一実施例によれば、合金中にMnや高価なCoが含有せず、水素の吸蔵特性に優れた結晶構造を有するCaCu型を主相とし、その格子定数a軸長さが4.95〜5.05Å、c軸長さが3.98〜4.02Åの水素吸蔵合金が得られる。当該水素吸蔵合金をニッケル水素二次電池用の負極として具備することで、自己放電の少ない高い容量維持率を有し、且つ放電電圧が高く、初期活性化が非常に早い電池が得られる。 According to one embodiment of the present invention, the main phase is CaCu 5 type that does not contain Mn or expensive Co in the alloy and has a crystal structure with excellent hydrogen storage characteristics, and the lattice constant a-axis length is A hydrogen storage alloy having 4.95 to 5.05 mm and a c-axis length of 3.98 to 4.02 mm is obtained. By providing the hydrogen storage alloy as a negative electrode for a nickel metal hydride secondary battery, a battery having a high capacity maintenance rate with little self-discharge, a high discharge voltage, and a very fast initial activation can be obtained.

以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to a following example, unless the summary is exceeded.

La、Pr、Nd、Mg、Ni、Alの各金属原料を表1に示した所定組成となるよう秤量し、高周波加熱装置を用いて、アルゴンガス雰囲気下で、所定の金属原料が溶解するまで加熱処理を施した。溶解した所定原料を水冷式鋳造板上に流し込んで、冷却凝固を行った。これを、アルゴンガス雰囲気下で、目的とする結晶相を適切な割合で生成させるために、熱処理温度(1000℃)及び熱処理時間(6時間)を制御して、目的とする結晶相を有する合金インゴットを得た。得られた合金インゴットは、アルゴンガス雰囲気下でクラッシャーにより粗粉砕し、続いてアルゴンガス雰囲気下でピンミルを用いて乾式粉砕し、平均粒径約40μmの合金粉末を得た(実施例1〜11及び比較例1〜4、6)。比較例5は、従来のAB5系合金(MmNi3.7Co0.7Mn0.3Al0.3)を、上記と同様に粉砕して粉末状にしたものであり、表1にはB/A値のみを示している。 Each metal raw material of La, Pr, Nd, Mg, Ni, and Al is weighed to have the predetermined composition shown in Table 1, and until the predetermined metal raw material is dissolved in an argon gas atmosphere using a high-frequency heating device Heat treatment was performed. The melt | dissolved predetermined raw material was poured on the water-cooling type casting board, and cooling solidification was performed. This is an alloy having the target crystal phase by controlling the heat treatment temperature (1000 ° C.) and the heat treatment time (6 hours) in order to produce the target crystal phase at an appropriate ratio in an argon gas atmosphere. Got an ingot. The obtained alloy ingot was coarsely pulverized by a crusher under an argon gas atmosphere, and then dry pulverized using a pin mill under an argon gas atmosphere to obtain an alloy powder having an average particle diameter of about 40 μm (Examples 1 to 11). And Comparative Examples 1-4, 6). In Comparative Example 5, a conventional AB5-based alloy (MmNi 3.7 Co 0.7 Mn 0.3 Al 0.3 ) was pulverized in the same manner as described above to form a powder. Only the / A value is shown.

比較例7は、熱処理温度を700℃にした他、実施例4と同様である。   Comparative Example 7 is the same as Example 4 except that the heat treatment temperature was set to 700 ° C.

比較例8は、熱処理温度を1300℃にした他、実施例4と同様である。   Comparative Example 8 is the same as Example 4 except that the heat treatment temperature was 1300 ° C.

Figure 2012102343
Figure 2012102343

表1において、Aサイトは、合金全体に占めるMgの原子量比を10%に固定した上でLaとPr及びNdとの原子数比を示している。PrとNdとの原子数比は1:4として、自然界で産出される希土類元素の鉱物と同様に、PrよりもNdが多くなるように設定した。一方、Bサイトは、Ni及びAlのAサイトに対する原子数比で表しており、それぞれ上記式(1)及び(2)におけるy及びzに相当する。そして、表1の「B/A」が、y+zに相当する。   In Table 1, the A site indicates the atomic ratio of La, Pr, and Nd after fixing the atomic weight ratio of Mg in the entire alloy to 10%. The atomic ratio of Pr to Nd was set to 1: 4, and Nd was set to be larger than Pr as in the case of rare earth minerals produced in nature. On the other hand, the B site is represented by the atomic ratio of Ni and Al to the A site, and corresponds to y and z in the above formulas (1) and (2), respectively. “B / A” in Table 1 corresponds to y + z.

<水素吸蔵能力の確認>
実施例1〜6及び比較例1における圧力−組成等温(Hydrogen Pressure -Composition-Isotherms;PCT)曲線を測定した。測定には、PCT自動特性測定装置(リガク製)を用いた。水素雰囲気の最高圧力は1MPa、測定温度は20℃、40℃及び80℃とし、各温度における水素吸蔵合金の水素圧力−水素吸収量(H/M)の関係を図示した。結果を図1に示す。
<Confirmation of hydrogen storage capacity>
The pressure-composition isothermal (PCT) curves in Examples 1 to 6 and Comparative Example 1 were measured. For the measurement, a PCT automatic characteristic measuring device (manufactured by Rigaku) was used. The maximum pressure in the hydrogen atmosphere was 1 MPa, the measurement temperatures were 20 ° C., 40 ° C. and 80 ° C., and the relationship between the hydrogen pressure and the hydrogen absorption amount (H / M) of the hydrogen storage alloy at each temperature is shown in the figure. The results are shown in FIG.

実施例1〜6は、比較例1に比べていずれも特定の水素圧領域で大きなプラトーが確認でき、水素吸蔵・放出が可能であることを示している。また、B/A値が大きくなるにしたがって、プラトーが顕著になった。特に、実施例4と5との比較から、同じB/A値でも、Alの含有量が増えるにしたがって、低い水素圧下でプラトーを確認することができた。   In each of Examples 1 to 6, a large plateau can be confirmed in a specific hydrogen pressure region as compared with Comparative Example 1, indicating that hydrogen storage / release is possible. Further, as the B / A value increased, the plateau became more prominent. In particular, from the comparison between Examples 4 and 5, even with the same B / A value, a plateau could be confirmed under a lower hydrogen pressure as the Al content increased.

<構造解析>
大型放射光施設SPring−8(ビームラインBL19B2、波長λ=0.4012Å)で測定した。一例として、実施例1〜5、及び比較例1の放射光X線回折パターンを図2に示す。
<Structural analysis>
It was measured at a large synchrotron radiation facility SPring-8 (beam line BL19B2, wavelength λ = 0.4012Å). As an example, the synchrotron radiation X-ray diffraction patterns of Examples 1 to 5 and Comparative Example 1 are shown in FIG.

Rietveld法により構造解析を行ったところ、実施例1〜11はCaCu型相(P6/mmm)、CeNi型相(P63/mmc)、CeCo19型相(R−3m)及びPrCo19型相(P63/mmc)の4種類のモデルを仮定することで精度よくピーク位置の再現が可能であった。表2に実施例1〜11及び比較例1〜8のRietveld解析結果から導きだされた各相の存在割合を重量分率で示す。 When structural analysis was performed by the Rietveld method, Examples 1 to 11 were a CaCu 5 type phase (P6 / mmm), a Ce 2 Ni 7 type phase (P63 / mmc), a Ce 5 Co 19 type phase (R-3m) and By assuming four types of models of the Pr 5 Co 19 type phase (P63 / mmc), it was possible to accurately reproduce the peak position. Table 2 shows the existence ratio of each phase derived from the Rietveld analysis results of Examples 1 to 11 and Comparative Examples 1 to 8 in terms of weight fraction.

実施例1〜11は、CaCu型相を主相とし、CeCo19型相及びPrCo19型相の3相を含むのに対し、比較例1〜2及び6〜7は、CeNi型相、CeCo19型相及びPrCo19型相の超格子相が多く含まれており、CeCo19型相が主相であった。また、比較例3〜5及び8は、CaCu型相を主相とするが、90wt%以上と過剰に含むものであった。 Examples 1 to 11 have a CaCu 5 type phase as a main phase, and include three phases of a Ce 5 Co 19 type phase and a Pr 5 Co 19 type phase, whereas Comparative Examples 1 to 2 and 6 to 7 are Ce 2 Ni 7- type phase, Ce 5 Co 19- type phase and Pr 5 Co 19- type phase were mostly contained, and Ce 5 Co 19- type phase was the main phase. In addition, Comparative Examples 3 to 5 and 8 have a CaCu 5 type phase as a main phase, but included an excess of 90 wt% or more.

Figure 2012102343
Figure 2012102343

<JIS H7205に基づく放電容量の評価>
電気化学的水素吸蔵量の評価は、JIS
H7205に基づいて、表1記載の所定合金粉末と−325meshのCu粉末(高純度化学製)を20:80(重量比)で混合し、全圧5tで加圧成型して、φ12mmのペレットを作製した。このペレットを60メッシュのニッケルメッシュではさみ、周囲をスポット溶接してペレットを固定し、次いで、ニッケル板を該ニッケルメッシュに溶接して試験電極(作用極)を作製した。尚、対極は発泡ニッケル電極を用い、参照極として酸化水銀(Hg/HgO)電極を用いた。これらの作用極、対極、及び参照極を6mol/LのKOH水溶液に浸漬させて、図3に示すH字型試験セルを作製した。尚、特に記載がない限り試験温度は25℃で行っている。
<Evaluation of discharge capacity based on JIS H7205>
The evaluation of electrochemical hydrogen storage is JIS
Based on H7205, the prescribed alloy powders listed in Table 1 and -325 mesh Cu powder (made by high purity chemical) are mixed at 20:80 (weight ratio), press-molded at a total pressure of 5 t, and φ12 mm pellets are formed. Produced. The pellet was sandwiched between 60 mesh nickel meshes, the periphery was spot welded to fix the pellets, and then a nickel plate was welded to the nickel mesh to produce a test electrode (working electrode). The counter electrode was a foamed nickel electrode, and the reference electrode was a mercury oxide (Hg / HgO) electrode. These working electrode, counter electrode, and reference electrode were immersed in a 6 mol / L KOH aqueous solution to produce an H-shaped test cell shown in FIG. The test temperature is 25 ° C. unless otherwise specified.

実施例1〜9及び比較例1〜5におけるJIS H7205に基づいて測定した放電容量を表3に示す。   Table 3 shows the discharge capacities measured based on JIS H7205 in Examples 1 to 9 and Comparative Examples 1 to 5.

Figure 2012102343
Figure 2012102343

B/A値が4.7以下である実施例1〜11は、330mAh/g以上の大きな放電容量が得られているのに対し、B/A値が4.8以上である比較例3〜5は、放電容量が約300mAh/gと小さい値であった。また、比較例6は、表1に示すようにアルミニウムの組成比が小さい(z=0.02)場合であり、この場合の放電容量も実施例に比べて低い値であった。比較例7及び8も、実施例に比べて放電容量が低い値となった。比較例7及び8の各金属原料の組成比は実施例4と同じであるが、熱処理温度を変えることで各結晶相の割合が実施例4とは相違している。このように、各金属原料の組成比を所定の範囲に設定するだけでなく、各結晶相の含有割合を所定の範囲となるように制御することで、高い放電容量が得られることを確認した。   In Examples 1 to 11 having a B / A value of 4.7 or less, a large discharge capacity of 330 mAh / g or more was obtained, while in comparison examples 3 to 3 having a B / A value of 4.8 or more. No. 5 had a discharge capacity as small as about 300 mAh / g. Further, Comparative Example 6 was a case where the composition ratio of aluminum was small (z = 0.02) as shown in Table 1, and the discharge capacity in this case was also lower than that of the Example. In Comparative Examples 7 and 8, the discharge capacity was lower than that in Examples. Although the composition ratio of each metal raw material of Comparative Examples 7 and 8 is the same as that of Example 4, the proportion of each crystal phase is different from Example 4 by changing the heat treatment temperature. Thus, it was confirmed that not only the composition ratio of each metal raw material was set to a predetermined range but also a high discharge capacity was obtained by controlling the content ratio of each crystal phase to be within a predetermined range. .

<密閉式電池としての評価>
実施例1〜9及び比較例1〜5の合金粉末をカルボキシメチルセルロース(CMC)及びポリテトラフルオロエチレン(PTFE)を混合後、適当量のイオン交換水を加えて、スラリーを調製した。該スラリーを発泡ニッケル(セルメット#8;住友電工製)に充填し、80℃で1時間以上乾燥後、ローラープレス機で圧延処理したものを負極に用いた。負極の電極厚さは平均400μmである。
<Evaluation as a sealed battery>
The alloy powders of Examples 1 to 9 and Comparative Examples 1 to 5 were mixed with carboxymethyl cellulose (CMC) and polytetrafluoroethylene (PTFE), and then an appropriate amount of ion-exchanged water was added to prepare a slurry. The slurry was filled in foamed nickel (Celmet # 8; manufactured by Sumitomo Electric Industries), dried at 80 ° C. for 1 hour or longer, and then rolled with a roller press to be used for the negative electrode. The electrode thickness of the negative electrode is an average of 400 μm.

オキシ水酸化コバルトがコーティングされた水酸化ニッケル粉末、カルボキシメチルセルロース(CMC)及びポリテトラフルオロエチレン(PTFE)を混合後、適当量のイオン交換水を加えて、スラリーを調製した。該スラリーを発泡ニッケル(セルメット#8;住友電工製)に充填し、80℃で1時間以上乾燥後、ローラープレス機で圧延処理したものを正極に用いた。正極の電極厚さは平均450μmである。   After mixing nickel hydroxide powder coated with cobalt oxyhydroxide, carboxymethyl cellulose (CMC) and polytetrafluoroethylene (PTFE), an appropriate amount of ion-exchanged water was added to prepare a slurry. The slurry was filled in foamed nickel (Celmet # 8; manufactured by Sumitomo Electric Industries), dried at 80 ° C. for 1 hour or longer, and then rolled with a roller press to be used for the positive electrode. The average thickness of the positive electrode is 450 μm.

負極と正極を、スルホン化ポリオレフィン不織布をセパレータとして、渦巻状に巻回して電極群とし、これを電槽缶に挿入し、6mol/LのKOH水溶液(LiOH含有30g/L)を電解液として注入して、Sub−C型ニッケル-水素電池を構成した。N/Pは1.5であり、公称容量は2.8Ahである。   A negative electrode and a positive electrode are wound in a spiral shape using a sulfonated polyolefin nonwoven fabric as a separator to form an electrode group, which is inserted into a battery case, and 6 mol / L KOH aqueous solution (LiOH-containing 30 g / L) is injected as an electrolyte. Thus, a Sub-C type nickel-hydrogen battery was constructed. N / P is 1.5 and the nominal capacity is 2.8 Ah.

組み上げた電池を充放電試験機(計測器センター製充放電試験装置)に接続し、25℃に設定した恒温槽中で、1C率充放電(103%充電、0.8V放電カットオフ)を数十サイクル行い、活性化を行った。1C率とは、電池の全容量を1時間で放電又は充電できるだけの電流量である。   Connect the assembled battery to a charge / discharge tester (Charge / Discharge Test Equipment manufactured by Instrument Center) and charge and discharge 1C rate (103% charge, 0.8V discharge cut-off) in a constant temperature bath set at 25 ° C. Ten cycles were performed for activation. The 1C rate is an amount of current that can discharge or charge the entire capacity of the battery in one hour.

サイクル寿命特性の試験結果(初期特性)
実施例1、2及び比較例5を負極として用いた電池の寿命特性を図4に示す。図中、利用率とは、1電子反応したときの正極容量(289mAh/g)を100%の利用率とし、放電容量を換算した値である。以降、特に記載がない限り、利用率は同じ意味である。実施例1及び実施例2は、初期から90%を超える利用率が得られた。一方、従来のMmNi系合金(比較例5)では容量の安定に50サイクル程度必要としていた。
Cycle life characteristics test results (initial characteristics)
The life characteristics of the batteries using Examples 1, 2 and Comparative Example 5 as the negative electrode are shown in FIG. In the figure, the utilization rate is a value obtained by converting the discharge capacity with the positive electrode capacity (289 mAh / g) at the time of one-electron reaction as 100% utilization rate. Hereinafter, unless otherwise specified, the utilization rate has the same meaning. In Examples 1 and 2, a utilization rate exceeding 90% was obtained from the initial stage. On the other hand, the conventional MmNi 5- based alloy (Comparative Example 5) required about 50 cycles to stabilize the capacity.

サイクル寿命特性の試験結果
実施例1〜9及び比較例1〜5を負極として用いた電池のサイクル寿命特性の試験結果を、表4に示す。表4は、負極をアルカリ処理しない状態で1C率充放電(105%充電=63分充電、0.8V放電カットオフ)を繰り返し行い、100サイクル後、300サイクル後及び500サイクル後の容量維持率(定格電池容量に対する放電容量の割合(%))を示している。
Test results of cycle life characteristics Table 4 shows the test results of the cycle life characteristics of batteries using Examples 1 to 9 and Comparative Examples 1 to 5 as negative electrodes. Table 4 shows that the 1C rate charge / discharge (105% charge = 63 minute charge, 0.8V discharge cut-off) was repeatedly performed without the alkali treatment of the negative electrode, and the capacity retention rate after 100 cycles, after 300 cycles and after 500 cycles. (Ratio of discharge capacity to rated battery capacity (%)).

Figure 2012102343
Figure 2012102343

実施例1〜9及び比較例1〜5のいずれも、100サイクルまで大きな容量の低下は見られなかったが、500サイクル時においては、B/A値が4.8以上である比較例3〜5と比べて、実施例1〜9は高い容量維持率を示した。   In all of Examples 1 to 9 and Comparative Examples 1 to 5, no significant decrease in capacity was observed up to 100 cycles, but at 500 cycles, Comparative Example 3 having a B / A value of 4.8 or more. Compared to 5, Examples 1 to 9 showed higher capacity retention rates.

出力特性の試験結果
実施例3〜5及び比較例2、3、5を負極として用いた電池における高率放電試験の結果を図5に示す。図5は、放電レートをパラメータとして、1C率で103%充電後に、1Vまで放電したときの平均放電電圧を示している。実施例3〜5は、比較例2、3、5と比較して高い放電電圧を示している。特に実施例5は、10C率(定格電池容量を6分間で放電できるだけの電流量)放電においても平均電圧が1.05Vを超えており、高い放電電圧を有していることがいえる。実施例1〜9及び比較例1〜5について、上記の高率放電条件における利用率を表5に示す。
Test Results of Output Characteristics FIG. 5 shows the results of a high rate discharge test in batteries using Examples 3 to 5 and Comparative Examples 2, 3, and 5 as the negative electrode. FIG. 5 shows an average discharge voltage when discharging to 1 V after 103% charging at a 1 C rate using the discharge rate as a parameter. Examples 3 to 5 show a higher discharge voltage than Comparative Examples 2, 3, and 5. In particular, in Example 5, the average voltage exceeds 1.05 V even in discharge at a rate of 10 C (the amount of current that can discharge the rated battery capacity in 6 minutes), and it can be said that it has a high discharge voltage. About Examples 1-9 and Comparative Examples 1-5, the utilization factor in said high rate discharge conditions is shown in Table 5.

Figure 2012102343
Figure 2012102343

実施例1〜9を負極とした電池は、比較例1〜5を負極とする電池と比較して、高放電レートで高い利用率が得られており、10C率放電においても40%以上の利用率を示した。特に、実施例4、5を負極とした電池は、10C率放電において、50%を超える高い利用率を示した。   The batteries having the negative electrodes of Examples 1 to 9 have a high utilization rate at a high discharge rate as compared with the batteries having the negative electrodes of Comparative Examples 1 to 5, and the utilization is 40% or more even at 10C rate discharge. Showed the rate. In particular, the batteries having the negative electrodes of Examples 4 and 5 exhibited a high utilization rate exceeding 50% in 10C rate discharge.

自己放電特性の試験結果
自己放電特性は300サイクル寿命試験後の実施例1〜9及び比較例1〜5の電池について1C率で105%充電し、45℃の高温槽で1ヶ月間放置した。その後、0.8Vまで放電した際の放電容量と放置前の容量を比較し、容量保存率を求めた結果を表6示す。
Test results of self-discharge characteristics As for the self-discharge characteristics, the batteries of Examples 1 to 9 and Comparative Examples 1 to 5 after the 300-cycle life test were charged at 105% at a 1C rate and left in a high temperature bath at 45 ° C. for 1 month. Thereafter, the discharge capacity when discharged to 0.8 V and the capacity before being left to stand are compared, and the result of obtaining the capacity storage rate is shown in Table 6.

Figure 2012102343
Figure 2012102343

比較例1〜5と比べて、実施例1〜9は高い容量保存率を示した。その中でも実施例2〜7は特に優れた自己放電特性が得られた。   Compared with Comparative Examples 1-5, Examples 1-9 showed a high capacity | capacitance preservation | save rate. Among them, Examples 2 to 7 obtained particularly excellent self-discharge characteristics.

高温特性
実用上必要とされる高温での放置後での電池の容量回復の程度を調べた。実施例1〜9、及び比較例1〜5をそれぞれ100セル作製して、1C率で0.8Vまで放電し、65℃の高温槽で1.5ヶ月放置した。その後、いずれの電池の回路電圧は0Vであった。この各電池を1.4Aの定電流で充電したところ、本願の電池はいずれも放置前の放電容量まで回復したが、比較例1〜5の電池では100セル中5セルが短絡により、充電が不能になった。
High temperature characteristics The degree of battery capacity recovery after standing at high temperatures required for practical use was investigated. 100 cells of each of Examples 1 to 9 and Comparative Examples 1 to 5 were produced, discharged at a 1C rate to 0.8 V, and left in a high temperature bath at 65 ° C. for 1.5 months. Thereafter, the circuit voltage of any battery was 0V. When each battery was charged at a constant current of 1.4 A, all of the batteries of the present application recovered to the discharge capacity before being left, but in the batteries of Comparative Examples 1 to 5, 5 of the 100 cells were short-circuited, and thus the batteries were charged. It became impossible.

<各結晶相の格子定数>
実施例1〜9及び比較例1〜5のRietveld解析結果から導きだされた各相の格子定数を、表7及び表8にそれぞれ示す。実施例1〜9のCaCu型相の結晶構造の格子定数c軸長さは、比較例5のCaCu型相の格子定数c軸長さと比較して、小さいことがわかる。
<Lattice constant of each crystal phase>
Tables 7 and 8 show the lattice constants of the respective phases derived from the Rietveld analysis results of Examples 1 to 9 and Comparative Examples 1 to 5, respectively. It can be seen that the lattice constant c-axis length of the crystal structure of the CaCu 5 type phase of Examples 1 to 9 is smaller than the lattice constant c axis length of the CaCu 5 type phase of Comparative Example 5.

また、実施例1〜9は、CaCu型相の格子定数a軸長さと、CeCo19型相、PrCo19型相及びCeNi型相の結晶構造の格子定数a軸長さとの差が、いずれも±0.01Åの範囲内にあることがわかる。これに対して、比較例1〜5は、CaCu型相の格子定数a軸長さが、CeCo19型相、PrCo19型相及びCeNi型相から選択されるいずれか1つ以上の相の結晶構造の格子定数a軸長さと、0.02Åを超える差を有していた。 In Examples 1 to 9, the lattice constant a-axis length of the CaCu 5 type phase and the lattice constant a axis length of the crystal structure of the Ce 5 Co 19 type phase, the Pr 5 Co 19 type phase, and the Ce 2 Ni 7 type phase are used. It can be seen that the difference between these values is within the range of ± 0.01 mm. On the other hand, in Comparative Examples 1 to 5, the CaCu 5 type phase has a lattice constant a-axis length selected from a Ce 5 Co 19 type phase, a Pr 5 Co 19 type phase, and a Ce 2 Ni 7 type phase. The difference in the lattice constant a-axis length of the crystal structure of one or more phases exceeded 0.02 超 え る.

Figure 2012102343
Figure 2012102343

Figure 2012102343
Figure 2012102343

このように、実施例1〜9は、汎用のAB合金(比較例5)に比べて、c軸の格子定数が小さくなり、各結晶相のa軸長さも略一致していた。上記実験結果から明らかなように、実施例1〜9を用いた電池が、放電容量及びサイクル寿命特性を良好に維持しつつ、高率放電特性及び自己放電特性に優れたものとなっているのは、充放電時における合金のc軸方向の体積膨張が抑制されたためと思われる。 As described above, in Examples 1 to 9, the c-axis lattice constant was smaller than that of the general-purpose AB 5 alloy (Comparative Example 5), and the a-axis lengths of the respective crystal phases were substantially the same. As is clear from the above experimental results, the batteries using Examples 1 to 9 are excellent in high rate discharge characteristics and self-discharge characteristics while maintaining good discharge capacity and cycle life characteristics. This is probably because volume expansion in the c-axis direction of the alloy during charging and discharging was suppressed.

<アルカリ処理の効果(粉末)>
実施例1〜9及び比較例1〜5の合金粉末1kgを50〜110℃に加熱した6mol/L水酸化カリウム水溶液2.5kgに投入し、30〜120分攪拌しながら加熱することでアルカリ処理を行った。加熱は投げ込み式ヒーターを用い、アルカリ処理中の液温はコントローラー用温度計とは別の温度計を目視して適宜確認した。処理中の温度変化は±2℃であり、合金投入時の温度低下は5分以内に所定の温度に回復した。
<Effect of alkali treatment (powder)>
Alkali treatment by charging 1 kg of the alloy powders of Examples 1 to 9 and Comparative Examples 1 to 5 into 2.5 kg of 6 mol / L potassium hydroxide aqueous solution heated to 50 to 110 ° C. and heating with stirring for 30 to 120 minutes. Went. For the heating, a throw-in heater was used, and the liquid temperature during the alkali treatment was appropriately confirmed by visually observing a thermometer different from the controller thermometer. The temperature change during the treatment was ± 2 ° C., and the temperature drop upon charging the alloy recovered to the predetermined temperature within 5 minutes.

アルカリ処理後の洗浄操作は、まずデカンテーションによりアルカリ溶液とともに微粉状浮遊物を除去した。続いて、蒸留水で合金残渣を攪拌洗浄し、再度デカンテーションにより浮遊物を除去した。該操作を3度繰り返した後、吸引濾過で水分を除去し、40℃で減圧乾燥した。   In the washing operation after the alkali treatment, first, fine powdery floating substances were removed together with the alkali solution by decantation. Subsequently, the alloy residue was stirred and washed with distilled water, and the suspended matter was removed again by decantation. After repeating this operation three times, water was removed by suction filtration and dried under reduced pressure at 40 ° C.

希土類系水素吸蔵合金はアルカリ処理によって、表面層の希土類成分が溶出し、針状の水酸化物として再析出することが知られている。70℃、30分の条件では合金表面にその針状結晶がわずかに析出する程度であるが、処理条件を厳しく(温度を高く、或いは時間を長く)するほど針状結晶の析出量が増加し、合金表面のエッチングが進むことを確認した。50℃、2時間の条件では合金表面にその針状結晶の析出物を確認することはできなかった。   It is known that the rare earth-based hydrogen storage alloy elutes the rare earth component of the surface layer by alkali treatment and reprecipitates as a needle-like hydroxide. At 70 ° C for 30 minutes, the acicular crystals are slightly precipitated on the alloy surface. However, the stricter the treatment conditions (the higher the temperature or the longer the time), the greater the amount of acicular crystals deposited. It was confirmed that the etching of the alloy surface progressed. Under the condition of 50 ° C. for 2 hours, the acicular crystal precipitates could not be confirmed on the alloy surface.

VSM(振動試料型磁力計;玉川製作所製)により、アルカリ処理後の合金の残留磁化を測定した結果を図6に示す。処理温度と時間に比例して残留磁化の値は増加し、磁気測定からも合金表面層のエッチングの程度は処理温度と時間の両方に依存していることが確認された。一方で、残留磁化の値は80℃、1時間で一定となった。以上の結果から、最適なアルカリ処理は、80℃、1時間であることが示唆された。   FIG. 6 shows the result of measuring the residual magnetization of the alloy after the alkali treatment using a VSM (vibrating sample magnetometer; manufactured by Tamagawa Seisakusho). The value of remanent magnetization increased in proportion to the processing temperature and time, and it was confirmed from the magnetic measurement that the degree of etching of the alloy surface layer depends on both the processing temperature and time. On the other hand, the value of remanent magnetization became constant at 80 ° C. for 1 hour. From the above results, it was suggested that the optimum alkali treatment was at 80 ° C. for 1 hour.

表9に示した結果から、アルカリ処理の温度が低いと長い処理時間を必要とし、処理温度が高いと短時間でその効果を発揮することが確認された。また、処理を厳しくすると、放電容量が早期に向上することがわかった。これは、合金表面の不活性相の除去が、処理条件を厳しくすることで加速されることを意味する。一方で、長時間或いは高温での過度の処理は、放電容量の低下をおこすことが確認された。これは、過度の処理により、合金粒子内部まで溶解が進行し、水素吸蔵相が失われたためと考えられる。   From the results shown in Table 9, it was confirmed that a long treatment time was required when the alkali treatment temperature was low, and that the effect was exhibited in a short time when the treatment temperature was high. Further, it was found that the discharge capacity is improved early when the treatment is strict. This means that the removal of the inert phase on the alloy surface is accelerated by tightening the processing conditions. On the other hand, it has been confirmed that excessive treatment for a long time or at a high temperature causes a reduction in discharge capacity. This is presumably because dissolution progressed to the inside of the alloy particles due to excessive treatment and the hydrogen storage phase was lost.

すなわち、本発明の水素吸蔵合金のアルカリ処理条件としては、加熱温度を60〜100℃の範囲に設定することが好ましく、約80℃に設定することがより好ましい。苛性アルカリ水溶液の濃度は、本実施例のものに限定されず、実用的には0.1mol/L〜10mol/Lの範囲に設定すればよい。   That is, as the alkali treatment conditions for the hydrogen storage alloy of the present invention, the heating temperature is preferably set in the range of 60 to 100 ° C, more preferably about 80 ° C. The concentration of the caustic aqueous solution is not limited to that of the present embodiment, and may be practically set in the range of 0.1 mol / L to 10 mol / L.

Figure 2012102343
Figure 2012102343

アルカリ処理の効果がサイクル寿命にどのように影響しているか調べるため、表10に500サイクル目の容量維持率を示す。なお、充放電サイクル寿命試験は、1C率充放電(105%充電=63分充電、0.8V放電カットオフ)を繰り返し行った。   In order to examine how the effect of the alkali treatment affects the cycle life, Table 10 shows the capacity retention rate at the 500th cycle. In the charge / discharge cycle life test, 1C rate charge / discharge (105% charge = 63 minute charge, 0.8 V discharge cut-off) was repeatedly performed.

Figure 2012102343
Figure 2012102343

本発明の合金は、最適なアルカリ処理を行うことで、サイクル寿命をさらに向上させることができることがわかった。   It has been found that the cycle life of the alloy of the present invention can be further improved by performing an optimum alkali treatment.

<アルカリ処理の効果(電極)>
実施例1〜9及び比較例1〜5の合金電極(2kg)を70〜90℃に加熱した6mol/L水酸化カリウム水溶液3kgに投入し、30〜120分攪拌しながら加熱することでアルカリ処理を行った。加熱の方法等は粉末のアルカリ処理と同様で、電極の作製方法は、密閉式電池としての評価で用いた負極の作製方法と同様である。
<Effect of alkali treatment (electrode)>
The alloy electrodes (2 kg) of Examples 1 to 9 and Comparative Examples 1 to 5 were charged into 3 kg of a 6 mol / L potassium hydroxide aqueous solution heated to 70 to 90 ° C., and heated with stirring for 30 to 120 minutes for alkali treatment. Went. The heating method and the like are the same as in the alkali treatment of the powder, and the electrode production method is the same as the negative electrode production method used in the evaluation as a sealed battery.

表11に500サイクル目の容量維持率を示す。なお、充放電サイクル寿命試験は、1C率充放電(105%充電=63分充電、0.8V放電カットオフ)を繰り返し行った。   Table 11 shows the capacity retention rate at the 500th cycle. In the charge / discharge cycle life test, 1C rate charge / discharge (105% charge = 63 minute charge, 0.8 V discharge cut-off) was repeatedly performed.

Figure 2012102343
Figure 2012102343

電極形成後にアルカリ処理を行ったところ、粉末のアルカリ処理と比べて、高い温度での条件の方が良好であった。これは電極内にバインダーが含まれているため、若干厳しいアルカリ処理が必要になったものと思われる。
When the alkali treatment was performed after the electrode formation, the conditions at a higher temperature were better than the powder alkali treatment. This is probably because the electrode contains a binder, so that a slightly strict alkali treatment is required.

Claims (7)

一般組成式:
RE(1−x)MgNiAl
(但し、式中REはLa,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luからなる群より選択される1種又は2種以上の元素であり、添字x、y、zはそれぞれ、0.05≦x≦0.2、4.0≦y≦4.4、0.1≦z≦0.3で示される範囲にある。)で表される組成を有し、
CaCu型結晶構造を有する相が全組成の40〜90重量%、CeCo19型結晶構造を有する相が全組成の5〜39重量%、PrCo19型結晶構造を有する相が全組成の3〜20重量%であることを特徴とする水素吸蔵合金。
General composition formula:
RE (1-x) Mg x Ni y Al z
(Wherein, RE is one or more selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. And the subscripts x, y, and z are in the ranges indicated by 0.05 ≦ x ≦ 0.2, 4.0 ≦ y ≦ 4.4, and 0.1 ≦ z ≦ 0.3, respectively. Having a composition represented by
The phase having the CaCu 5 type crystal structure is 40 to 90% by weight of the total composition, the phase having the Ce 5 Co 19 type crystal structure is 5 to 39% by weight of the total composition, and the phase having the Pr 5 Co 19 type crystal structure is all A hydrogen storage alloy characterized by being 3 to 20% by weight of the composition.
CeCo19型結晶構造のa軸長さ、及び、PrCo19型結晶構造のa軸長さの、CaCu型結晶構造のa軸長さとの差が、いずれも±0.02Åの範囲にあることを特徴とする請求項1に記載の水素吸蔵合金。 The difference between the a-axis length of the Ce 5 Co 19 type crystal structure and the a-axis length of the Pr 5 Co 19 type crystal structure with the a-axis length of the CaCu 5 type crystal structure is ± 0.02 mm. The hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy is in a range. 全ての結晶相の結晶構造のa軸長さが、いずれも4.95〜5.05Åの範囲に存在し、
CaCu型結晶構造のc軸長さが、3.98〜4.02Åの範囲に存在することを特徴とする請求項1又は2に記載の水素吸蔵合金。
The a-axis lengths of the crystal structures of all crystal phases are all in the range of 4.95 to 5.05 mm,
3. The hydrogen storage alloy according to claim 1, wherein the c-axis length of the CaCu 5- type crystal structure is in the range of 3.98 to 4.02 mm.
濃度が0.1mol/L〜10mol/Lの苛性アルカリ水溶液を用いて、温度60〜100℃でアルカリ加熱処理を施した請求項1から3のいずれか1項に記載の水素吸蔵合金。   The hydrogen storage alloy according to any one of claims 1 to 3, wherein an alkali heat treatment is performed at a temperature of 60 to 100 ° C using a caustic aqueous solution having a concentration of 0.1 mol / L to 10 mol / L. 残留磁化値が0.5〜0.9emu/gの範囲に存在することを特徴とする請求項4に記載の水素吸蔵合金。   The hydrogen storage alloy according to claim 4, wherein the remanent magnetization value is in the range of 0.5 to 0.9 emu / g. 請求項1から5のいずれか1項に記載の水素吸蔵合金からなる粒子と、前記粒子を保持した導電性を有する芯体とを備えることを特徴とする水素吸蔵合金電極。   6. A hydrogen storage alloy electrode comprising particles comprising the hydrogen storage alloy according to any one of claims 1 to 5 and a conductive core body that holds the particles. 請求項6に記載の水素吸蔵合金電極を負極として具備したことを特徴とするニッケル水素二次電池。   A nickel-hydrogen secondary battery comprising the hydrogen storage alloy electrode according to claim 6 as a negative electrode.
JP2010249016A 2010-11-05 2010-11-05 Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery Active JP5703468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249016A JP5703468B2 (en) 2010-11-05 2010-11-05 Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249016A JP5703468B2 (en) 2010-11-05 2010-11-05 Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JP2012102343A true JP2012102343A (en) 2012-05-31
JP5703468B2 JP5703468B2 (en) 2015-04-22

Family

ID=46393081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249016A Active JP5703468B2 (en) 2010-11-05 2010-11-05 Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP5703468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155950A1 (en) * 2013-03-29 2014-10-02 パナソニック株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
WO2015147044A1 (en) * 2014-03-26 2015-10-01 三井金属鉱業株式会社 Hydrogen storage alloy
JP2016012442A (en) * 2014-06-27 2016-01-21 Fdk株式会社 Nickel-hydrogen secondary battery, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
JP2005093297A (en) * 2003-09-18 2005-04-07 Yuasa Corp Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode
JP2009272091A (en) * 2008-05-02 2009-11-19 Gs Yuasa Corporation Nickel hydride storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105564A (en) * 2000-09-29 2002-04-10 Toshiba Corp Hydrogen storage alloy, its production method and nickel-hydrogen secondary battery using the same
JP2005093297A (en) * 2003-09-18 2005-04-07 Yuasa Corp Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode
JP2009272091A (en) * 2008-05-02 2009-11-19 Gs Yuasa Corporation Nickel hydride storage battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155950A1 (en) * 2013-03-29 2014-10-02 パナソニック株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
CN104321911A (en) * 2013-03-29 2015-01-28 松下知识产权经营株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JP5861099B2 (en) * 2013-03-29 2016-02-16 パナソニックIpマネジメント株式会社 Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
US9997776B2 (en) 2013-03-29 2018-06-12 Panasonic Intellectual Property Management Co., Ltd. Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries including the same, and nickel-metal hydride storage battery including the same
WO2015147044A1 (en) * 2014-03-26 2015-10-01 三井金属鉱業株式会社 Hydrogen storage alloy
WO2015145884A1 (en) * 2014-03-26 2015-10-01 三井金属鉱業株式会社 Hydrogen storage alloy
JP5909600B2 (en) * 2014-03-26 2016-04-26 三井金属鉱業株式会社 Hydrogen storage alloy
CN105745342A (en) * 2014-03-26 2016-07-06 三井金属矿业株式会社 Hydrogen storage alloy
GB2539111A (en) * 2014-03-26 2016-12-07 Mitsui Mining & Smelting Co Hydrogen storage alloy
GB2539111B (en) * 2014-03-26 2017-03-29 Mitsui Mining & Smelting Co Hydrogen storing alloy
US9738952B2 (en) 2014-03-26 2017-08-22 Mitsui Mining & Smelting Co., Ltd. Hydrogen storing alloy
JP2016012442A (en) * 2014-06-27 2016-01-21 Fdk株式会社 Nickel-hydrogen secondary battery, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5703468B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2008018494A1 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
US8802292B2 (en) Hydrogen-absorbing alloy for alkaline storage battery and method for manufacturing the same
JP5718006B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery
JP4849854B2 (en) Hydrogen storage alloy electrode, alkaline storage battery, and production method of alkaline storage battery
JP5534459B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
JP2024023286A (en) Manufacturing method of hydrogen storage material
JP5796787B2 (en) Hydrogen storage alloy and nickel metal hydride storage battery
WO2012073418A1 (en) Hydrogen-storage alloy particles, alloy powder for electrode, and alkaline storage battery
JP5703468B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery
JP5481803B2 (en) Nickel metal hydride storage battery
JP7251864B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP4420767B2 (en) Nickel / hydrogen storage battery
WO2001094653A1 (en) Hydrogen-occluding alloy and process for producing the same
US20220190327A1 (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle
JP4290023B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP7158684B2 (en) HYDROGEN STORAGE ALLOY FOR ALKALINE STORAGE BATTERY AND ALKALINE STORAGE BATTERY AND VEHICLE USING SAME FOR NEGATIVE
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP5532390B2 (en) Nickel metal hydride storage battery
JP4997702B2 (en) Hydrogen storage alloy powder, treatment method thereof, and alkaline storage battery using the same
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
JP2008269888A (en) Nickel-hydrogen storage battery
JP3198896B2 (en) Nickel-metal hydride battery
JP2007066675A (en) Manufacturing method of hydrogen storage alloy for alkaline storage battery, and hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
Wang et al. Ni/Cd and Ni-MH–The Transition to “Charge Carrier”-Based Batteries
JP4573609B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5703468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250