JPH0916123A - Image display device - Google Patents

Image display device

Info

Publication number
JPH0916123A
JPH0916123A JP7168428A JP16842895A JPH0916123A JP H0916123 A JPH0916123 A JP H0916123A JP 7168428 A JP7168428 A JP 7168428A JP 16842895 A JP16842895 A JP 16842895A JP H0916123 A JPH0916123 A JP H0916123A
Authority
JP
Japan
Prior art keywords
resistance
thin film
image display
tft
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7168428A
Other languages
Japanese (ja)
Other versions
JP3636777B2 (en
Inventor
Ichiro Takayama
一郎 高山
Michio Arai
三千男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Original Assignee
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd, TDK Corp filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP16842895A priority Critical patent/JP3636777B2/en
Publication of JPH0916123A publication Critical patent/JPH0916123A/en
Application granted granted Critical
Publication of JP3636777B2 publication Critical patent/JP3636777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the brightness of a thin-film pixel element faithful to input video signals by specifying input voltage and the current flowing to a nonlinear element to a primary proportional relation. SOLUTION: This image display element has, in every one pixel, the thin-film pixel element EL, the nonlinear element M for controlling the light emission of the thin-film pixel element EL, a capacitor C for signal holding connected to the gate electrode of the nonlinear element M and a load element Rs having primary proportional current-voltage characteristics between the nonlinear element Ty for writing data to the capacitor C, the nonlinear element M for controlling the light emission and arbitrary fixed potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像表示装置に係り、
例えば有機EL画像表示装置のような、エレクトロルミ
ネセンス(EL)画像表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display device,
The present invention relates to an electroluminescence (EL) image display device such as an organic EL image display device.

【0002】[0002]

【従来の技術】図5、図6は従来例を示した図である。
以下、これらの図面に基づいて従来例を説明する。
2. Description of the Related Art FIGS. 5 and 6 are views showing a conventional example.
Hereinafter, a conventional example will be described with reference to these drawings.

【0003】図5(A)は、パネルブロック図であり、
ディスプレイ(表示)パネル10には、ディスプレイ画
面11、X軸のシフトレジスタ12、Y軸のシフトレジ
スタ13が設けてある。
FIG. 5 (A) is a panel block diagram.
The display panel 10 is provided with a display screen 11, an X-axis shift register 12, and a Y-axis shift register 13.

【0004】ディスプレイ画面11には、EL電源が供
給されており、またX軸のシフトレジスタ12には、シ
フトレジスタ電源の供給とX軸同期信号の入力が行われ
る。さらにY軸のシフトレジスタ13には、シフトレジ
スタ電源の供給とY軸同期信号の入力が行われる。ま
た、X軸のシフトレジスタ12の出力部に画像データ信
号の出力が設けてある。
The display screen 11 is supplied with EL power, and the X-axis shift register 12 is supplied with shift register power and input with an X-axis synchronizing signal. Furthermore, the Y-axis shift register 13 is supplied with a shift register power supply and input with a Y-axis synchronizing signal. Further, an output of the X-axis shift register 12 is provided with an output of an image data signal.

【0005】図5(B)は、図5(A)のA部の拡大説
明図であり、ディスプレイ画面11の一画素(点線の四
角で示す)は、トランジスタが2個、コンデンサが1
個、EL素子が1個より構成されている。
FIG. 5B is an enlarged explanatory view of a portion A of FIG. 5A. One pixel (indicated by a dotted square) of the display screen 11 has two transistors and one capacitor.
And one EL element.

【0006】この1画素の発光動作は、例えば、Y軸の
シフトレジスタ13で選択信号Y1の出力があり、また
X軸のシフトレジスタ12で選択信号X1の出力があっ
た場合、トランジスタTy11とトランジスタTx1が
オンとなる。
For example, when the Y-axis shift register 13 outputs the selection signal Y1 and the X-axis shift register 12 outputs the selection signal X1, the light emission operation of one pixel is performed by the transistor Ty11 and the transistor Ty11. Tx1 is turned on.

【0007】このため、画像データ(映像信号)Di
は、非線形素子(BIAS TFT)M11である薄膜
トランジスタのゲートに入力される。これにより、この
ゲート電圧に応じた電流がEL電源から非線形素子M1
1のドレイン、ソース間に流れ、EL素子EL11が発
光する。
Therefore, the image data (video signal) Di
Is input to the gate of a thin film transistor which is a non-linear element (BIAS TFT) M11. As a result, a current corresponding to the gate voltage is supplied from the EL power source to the non-linear element M1.
It flows between the drain and the source of No. 1 and the EL element EL11 emits light.

【0008】次のタイミングでは、X軸のシフトレジス
タ12は、選択信号X1の出力をオフとし、選択信号X
2を出力することになるが、非線形素子M11のゲート
電圧は、コンデンサC11で保持されるため、次にこの
画素が選択されるまでEL素子EL11の前記発光は、
持続することになる。
At the next timing, the X-axis shift register 12 turns off the output of the selection signal X1 and the selection signal X1.
However, since the gate voltage of the non-linear element M11 is held by the capacitor C11, the light emission of the EL element EL11 continues until the next pixel is selected.
It will continue.

【0009】図6に一画素を抜き出して示す如く、一画
素毎のEL素子を発光制御用の非線形素子(BIAS
TFT)Mに直列接続し、この非線形素子(BIAS
TFT)Mのゲート電極に信号保持用のキャパシタCを
接続する。
As shown by extracting one pixel in FIG. 6, an EL element for each pixel is a non-linear element (BIAS) for controlling light emission.
This nonlinear element (BIAS)
A signal holding capacitor C is connected to the gate electrode of TFT) M.

【0010】そしてこの信号保持用のキャパシタCにデ
ータ書き込み用の非線形素子(SELECT−SW用T
FT)Tyを接続し、このデータ書き込み用の非線形素
子(SELECT−SW用TFT)TyにY座標選択信
号YnとX座標選択信号により選択された画像データ
(映像信号)Diを印加する。
A non-linear element for writing data (SELECT-SW T for the signal holding capacitor C is provided.
FT) Ty is connected and the image data (video signal) Di selected by the Y coordinate selection signal Yn and the X coordinate selection signal is applied to the non-linear element (SELECT-SW TFT) Ty for writing data.

【0011】この画像データDiにより前記信号保持用
のキャパシタCに電荷を蓄積し、この信号保持用のキャ
パシタCに蓄積された電圧により前記発光制御用の非線
形素子(BIAS TFT)Mに流れる電流を制御する
ことにより、EL素子の発光強度が決定される。(“A
6×6−in 20−lpi Electroluminescent DisplayPan
el ”T.P.BRODY,FANG CHEN LUO,et.al.IEEE Trans.Elec
tron Devices,Vol.ED-22,No.9,Sept.1975、p739〜p749
参照)
The image data Di accumulates charges in the signal holding capacitor C, and the voltage stored in the signal holding capacitor C causes a current to flow in the emission control nonlinear element (BIAS TFT) M. By controlling, the emission intensity of the EL element is determined. ("A
6 x 6-in 20-lpi Electroluminescent DisplayPan
el ”TPBRODY, FANG CHEN LUO, et.al.IEEE Trans.Elec
tron Devices, Vol.ED-22, No.9, Sept.1975, p739 ~ p749
reference)

【0012】[0012]

【発明が解決しようとする課題】ところが、発光制御用
の非線形素子(BIAS TFT)Mに流れる電流と、
キャパシタCに蓄積された電圧との特性関係は必ずしも
一次比例の関係ではない。このため入力された映像信号
の大きさとEL素子の発光輝度との関係が直線的でない
ため、入力映像信号に忠実にEL素子の発光輝度が得ら
れないため、映像信号の大きさに忠実な発光輝度の再現
が難しかった。
However, a current flowing through a non-linear element (BIAS TFT) M for controlling light emission,
The characteristic relationship with the voltage accumulated in the capacitor C is not necessarily linearly proportional. For this reason, since the relationship between the size of the input video signal and the light emission brightness of the EL element is not linear, the light emission brightness of the EL element cannot be obtained faithfully to the input video signal. It was difficult to reproduce the brightness.

【0013】例えばこの非線形素子Mが電界効果トラン
ジスタ(TFT)の場合、これに流れる電流は飽和領域
で次式のものとなる。 Ids=(1/2)(W/L)μ0 0 (Vgs−Vt
h)2 Ids TFTに流れる電流 Vgs ゲートソース間電圧(キャパシタに蓄積された
電圧) C0 単位面積当りのゲート容量 μ0 移動度 W TFTのゲートのチャネル幅 L TFTのゲートのチャネル長 Vth TFTの閾値電圧 前記式より明らかな如く、IdsとVgsとは比例関係
でなく、このため映像信号に比例した発光輝度を得るこ
とができなかった。
For example, when the non-linear element M is a field effect transistor (TFT), the current flowing through it is in the saturation region and given by the following equation. Ids = (1/2) (W / L) μ 0 C 0 (Vgs-Vt
h) 2 Ids Current flowing in TFT Vgs Gate-source voltage (voltage accumulated in capacitor) C 0 Gate capacitance per unit area μ 0 Mobility W TFT gate channel width L TFT gate channel length Vth TFT Threshold Voltage As is clear from the above equation, Ids and Vgs are not in a proportional relationship, and therefore, it was not possible to obtain a light emission luminance in proportion to a video signal.

【0014】本発明は、前記従来の課題を解決し、入力
電圧と非線形素子に流れる電流を一次比例関係にするこ
とで、入力映像信号に忠実な薄膜画素素子の輝度を得る
ことを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to obtain the luminance of a thin film pixel element faithful to an input video signal by making the input voltage and the current flowing through the non-linear element linearly proportional. .

【0015】[0015]

【課題を解決するための手段】この目的を達成するた
め、本発明では図1(A)に示す如く、この発光制御用
の非線形素子(BIAS TFT)Mと任意の固定電位
COMとの間に、電流−電圧特性が一次比例特性を有す
る負荷素子として抵抗Rsを接続する。
In order to achieve this object, according to the present invention, as shown in FIG. 1 (A), between the non-linear element (BIAS TFT) M for controlling light emission and an arbitrary fixed potential COM. , A resistor Rs is connected as a load element whose current-voltage characteristic has a linearly proportional characteristic.

【0016】[0016]

【作用】前記一次比例特性を有する負荷素子としてソー
ス抵抗Rsを接続したので、下記の如く負帰還が非線形
素子(BIAS TFT)Mに係り、非線形素子Mに流
れる電流IdsとキャパシタCに蓄積された電圧Vgと
の間に一次比例特性の関係が得られる。
Since the source resistance Rs is connected as the load element having the first-order proportional characteristic, the negative feedback is related to the non-linear element (BIAS TFT) M and accumulated in the current Ids flowing in the non-linear element M and the capacitor C as follows. A linear proportional relationship is obtained with the voltage Vg.

【0017】即ち、図1(A)において、非線形素子M
のゲート電圧Vgが変化すると非線形素子Mに流れる電
流Idsが変化し、Ids・Rsつまり、非線形素子M
のソース電極と固定電位である共通電位COM間の電位
Vsが変化する。これにもとづきVg−VsつまりVg
sが変化し、非線形素子Mに流れる電流が変化する。こ
れにより負帰還が係りゲート電圧Vgが大きくなったと
き、Idsは増加するものの、ソースフォロア回路を構
成しているため負帰還が係りVg−Ids特性は一次比
例特性が得られる。
That is, in FIG. 1A, the nonlinear element M
When the gate voltage Vg of the non-linear element M changes, the current Ids flowing in the non-linear element M changes, and Ids · Rs, that is, the non-linear element M
The potential Vs between the source electrode and the common potential COM, which is a fixed potential, changes. Based on this, Vg-Vs, that is, Vg
s changes, and the current flowing through the nonlinear element M changes. As a result, when the negative feedback is involved and the gate voltage Vg is increased, Ids is increased, but since the source follower circuit is configured, the negative feedback is involved and the Vg-Ids characteristic is a linear proportional characteristic.

【0018】[0018]

【実施例】本発明の一実施例を図1に基づき説明する。
本発明では、図1(A)に示す如く、EL素子に直列接
続された発光制御用の非線形素子(BIAS TFT)
Mと共通電位COMとの間に、電流−電圧特性が一次比
例特性を有する負荷素子として抵抗Rsを接続する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.
In the present invention, as shown in FIG. 1 (A), a non-linear element (BIAS TFT) for light emission control, which is connected in series with an EL element.
A resistor Rs is connected between M and the common potential COM as a load element whose current-voltage characteristic has a linear proportional characteristic.

【0019】これにより、非線形素子Mのゲート電圧V
g、つまりコンデンサCの充電電圧が大きくなるとき、
図1(B)に示す如く、この非線形素子Mに流れる電流
Idsが増加する。この電流Idsが増大することによ
り抵抗Rsにおける電圧降下が大きくなり、ソース電位
Vsが上昇する。
As a result, the gate voltage V of the nonlinear element M is
g, that is, when the charging voltage of the capacitor C increases,
As shown in FIG. 1B, the current Ids flowing through the non-linear element M increases. As the current Ids increases, the voltage drop across the resistor Rs increases and the source potential Vs rises.

【0020】これにより下記の式で得られるソースゲー
ト間電圧Vgs、Vgs=Vg−Vsも、ソース電位V
sが上昇するため小さくなり、これによりBIAS T
FTに流れる電流Idsが減少する。このようにして負
帰還がBIAS TFTにかかるので、Ids対Vg特
性は一次比例の関係を持つ範囲を得ることができる。
As a result, the source-gate voltages Vgs and Vgs = Vg-Vs obtained by the following equation are also calculated as the source potential V
As s rises, it becomes smaller, which causes BIAS T
The current Ids flowing through the FT decreases. In this way, since negative feedback is applied to the BIAS TFT, it is possible to obtain a range in which the Ids vs. Vg characteristic has a linearly proportional relationship.

【0021】この場合、前記発光制御用の非線形素子
(BIAS TFT)Mのソース電極と任意の共通電位
COMの間に、発光制御用の非線形素子の相互コンダク
タンスの逆数よりも十分に大きな抵抗〔10倍以上〜1
T(テラ=1012)Ω以下〕を配したことにより負帰還
が係り、発光制御用の非線形素子Mに流れる電流Ids
とキャパシタCに蓄積された電圧との間に一次比例の関
係を持つ範囲を作ることができる。
In this case, a resistance [10] sufficiently larger than the reciprocal of the mutual conductance of the nonlinear element for light emission control is provided between the source electrode of the nonlinear element for light emission control (BIAS TFT) M and an arbitrary common potential COM. More than twice ~ 1
T (tera = 10 12 ΩΩ or less), negative feedback is involved, and the current Ids flowing through the nonlinear element M for light emission control
It is possible to create a range having a linearly proportional relationship between and the voltage stored in the capacitor C.

【0022】例えばこの非線形素子Mが電界効果トラン
ジスタ(TFT:薄膜トランジスタ)の場合、ソース電
位VsとこのTFTに流れる電流Idsは、飽和領域で
次式の通りとなる。
For example, when the non-linear element M is a field effect transistor (TFT: thin film transistor), the source potential Vs and the current Ids flowing in the TFT are as follows in the saturation region.

【0023】 Vs=RsIds ・・・・・・・・・・・・・・・・・・・・・・ Ids=(1/2)(W/L)μ0 0 (Vg−Vs−Vth)2 ・・ Ids TFTに流れる電流 Vg キャパシタCに蓄積された電圧 Vs ソース電位 Vth TFTの閾値電圧 Rs 電流−電圧特性が一次比例特性を有する抵抗 C0 単位面積当りのゲート容量 μ0 移動度 W TFTのゲートのチャネル幅 L TFTのゲートのチャネル長 この、の両式を微分すると、 ΔVs=RsΔIds ・・・・・・・・・・・・・・・・・・・・ ΔIds=gm(ΔVg−ΔVs)・・・・・・・・・・・・・・・・ ここで、gmはTFTの相互コンダクタンス〔gm=
(W/L)μ0 0 (Vg−Vs−Vth)〕である。
Vs = RsIds ... Ids = (1/2) (W / L) μ 0 C 0 (Vg-Vs-Vth ) 2 ... Ids Current flowing in TFT Vg Voltage accumulated in capacitor C Vs Source potential Vth TFT threshold voltage Rs Resistance having current-voltage characteristic of first-order proportional characteristic C 0 Gate capacitance per unit area μ 0 Mobility W The channel width of the gate of the TFT L The channel length of the gate of the TFT When these two equations are differentiated, ΔVs = RsΔIds ..... ΔIds = gm (ΔVg -ΔVs) ... where gm is the transconductance of the TFT [gm =
(W / L) μ 0 C 0 (Vg-Vs-Vth)].

【0024】式より ΔIds=ΔVs/Rs ・・・・・・・・・・・・・・・・・・・ 式を式に代入し、 ΔVs/Rs=gm(ΔVg−ΔVs) これを変形し、 (1+gmRs)ΔVs=gmRsΔVg これにより、 ΔVs=(gmRs)/(1+gmRs)・ΔVg ここで、抵抗Rsが発光制御用の非線形素子(TFT)
の相互コンダクタンスgmの逆数より十分大きな場合、
即ち、gmRs>>1のとき、 ΔVs≒ΔVg これにより式から、 ΔIds=(1/Rs)ΔVs=(1/Rs)ΔVg・・・・・・・・ この式の関係により、EL素子に流れる電流Idsと
ゲート電圧Vgとが一次比例の関係となっていることが
わかる。
From the formula, ΔIds = ΔVs / Rs ... Substituting the formula into the formula, ΔVs / Rs = gm (ΔVg−ΔVs) , (1 + gmRs) ΔVs = gmRsΔVg As a result, ΔVs = (gmRs) / (1 + gmRs) · ΔVg where the resistance Rs is a nonlinear element (TFT) for controlling light emission.
Is sufficiently larger than the reciprocal of the mutual conductance gm of
That is, when gmRs >> 1, ΔVs≈ΔVg, which leads to ΔIds = (1 / Rs) ΔVs = (1 / Rs) ΔVg. It can be seen that the current Ids and the gate voltage Vg have a linearly proportional relationship.

【0025】ところで、図1における抵抗Rsは個別の
抵抗体を使用せずに、ソース電極を共通電位COMに接
続する導線を、例えばポリシリコンの如き高抵抗な薄膜
により作成することもできる。この場合の抵抗値の制御
は、そのパターン寸法(例えば、幅、長さ、厚さ等)を
調節することにより行うことができる。
By the way, as the resistor Rs in FIG. 1, a conductive wire for connecting the source electrode to the common potential COM can be formed by a high-resistance thin film such as polysilicon without using an individual resistor. Control of the resistance value in this case can be performed by adjusting the pattern dimensions (for example, width, length, thickness, etc.).

【0026】また前記ソース電極に付加する抵抗は、非
線形素子(BIAS TFT)に必ず存在する寄生抵
抗、例えばソース抵抗、オフセット領域(ドーピングの
ない領域)等を使用して作ってもよい。このときの抵抗
値の制御は、ドーピング量、オフセット距離、電極のパ
ターン形状等により行う。図2(A)に示す抵抗Rs
は、この寄生抵抗を等価的に示したものである。
The resistance to be added to the source electrode may be formed by using a parasitic resistance which is always present in the non-linear element (BIAS TFT), for example, a source resistance, an offset region (a region without doping) or the like. At this time, the resistance value is controlled by the doping amount, the offset distance, the electrode pattern shape, and the like. Resistance Rs shown in FIG.
Shows equivalently this parasitic resistance.

【0027】図2(A)において、非線形素子(BIA
S TFT)MとしてPチャネル電界効果トランジスタ
を使用し、この非線形素子Mのドレイン電極と任意の共
通電位COMの間に、EL素子が設けてある。また、ゲ
ート電極と任意の固定電位VDとの間に信号保持用のキ
ャパシタCが設けてある。
In FIG. 2A, a nonlinear element (BIA
A P-channel field effect transistor is used as STFT) M, and an EL element is provided between the drain electrode of this nonlinear element M and an arbitrary common potential COM. Further, a signal holding capacitor C is provided between the gate electrode and an arbitrary fixed potential VD.

【0028】この場合も寄生抵抗である抵抗Rsを発光
制御用の非線形素子Mの相互コンダクタンスの逆数より
も十分に大きな抵抗(10倍以上〜1TΩ以下)とする
ことにより負帰還が係り、非線形素子Mに流れる電流I
dsとキャパシタCに蓄積された電圧との間に一次比例
の関係を持つ範囲を作ることができる。
Also in this case, the resistance Rs, which is a parasitic resistance, is set to a resistance (10 times or more to 1 TΩ or less) sufficiently larger than the reciprocal of the mutual conductance of the non-linear element M for controlling light emission. Current I flowing in M
It is possible to create a range having a linearly proportional relationship between ds and the voltage stored in the capacitor C.

【0029】図2(B)は非線形素子Mの寄生抵抗の一
例を示しており、上からドレイン電極D、ドレインパタ
ーン、ゲート電極G、ソースパターン、ソース電極Sを
示している。このソースパターンの一部にオフセット領
域OPを設け、抵抗Rsを作ることができる。勿論この
ソースパターンの幅、長さ、厚さ等を調節して抵抗Rs
を作るようにしてもよい。
FIG. 2B shows an example of the parasitic resistance of the nonlinear element M, and shows the drain electrode D, the drain pattern, the gate electrode G, the source pattern, and the source electrode S from the top. The resistance Rs can be formed by providing an offset region OP in a part of this source pattern. Of course, the resistance Rs can be adjusted by adjusting the width, length, thickness, etc. of this source pattern.
May be made.

【0030】さらに前記ソース電極に付加する抵抗は、
薄膜画素素子に必ず発生する寄生抵抗を用いてもよく、
図3(A)に示す抵抗Rsは、この寄生抵抗を等価的に
示したものである。
Further, the resistance added to the source electrode is
You may use the parasitic resistance that always occurs in the thin film pixel element,
The resistance Rs shown in FIG. 3A is equivalent to this parasitic resistance.

【0031】図3(A)において、非線形素子(BIA
S TFT)MとしてPチャネル電界効果トランジスタ
を使用し、この非線形素子Mのゲート電極と固定電位V
Dとの間に信号保持用のキャパシタCが設けてある。ま
た、ソース電極と固定電位VDとの間に薄膜画素素子で
あるEL素子とその寄生抵抗Rsが設けてある。
In FIG. 3A, a nonlinear element (BIA
A P-channel field effect transistor is used as STFT) M, and the gate electrode of this non-linear element M and the fixed potential V
A capacitor C for holding a signal is provided between the capacitor C and D. An EL element which is a thin film pixel element and its parasitic resistance Rs are provided between the source electrode and the fixed potential VD.

【0032】この場合も寄生抵抗である抵抗Rsを発光
制御用の非線形素子Mの相互コンダクタンスの逆数より
も十分に大きな抵抗(10倍以上〜1TΩ以下)とする
ことにより負帰還が係り、非線形素子Mに流れる電流I
dsとキャパシタCに蓄積された電圧との間に一次比例
の関係を持つ範囲を作ることができる。
Also in this case, the resistance Rs, which is a parasitic resistance, is set to a resistance (10 times or more to 1 TΩ or less) sufficiently larger than the reciprocal of the mutual conductance of the nonlinear element M for controlling light emission, so that negative feedback is involved, and the nonlinear element is affected. Current I flowing in M
It is possible to create a range having a linearly proportional relationship between ds and the voltage stored in the capacitor C.

【0033】図3(B)は薄膜画素素子の一例(有機E
L発光素子)を示す図であり、寄生抵抗としてこの図に
示す如く、抵抗層102を使用してもよい。この場合も
その等価回路は図3(A)に示す通りである。なお図3
(B)に示す有機EL発光素子において、101はMg
Ag等の陰極、103は電子注入輸送層、104は発光
層、105は正孔注入輸送層、106は透明電極であ
る。
FIG. 3B shows an example of a thin film pixel element (organic E
L light emitting element), and a resistance layer 102 may be used as a parasitic resistance as shown in this figure. Also in this case, the equivalent circuit is as shown in FIG. FIG. 3
In the organic EL light emitting device shown in (B), 101 is Mg
A cathode such as Ag, 103 is an electron injecting and transporting layer, 104 is a light emitting layer, 105 is a hole injecting and transporting layer, and 106 is a transparent electrode.

【0034】この寄生抵抗の値を制御するには、抵抗層
102としてポリシリコン薄膜、アモルファスシリコン
薄膜、高抵抗有機薄膜等の膜厚で制御を行う。勿論薄膜
画素素子の電流−電圧特性が一次比例する場合には、こ
れを用いてもよい。
In order to control the value of this parasitic resistance, the resistance layer 102 is controlled by a film thickness of a polysilicon thin film, an amorphous silicon thin film, a high resistance organic thin film or the like. Of course, this may be used when the current-voltage characteristics of the thin film pixel element are linearly proportional.

【0035】また、前記ソース電極に付加する抵抗は非
線形素子の出力抵抗を用いてもよい。図4(A)は非線
形素子である負荷TFT(LOAD TFT)の出力抵
抗を用いたときを示したものである。LOAD TFT
のゲート電極には抵抗R1、R2で分圧された一定の電
位が加えられている。
The resistance added to the source electrode may be the output resistance of a non-linear element. FIG. 4A shows a case where the output resistance of a load TFT (LOAD TFT) which is a non-linear element is used. LOAD TFT
A constant potential divided by resistors R1 and R2 is applied to the gate electrode of.

【0036】図4(B)はこの時のLOAD TFTの
DS−Ids特性(ドレインソース間の電圧電流特性)
を示し、VDSに一定以上の値が加わるとき(飽和領
域)、V DS−Idsの関係は一次比例となりLOAD
TFTが抵抗と見なせることを表している。なお、ここ
でのVDSはLOAD TFTのドレインソース電極間に
かかる電圧を表している。この出力抵抗値はLOAD
TFTに印加される電圧、すなわち抵抗R1,R2の抵
抗比、及びLOAD TFTのチャネル長で制御を行う
ものである。またLOAD TFTのゲート電極に加え
る一定の電位は抵抗R1,R2を使用しないで外部から
一定の電位を与える等の他の手段を用いることもでき
る。
FIG. 4B shows the LOAD TFT at this time.
VDS-Ids characteristics (voltage-current characteristics between drain and source)
And VDSWhen a certain value is added to (saturation region
Area), V DS-Ids is linearly proportional and LOAD
This means that the TFT can be regarded as a resistance. In addition, here
At VDSIs between the drain and source electrodes of the LOAD TFT
This voltage is shown. This output resistance value is LOAD
The voltage applied to the TFT, that is, the resistance of the resistors R1 and R2.
Control with coercive ratio and channel length of LOAD TFT
Things. In addition to the gate electrode of LOAD TFT
A constant potential from outside without using resistors R1 and R2
Other means such as applying a constant potential can also be used
You.

【0037】このように、LOAD TFTのゲート電
極に加える電位を制御することにより出力抵抗値の制御
を容易に行うことができ、しかも、大きな抵抗値を小さ
な面積で作ることができる。
As described above, the output resistance value can be easily controlled by controlling the potential applied to the gate electrode of the LOAD TFT, and a large resistance value can be formed in a small area.

【0038】なお、前記実施例では非線形素子として薄
膜で製造したTFTを用いた場合の説明をしたが、これ
に限定されるものではなく、他の製法で製造した非線形
素子を用いることもできる。
In the above embodiment, the case where the thin film TFT is used as the non-linear element has been described, but the present invention is not limited to this, and the non-linear element manufactured by another manufacturing method may be used.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば次
のような効果がある。 :請求項1記載の本発明によれば入力電圧と非線形素
子に流れる電流を一次比例関係に構成することができる
ので、入力映像信号に忠実な薄膜画素素子の輝度を得る
ことができる。
As described above, the present invention has the following effects. According to the first aspect of the present invention, since the input voltage and the current flowing through the non-linear element can be configured in a linear proportional relationship, it is possible to obtain the luminance of the thin film pixel element that is faithful to the input video signal.

【0040】:請求項2記載の本発明によれば高抵抗
導線を使用して前記一次比例関係を得ることができるの
で、特別な抵抗を必要とせず、入力映像信号に忠実な薄
膜画素素子の輝度を得ることができる。
According to the present invention as set forth in claim 2, since the first-order proportional relationship can be obtained by using a high resistance conductive wire, a special resistance is not required and a thin film pixel element faithful to an input video signal can be obtained. The brightness can be obtained.

【0041】:請求項3記載の本発明によれば非線形
素子の寄生抵抗を用いて前記一次比例関係を得ることが
できるので、これまた特別な抵抗を必要とせず、入力映
像信号に忠実な薄膜画素素子の輝度を得ることができ
る。
According to the third aspect of the present invention, the first-order proportional relationship can be obtained by using the parasitic resistance of the non-linear element, so that no special resistance is required and a thin film faithful to the input video signal. The brightness of the pixel element can be obtained.

【0042】:請求項4記載の本発明によれば薄膜画
素素子の寄生抵抗を用いたので、特別な抵抗を必要とせ
ず、入力映像信号に忠実な薄膜画素素子の輝度を得るこ
とができる。
According to the fourth aspect of the present invention, since the parasitic resistance of the thin film pixel element is used, it is possible to obtain the luminance of the thin film pixel element faithful to the input video signal without requiring a special resistance.

【0043】:請求項5記載の本発明によれば薄膜画
素素子に抵抗薄膜を形成したので、非常に簡単な構成
で、入力映像信号に忠実な薄膜画素素子の輝度を得るこ
とができる。
According to the fifth aspect of the present invention, since the resistance thin film is formed on the thin film pixel element, the brightness of the thin film pixel element faithful to the input video signal can be obtained with a very simple structure.

【0044】:請求項6記載の本発明によれば負荷素
子として非線形素子の出力抵抗を用いたので出力抵抗の
制御が容易に行うことができ、かつ、大きな抵抗値を小
さな面積で作ることができる。
According to the sixth aspect of the present invention, since the output resistance of the non-linear element is used as the load element, the output resistance can be easily controlled, and a large resistance value can be formed in a small area. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】実施例における非線形素子の寄生抵抗を用いる
場合の説明図である。
FIG. 2 is an explanatory diagram when a parasitic resistance of a nonlinear element is used in the example.

【図3】実施例における薄膜画素素子の寄生抵抗を用い
る場合の説明図である。
FIG. 3 is an explanatory diagram when using a parasitic resistance of a thin film pixel element in an example.

【図4】実施例における非線形素子の出力抵抗を用いる
場合の説明図である。
FIG. 4 is an explanatory diagram in the case of using an output resistance of a nonlinear element in the example.

【図5】従来例の説明図(1)である。FIG. 5 is an explanatory diagram (1) of a conventional example.

【図6】従来例の説明図(2)である。FIG. 6 is an explanatory diagram (2) of a conventional example.

【符号の説明】[Explanation of symbols]

EL 薄膜画素素子 M 非線形素子 C キャパシタ Rs 負荷素子 Ty 非線形素子 Yn Y座標選択信号 Di 画像データ COM 共通電位(固定電位) VD 固定電位 Vs ソース電位 Vg ゲート電圧 Vgs ソースゲート間電圧 Ids 非線形素子Mに流れる電流 EL Thin film pixel element M Non-linear element C Capacitor Rs Load element Ty Non-linear element Yn Y coordinate selection signal Di Image data COM Common potential (fixed potential) VD Fixed potential Vs Source potential Vg Gate voltage Vgs Source gate voltage Ids Flow to non-linear element M Electric current

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一画素毎に薄膜画素素子と、該薄膜画素
素子の発光制御用の非線形素子と、該非線形素子のゲー
ト電極に接続された信号保持用のキャパシタと、該キャ
パシタへのデータ書き込み用の非線形素子と、前記発光
制御用の非線形素子と任意の固定電位との間に、電流−
電圧特性が一次比例である負荷素子とを有することを特
徴とする画像表示装置。
1. A thin film pixel element for each pixel, a non-linear element for controlling light emission of the thin film pixel element, a signal holding capacitor connected to a gate electrode of the non-linear element, and data writing to the capacitor. Between the non-linear element for controlling the light emission and the non-linear element for controlling the light emission and any fixed potential.
An image display device, comprising: a load element whose voltage characteristic is linearly proportional.
【請求項2】 前記負荷素子は高抵抗導線であることを
特徴とする請求項1記載の画像表示装置。
2. The image display device according to claim 1, wherein the load element is a high resistance wire.
【請求項3】 前記負荷素子は前記非線形素子の寄生抵
抗であることを特徴とする請求項1記載の画像表示装
置。
3. The image display device according to claim 1, wherein the load element is a parasitic resistance of the nonlinear element.
【請求項4】 前記負荷素子は前記薄膜画素素子の寄生
抵抗であることを特徴とする請求項1記載の画像表示装
置。
4. The image display device according to claim 1, wherein the load element is a parasitic resistance of the thin film pixel element.
【請求項5】 前記負荷素子は前記薄膜画素素子とその
寄生抵抗であり、該寄生抵抗は抵抗薄膜で形成されたも
のであることを特徴とする請求項1記載の画像表示装
置。
5. The image display device according to claim 1, wherein the load element is the thin film pixel element and its parasitic resistance, and the parasitic resistance is formed of a resistive thin film.
【請求項6】 前記負荷素子は非線形素子の出力抵抗で
あることを特徴とする請求項1記載の画像表示装置。
6. The image display device according to claim 1, wherein the load element is an output resistance of a non-linear element.
JP16842895A 1995-07-04 1995-07-04 Image display device Expired - Fee Related JP3636777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16842895A JP3636777B2 (en) 1995-07-04 1995-07-04 Image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16842895A JP3636777B2 (en) 1995-07-04 1995-07-04 Image display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004337195A Division JP4175569B2 (en) 2004-11-22 2004-11-22 Image display device

Publications (2)

Publication Number Publication Date
JPH0916123A true JPH0916123A (en) 1997-01-17
JP3636777B2 JP3636777B2 (en) 2005-04-06

Family

ID=15867944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16842895A Expired - Fee Related JP3636777B2 (en) 1995-07-04 1995-07-04 Image display device

Country Status (1)

Country Link
JP (1) JP3636777B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305145A (en) * 1996-05-16 1997-11-28 Fuji Electric Co Ltd Display element driving method
JPH10319908A (en) * 1997-04-14 1998-12-04 Sarnoff Corp Display pixel structure for active matrix organic light emitting diode (amoled), and data load/light emitting circuit therefor
WO2000001202A1 (en) * 1998-06-30 2000-01-06 Nippon Seiki Co., Ltd. Driver circuit for organic electroluminescent display
JP2000259098A (en) * 1999-03-10 2000-09-22 Sanyo Electric Co Ltd Active el display device
JP2001005426A (en) * 1999-06-23 2001-01-12 Semiconductor Energy Lab Co Ltd El display device and electronic device
KR20010062484A (en) * 1999-12-22 2001-07-07 사토 히로시 Image Display System, and Method for Driving Thin-film Display Devices
JP2001318627A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
US6350996B1 (en) * 1998-04-24 2002-02-26 Canon Kabushiki Kaisha Light emitting diode device
JP2002072926A (en) * 2000-08-25 2002-03-12 Ind Technol Res Inst Structure of organic led display
JP2002108285A (en) * 2000-07-27 2002-04-10 Semiconductor Energy Lab Co Ltd Drive method for display device
JP2002514320A (en) * 1997-04-23 2002-05-14 サーノフ コーポレイション Active matrix light emitting diode pixel structure and method
JP2002175029A (en) * 2000-09-29 2002-06-21 Sanyo Electric Co Ltd Semiconductor device and display device
WO2003003339A1 (en) * 2001-06-28 2003-01-09 Matsushita Electric Industrial Co., Ltd. Active-matrix el display and its driving method
JP2003195811A (en) * 2001-08-29 2003-07-09 Nec Corp Current load device and its driving method
JP2004038210A (en) * 1997-03-12 2004-02-05 Seiko Epson Corp Display device and electronic equipment
JP2004038209A (en) * 1997-03-12 2004-02-05 Seiko Epson Corp Display device and electronic equipment
US6839045B2 (en) 1997-02-17 2005-01-04 Seiko Epson Corporation Display apparatus
US6862011B2 (en) 1996-09-26 2005-03-01 Seiko Epson Corporation Display apparatus
JP2005507505A (en) * 2001-09-28 2005-03-17 サムスン エレクトロニクス カンパニー リミテッド Organic EL display panel and organic EL display device having the same
JP2005321780A (en) * 2004-05-06 2005-11-17 Au Optronics Corp Drive device, driving method and drive system for light emitting device
JP2005536771A (en) * 2002-08-21 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device
JP2006251632A (en) * 2005-03-14 2006-09-21 Sony Corp Pixel circuit and display device
JP2006309260A (en) * 1997-03-12 2006-11-09 Seiko Epson Corp Pixel circuit, display device and electronic apparatus
JP2006323376A (en) * 2005-04-20 2006-11-30 Semiconductor Energy Lab Co Ltd Semiconductor device and display device
US7180483B2 (en) 1997-02-17 2007-02-20 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same
US7362322B2 (en) 1997-03-12 2008-04-22 Seiko Epson Corporation Pixel circuit, display apparatus and electronic apparatus equipped with current driving type light-emitting device
JP2010282981A (en) * 2000-08-28 2010-12-16 Semiconductor Energy Lab Co Ltd Light emitting device
JP2011118079A (en) * 2009-12-02 2011-06-16 Global Oled Technology Llc Pixel circuit and display device
JP2012177928A (en) * 2000-07-27 2012-09-13 Semiconductor Energy Lab Co Ltd Display device
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2013127622A (en) * 2012-12-26 2013-06-27 Semiconductor Energy Lab Co Ltd Display device
JP2015092247A (en) * 2000-05-12 2015-05-14 株式会社半導体エネルギー研究所 Semiconductor device
WO2019186725A1 (en) * 2018-03-27 2019-10-03 シャープ株式会社 Display device

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305145A (en) * 1996-05-16 1997-11-28 Fuji Electric Co Ltd Display element driving method
US7012278B2 (en) 1996-09-26 2006-03-14 Seiko Epson Corporation Light-emitting apparatus driven with thin-film transistor and method of manufacturing light-emitting apparatus
US6862011B2 (en) 1996-09-26 2005-03-01 Seiko Epson Corporation Display apparatus
US7880696B2 (en) 1997-02-17 2011-02-01 Seiko Epson Corporation Display apparatus
US7710364B2 (en) 1997-02-17 2010-05-04 Seiko Epson Corporation Display apparatus
JP2009187019A (en) * 1997-02-17 2009-08-20 Seiko Epson Corp Display device
JP2009003468A (en) * 1997-02-17 2009-01-08 Seiko Epson Corp Light emitting device and its driving method
US7253793B2 (en) 1997-02-17 2007-08-07 Seiko Epson Corporation Electro-luminiscent apparatus
US7221339B2 (en) 1997-02-17 2007-05-22 Seiko Epson Corporation Display apparatus
US7180483B2 (en) 1997-02-17 2007-02-20 Seiko Epson Corporation Current-driven light-emitting display apparatus and method of producing the same
US6839045B2 (en) 1997-02-17 2005-01-04 Seiko Epson Corporation Display apparatus
JP2004038209A (en) * 1997-03-12 2004-02-05 Seiko Epson Corp Display device and electronic equipment
JP2004038210A (en) * 1997-03-12 2004-02-05 Seiko Epson Corp Display device and electronic equipment
US7362322B2 (en) 1997-03-12 2008-04-22 Seiko Epson Corporation Pixel circuit, display apparatus and electronic apparatus equipped with current driving type light-emitting device
JP2006309260A (en) * 1997-03-12 2006-11-09 Seiko Epson Corp Pixel circuit, display device and electronic apparatus
JPH10319908A (en) * 1997-04-14 1998-12-04 Sarnoff Corp Display pixel structure for active matrix organic light emitting diode (amoled), and data load/light emitting circuit therefor
JP2010092067A (en) * 1997-04-14 2010-04-22 Transpacific Infinity Llc Display pixel structure for active matrix organic light emitting diode (amoled) and data load/light emitting circuit therefor
JP2002514320A (en) * 1997-04-23 2002-05-14 サーノフ コーポレイション Active matrix light emitting diode pixel structure and method
US6350996B1 (en) * 1998-04-24 2002-02-26 Canon Kabushiki Kaisha Light emitting diode device
WO2000001202A1 (en) * 1998-06-30 2000-01-06 Nippon Seiki Co., Ltd. Driver circuit for organic electroluminescent display
US6316879B1 (en) 1998-06-30 2001-11-13 Nippon Seiki Co., Ltd. Driver circuit for organic electroluminescent display
JP2000259098A (en) * 1999-03-10 2000-09-22 Sanyo Electric Co Ltd Active el display device
JP4627822B2 (en) * 1999-06-23 2011-02-09 株式会社半導体エネルギー研究所 Display device
JP2001005426A (en) * 1999-06-23 2001-01-12 Semiconductor Energy Lab Co Ltd El display device and electronic device
US7982222B2 (en) 1999-06-23 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
KR20010062484A (en) * 1999-12-22 2001-07-07 사토 히로시 Image Display System, and Method for Driving Thin-film Display Devices
US8674909B2 (en) 2000-02-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2001318627A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
US8493295B2 (en) 2000-02-29 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US7995010B2 (en) 2000-02-29 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9178004B2 (en) 2000-02-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9331130B2 (en) 2000-02-29 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9035853B2 (en) 2000-02-29 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US10032840B2 (en) 2000-02-29 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9502483B2 (en) 2000-02-29 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2016053720A (en) * 2000-05-12 2016-04-14 株式会社半導体エネルギー研究所 Semiconductor device
JP2015096955A (en) * 2000-05-12 2015-05-21 株式会社半導体エネルギー研究所 Semiconductor device
JP2015092247A (en) * 2000-05-12 2015-05-14 株式会社半導体エネルギー研究所 Semiconductor device
JP2016075954A (en) * 2000-07-27 2016-05-12 株式会社半導体エネルギー研究所 Display device
US8508439B2 (en) 2000-07-27 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Method of driving display device
JP2002108285A (en) * 2000-07-27 2002-04-10 Semiconductor Energy Lab Co Ltd Drive method for display device
US9489884B2 (en) 2000-07-27 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of driving display device
JP2015132835A (en) * 2000-07-27 2015-07-23 株式会社半導体エネルギー研究所 display device
JP2012177928A (en) * 2000-07-27 2012-09-13 Semiconductor Energy Lab Co Ltd Display device
JP2002072926A (en) * 2000-08-25 2002-03-12 Ind Technol Res Inst Structure of organic led display
US8415876B2 (en) 2000-08-28 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and display comprising light emitting device
JP2010282981A (en) * 2000-08-28 2010-12-16 Semiconductor Energy Lab Co Ltd Light emitting device
US8975813B2 (en) 2000-08-28 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2002175029A (en) * 2000-09-29 2002-06-21 Sanyo Electric Co Ltd Semiconductor device and display device
US7061453B2 (en) 2001-06-28 2006-06-13 Matsushita Electric Industrial Co., Ltd. Active matrix EL display device and method of driving the same
WO2003003339A1 (en) * 2001-06-28 2003-01-09 Matsushita Electric Industrial Co., Ltd. Active-matrix el display and its driving method
JP4603233B2 (en) * 2001-08-29 2010-12-22 日本電気株式会社 Current load element drive circuit
JP2003195811A (en) * 2001-08-29 2003-07-09 Nec Corp Current load device and its driving method
JP2005507505A (en) * 2001-09-28 2005-03-17 サムスン エレクトロニクス カンパニー リミテッド Organic EL display panel and organic EL display device having the same
JP2005536771A (en) * 2002-08-21 2005-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device
JP4570150B2 (en) * 2004-05-06 2010-10-27 友達光電股▲ふん▼有限公司 Driving device for light emitting device
JP2005321780A (en) * 2004-05-06 2005-11-17 Au Optronics Corp Drive device, driving method and drive system for light emitting device
JP2006251632A (en) * 2005-03-14 2006-09-21 Sony Corp Pixel circuit and display device
JP2006323376A (en) * 2005-04-20 2006-11-30 Semiconductor Energy Lab Co Ltd Semiconductor device and display device
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2011118079A (en) * 2009-12-02 2011-06-16 Global Oled Technology Llc Pixel circuit and display device
JP2013127622A (en) * 2012-12-26 2013-06-27 Semiconductor Energy Lab Co Ltd Display device
WO2019186725A1 (en) * 2018-03-27 2019-10-03 シャープ株式会社 Display device

Also Published As

Publication number Publication date
JP3636777B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP3636777B2 (en) Image display device
US10410583B2 (en) Display device, method of laying out light emitting elements, and electronic device
US7158105B2 (en) Electronic circuit, method of driving electronic circuit, electro-optical device, method of driving electro-optical device, and electronic apparatus
CA2438577C (en) Pixel current driver for organic light emitting diode displays
KR101245218B1 (en) Organic light emitting diode display
US7675485B2 (en) Electroluminescent display devices
US20060027807A1 (en) Pixel current driver for organic light emitting diode displays
JP4170384B2 (en) Self-luminous display device
JP2021529333A (en) Drive circuit and its drive method, display device
US7999772B2 (en) Current-driven oled panel and related pixel structure
JPH10232649A (en) Electric field luminescent display device and driving method therefor
TW201403567A (en) Display device and electronic equipment
WO2005045797A1 (en) Pixel circuit, display apparatus, and method for driving pixel circuit
KR20060010791A (en) Semiconductor device
CN112542126B (en) Display panel and display device
JP3688757B2 (en) Image display device and driving method thereof
WO2020206857A1 (en) Pixel drive circuit and display panel
CN113168810B (en) Pixel driving circuit, pixel driving method, display panel and display device
JP4175569B2 (en) Image display device
CN114783378A (en) Pixel driving circuit, pixel driving method and display panel
JP2004145281A (en) Electronic circuit, method for driving electronic circuit, electrooptical device, method for driving electrooptical device, and electronic apparatus
CN110444165B (en) Pixel compensation circuit and display device
JP3762720B2 (en) Image display device and driving method thereof
WO2020173033A1 (en) Pixel drive circuit and display panel
WO2020173035A1 (en) Pixel driving circuit and display panel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees