JPH09159418A - Method and equipment for measuring shape of three-dimensional curved surface molding - Google Patents

Method and equipment for measuring shape of three-dimensional curved surface molding

Info

Publication number
JPH09159418A
JPH09159418A JP32204595A JP32204595A JPH09159418A JP H09159418 A JPH09159418 A JP H09159418A JP 32204595 A JP32204595 A JP 32204595A JP 32204595 A JP32204595 A JP 32204595A JP H09159418 A JPH09159418 A JP H09159418A
Authority
JP
Japan
Prior art keywords
laser
drive system
pair
molded product
laser irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32204595A
Other languages
Japanese (ja)
Inventor
Akira Fukamachi
章 深町
Hiromi Habuka
浩美 羽深
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIJIYUU TANASHI KIKAI KK
Sumitomo Heavy Industries Ltd
Original Assignee
SUMIJIYUU TANASHI KIKAI KK
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIJIYUU TANASHI KIKAI KK, Sumitomo Heavy Industries Ltd filed Critical SUMIJIYUU TANASHI KIKAI KK
Priority to JP32204595A priority Critical patent/JPH09159418A/en
Publication of JPH09159418A publication Critical patent/JPH09159418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the shape of a molding having three-dimensional curved surface automatically with high speed and high accuracy by moving the molding between a pair of laser sensors to traverse the laser irradiation axis periodically while varying the traversing position sequentially. SOLUTION: At the time of measuring the shape, W-axis (extending direction of a rotary shaft 30) is set at a position where the blade of a propeller 10 traverses the laser irradiation axis periodically through rotation caused by a first rotary drive system. A second drive system shifts an X-axis table 40 by a predetermined distance in the direction of X-axis at a constant interval so that the locus of laser irradiation to the blade of a propeller 10 describes a partial concentric circle. Laser light reflected from the blade of propeller 10 is subjected to photoelectric conversion through laser sensors 20a, 20b to produce electric signals which are then fed to a control section. Two signals are sampled synchronously and the coordinate of the surface of blade is determined from the sampled values before determining the thickness of blade from the coordinate thus determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は3次元曲面を持つ成
形品の形状を計測する方法及び装置に関し、特に船舶用
のプロペラや航空機用のプロペラあるいはタービンブレ
ードのような成形品の肉厚、輪郭、外径等を計測するの
に適した3次元曲面成形品の形状計測方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the shape of a molded product having a three-dimensional curved surface, and particularly to the wall thickness and contour of a molded product such as a propeller for a ship, a propeller for an aircraft or a turbine blade. The present invention relates to a method and an apparatus for measuring the shape of a three-dimensional curved surface molded article suitable for measuring the outer diameter and the like.

【0002】[0002]

【従来の技術】3次元曲面成形品の形状計測装置として
は、触針式の計測装置が最も普及している。この計測装
置は、通常、成形品の複数箇所に当てられる計測針を持
ち、計測針の触針位置を検出することで成形品の肉厚を
計測するようにしている。
2. Description of the Related Art A stylus type measuring device is most popular as a shape measuring device for a three-dimensional curved surface molded article. This measuring device usually has measuring needles applied to a plurality of points on the molded product, and measures the wall thickness of the molded product by detecting the position of the stylus of the measuring needle.

【0003】[0003]

【発明が解決しようとする課題】この種の計測装置で
は、精密な計測を行う場合、指定点毎に計測を行うため
ポイントを多数設定して各ポイント毎にその上方数mm
の位置に計測針を移動させてからゆるやかに計測針を下
降させて触針を行う必要がある。因みに、1ポイント計
測のための所要時間は1秒以上を必要とし、触針のため
の計測針の移動速度は数(mm/sec)であるので、
成形品の形状が大きくなるにつれて計測に要する時間は
長くなる。
In the measuring device of this type, when performing a precise measurement, a large number of points are set to measure each designated point, and a few mm above each point.
It is necessary to move the measuring needle to the position of and then gently lower the measuring needle to perform the stylus. By the way, since the time required for 1 point measurement requires 1 second or more, and the moving speed of the measuring needle for the stylus is several (mm / sec),
The time required for measurement increases as the shape of the molded product increases.

【0004】また、プロペラの場合、プロペラピッチの
大きい箇所(曲率の大きい箇所)では、計測針の触針位
置の誤差が大きくなるので、高精密な計測を行う場合に
問題となる。加えて、成形品の輪郭を測定するために
は、上記の計測針とは異なる接触針が必要となる。
Further, in the case of a propeller, an error in the position of the stylus of the measuring needle becomes large at a portion having a large propeller pitch (a portion having a large curvature), which causes a problem when performing highly precise measurement. In addition, in order to measure the contour of the molded product, a contact needle different from the above measuring needle is required.

【0005】以上のような問題点に鑑み、本発明の主た
る課題は、3次元曲面を持つ成形品の形状を自動的に高
速かつ高精度で計測することのできる形状計測方法を提
供することにある。
In view of the above problems, a main object of the present invention is to provide a shape measuring method capable of automatically measuring the shape of a molded product having a three-dimensional curved surface at high speed and with high accuracy. is there.

【0006】本発明はまた、成形品の形状として、肉厚
に加えて、輪郭や外径をも同時に計測することのできる
形状計測方法を提供することにある。
Another object of the present invention is to provide a shape measuring method capable of simultaneously measuring not only the wall thickness but also the contour and the outer diameter of the molded article.

【0007】本発明は更に上記計測方法に適した形状計
測装置を提供しようとするものである。
The present invention further provides a shape measuring apparatus suitable for the above measuring method.

【0008】[0008]

【課題を解決するための手段】本発明によれば、3次元
曲面を持つ成形品にレーザを照射して距離を測定するレ
ーザセンサを用いて前記成形品の形状を計測する方法で
あって、一対の前記レーザセンサをそれらのレーザ照射
軸が同一直線上にあるように対向配置し、前記成形品
を、前記一対のレーザセンサの間で前記レーザ照射軸を
周期的に横切るように移動させると共に、横切る位置が
順次変化するように移動させることにより、前記一対の
レーザセンサの出力から前記成形品の厚さ、輪郭、外径
に関する計測値を得ることを特徴とする3次元曲面成形
品の形状計測方法が得られる。
According to the present invention, there is provided a method of measuring the shape of a molded article having a three-dimensional curved surface by using a laser sensor for irradiating a laser to measure the distance. The pair of laser sensors are arranged so as to face each other so that their laser irradiation axes are on the same straight line, and the molded product is moved so as to periodically cross the laser irradiation axis between the pair of laser sensors. , A shape of a three-dimensional curved surface molded article, characterized in that measurement values relating to the thickness, the contour, and the outer diameter of the molded article are obtained from the outputs of the pair of laser sensors by moving so as to sequentially change the crossing position. A measurement method can be obtained.

【0009】本発明によればまた、3次元曲面を持つ成
形品の形状を、該成形品にレーザを照射して距離を測定
するレーザセンサを用いて測定する形状計測装置であっ
て、一対の前記レーザセンサをそれらのレーザ照射軸が
同一直線上にあるように対向配置し、前記成形品を、前
記一対のレーザセンサの間で前記レーザ照射軸を周期的
に横切るように移動させる第1の駆動系と、前記横切る
位置が順次変化するように前記第1の駆動系及び前記一
対のレーザセンサの一方を移動させる第2の駆動系と、
前記第1及び第2の駆動系を制御すると共に、前記一対
のレーザセンサからの出力信号をサンプリングして前記
成形品の厚さ、輪郭、外径に関する計測値を算出する制
御部とを備えたことを特徴とする3次元曲面成形品の形
状計測装置が得られる。
According to the present invention, there is also provided a shape measuring device for measuring the shape of a molded article having a three-dimensional curved surface by using a laser sensor for irradiating the molded article with a laser to measure the distance. A first arrangement in which the laser sensors are arranged to face each other so that their laser irradiation axes are on the same straight line, and the molded product is moved between the pair of laser sensors so as to periodically cross the laser irradiation axis. A drive system, and a second drive system that moves one of the first drive system and one of the pair of laser sensors so that the crossing position sequentially changes,
A control unit that controls the first and second drive systems and that samples output signals from the pair of laser sensors to calculate measured values relating to the thickness, contour, and outer diameter of the molded product. A shape measuring device for a three-dimensional curved surface molded article is obtained.

【0010】なお、前記第1の駆動系は、前記成形品
を、前記レーザ照射軸と平行でかつ該レーザ照射軸から
離れた位置に中心軸を持つ第1の回転駆動系で構成さ
れ、前記第2の駆動系は、前記成形品に対するレーザ照
射の軌跡が部分的な同心円となるように駆動するもので
ある。
The first drive system is constituted by a first rotary drive system which has the central axis of the molded product in a position parallel to the laser irradiation axis and apart from the laser irradiation axis. The second drive system drives so that the locus of laser irradiation on the molded product becomes a partial concentric circle.

【0011】また、前記一対のレーザセンサを、それら
の間隔を一定に維持した状態で前記レーザ照射軸と同じ
方向に移動させる第3の駆動系を備えても良い。
Further, a third drive system may be provided for moving the pair of laser sensors in the same direction as the laser irradiation axis while keeping the distance between them constant.

【0012】更に、前記制御部は、あらかじめ設定され
た前記成形品の外形に関するプログラムにもとづいて、
前記一対のレーザセンサを常に前記成形品に対する距離
測定の可能な範囲内におくように前記第3の駆動系を制
御する。
Further, the control unit is based on a preset program relating to the outer shape of the molded product,
The third drive system is controlled so that the pair of laser sensors are always within a range in which the distance to the molded product can be measured.

【0013】本発明によれば更に、3次元曲面を持つ成
形品の形状を、該成形品にレーザを照射して距離を測定
するレーザセンサを用いて測定する形状計測装置であっ
て、一対の前記レーザセンサをそれらのレーザ照射軸が
同一直線上にあるように対向配置し、前記成形品を、前
記一対のレーザセンサの間で前記レーザ照射軸を周期的
に横切るように移動させる第1の駆動系と、前記横切る
位置が順次変化するように前記第1の駆動系及び前記一
対のレーザセンサの一方を移動させる第2の駆動系と、
前記成形品を、そのレーザ被照射面が前記レーザ照射軸
に直角になるように回転させる回転駆動系と、前記第1
及び第2の駆動系と前記回転駆動系とを制御すると共
に、前記一対のレーザセンサからの出力信号をサンプリ
ングして前記成形品の厚さ、輪郭、外径に関する計測値
を算出する制御部とを備えたことを特徴とする3次元曲
面成形品の形状計測装置が得られる。
According to the present invention, there is further provided a shape measuring device for measuring the shape of a molded article having a three-dimensional curved surface by using a laser sensor for irradiating the molded article with a laser to measure a distance. A first arrangement in which the laser sensors are arranged to face each other so that their laser irradiation axes are on the same straight line, and the molded product is moved between the pair of laser sensors so as to periodically cross the laser irradiation axis. A drive system, and a second drive system that moves one of the first drive system and one of the pair of laser sensors so that the crossing position sequentially changes,
A rotary drive system for rotating the molded product so that its laser-irradiated surface is perpendicular to the laser irradiation axis;
And a control unit for controlling the second drive system and the rotary drive system, and for sampling output signals from the pair of laser sensors to calculate measured values relating to the thickness, contour, and outer diameter of the molded product. It is possible to obtain a shape measuring device for a three-dimensional curved surface molded article, which is characterized by including.

【0014】[0014]

【発明の実施の形態】以下に、図1〜図4を参照して本
発明の第1の実施の形態について説明する。ここでは、
船舶用のプロペラ10を計測対象として説明する。本発
明では、測定対象物にレーザを照射し、その反射光を受
光して照射面までの距離を測定する周知のレーザセンサ
を用いる。そして、一対のレーザセンサ20a,20b
を、それらのレーザ照射軸が同一直線上にあるように上
下に対向配置する点に特徴を有する。プロペラ10は、
レーザ照射軸と平行でかつレーザ照射軸から離れた位置
に設けられた回転軸30に取り付けられて回転可能にさ
れている。回転軸30の延在方向は、以後W軸と呼ばれ
る。回転軸30は、減速機31を介して駆動モータ32
で駆動される。これら回転軸30、減速機31、駆動モ
ータ32はまとめて第1の回転駆動系と呼ばれても良
い。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIGS. here,
The propeller 10 for a ship will be described as a measurement target. In the present invention, a well-known laser sensor is used which irradiates a laser beam onto an object to be measured and receives the reflected light to measure the distance to the irradiation surface. Then, the pair of laser sensors 20a, 20b
Are characterized in that they are vertically opposed to each other so that their laser irradiation axes are on the same straight line. Propeller 10
It is attached to a rotating shaft 30 provided in a position parallel to the laser irradiation axis and apart from the laser irradiation axis so as to be rotatable. The extending direction of the rotating shaft 30 is hereinafter referred to as the W axis. The rotary shaft 30 is driven by a drive motor 32 via a speed reducer 31.
Driven by The rotary shaft 30, the speed reducer 31, and the drive motor 32 may be collectively referred to as a first rotary drive system.

【0015】この第1の回転駆動系は、図1の左右の水
平方向(以下、X軸方向と呼ぶ)にスライド可能なX軸
テーブル40上に構成されて、X軸方向に移動可能であ
る。X軸テーブル40は、ボックス41内に収容された
ボールネジ機構及びこれを駆動するサーボモータ(いず
れも図示せず)で駆動される。これらのX軸テーブル4
0、ボールネジ機構及びサーボモータは、まとめて第2
の駆動系と呼ばれても良い。
This first rotary drive system is constructed on an X-axis table 40 which is slidable in the left and right horizontal directions in FIG. 1 (hereinafter referred to as the X-axis direction), and is movable in the X-axis direction. . The X-axis table 40 is driven by a ball screw mechanism housed in a box 41 and a servomotor (not shown) for driving the ball screw mechanism. These X-axis table 4
0, ball screw mechanism and servo motor
It may be called the drive system of.

【0016】一対のレーザセンサ20a,20bもま
た、ボックス21内に収容されたボールネジ機構及びこ
れを駆動するサーボモータ(いずれも図示せず)により
常に一定間隔を維持した状態でレーザ照射軸方向(以
下、Z軸方向と呼ぶ)に移動可能にされている。これら
のボールネジ機構及びサーボモータは、まとめて第3の
駆動系と呼ばれても良い。
The pair of laser sensors 20a and 20b also has a ball screw mechanism housed in the box 21 and a servomotor (not shown) for driving the ball screw mechanism (neither of which is shown) so that the laser sensor 20a and 20b always maintain a constant interval in the laser irradiation axis direction ( Hereinafter, it will be referred to as the Z-axis direction). These ball screw mechanism and servo motor may be collectively referred to as a third drive system.

【0017】形状測定に際しては、W軸は第1の回転駆
動系による回転によってプロペラ10の羽根が周期的に
レーザ照射軸を横切る位置に設定される。そして、第2
の駆動系はX軸テーブル40を定時間間隔で一定距離だ
けX軸方向に移動させることにより、プロペラ10の羽
根に対するレーザ照射の軌跡が部分的な同心円となるよ
うにされている。
In measuring the shape, the W axis is set at a position where the blades of the propeller 10 periodically cross the laser irradiation axis by the rotation of the first rotary drive system. And the second
The drive system is configured so that the locus of laser irradiation on the blades of the propeller 10 becomes a partial concentric circle by moving the X-axis table 40 in the X-axis direction by a constant distance at constant time intervals.

【0018】第1の回転駆動系、第1,第2の駆動系
は、図示しない制御部で駆動される。制御部はまた、プ
ロペラ10の羽根で反射されたレーザ光を光電変換して
得られるレーザセンサ20a,20bからの電気信号を
受け、これら2つの電気信号に対して同期したサンプリ
ングを行い、サンプリング値から羽根の表面の座標を算
出してそれらの差から羽根の肉厚を計算する。このよう
な計算方法の一例について言えば、レーザセンサ20
a,20b間の距離Lが一定であり、レーザセンサ20
aから羽根の上面までの距離La、レーザセンサ20b
から羽根の下面までの距離Lbをサンプリング値から上
面及び下面のZ軸に関する座標を知ることができるの
で、これらの差の計算を行うことで、サンプリングされ
た測定点の肉厚を算出することができる。勿論、肉厚T
=L−(La+Lb)で計算することもできる。
The first rotary drive system and the first and second drive systems are driven by a controller (not shown). The control unit also receives electric signals from the laser sensors 20a and 20b obtained by photoelectrically converting the laser light reflected by the blades of the propeller 10, performs sampling in synchronization with these two electric signals, and outputs a sampling value. Then, the coordinates of the surface of the blade are calculated from the above, and the thickness of the blade is calculated from the difference between them. Speaking of an example of such a calculation method, the laser sensor 20
The distance L between a and 20b is constant, and the laser sensor 20
Laser sensor 20b, distance La from a to the upper surface of the blade
From the sampling value of the distance Lb from the blade to the lower surface of the blade, it is possible to know the coordinates of the upper surface and the lower surface with respect to the Z axis. Therefore, by calculating the difference between them, the wall thickness of the sampled measurement point can be calculated. it can. Of course, the wall thickness T
It can also be calculated by = L- (La + Lb).

【0019】図4は、上記のようにして第1の回転駆動
系による回転と第2の駆動系によるX軸方向の移動及び
サンプリング動作により決まる肉厚測定点の一例を示
す。測定点の間隔は数mm〜数十mm程度の値に設定さ
れる。なお、図4に矢印で示すプロペラ10の回転方向
の場合、レーザセンサ20a,20bからの反射光があ
らわれた点及び反射光が無くなった点が図中一点鎖線で
示す羽根の輪郭として検出される。また、羽根の外径は
検出された輪郭から算出される。
FIG. 4 shows an example of the wall thickness measurement points determined by the rotation by the first rotary drive system and the movement in the X-axis direction by the second drive system and the sampling operation as described above. The interval between the measurement points is set to a value of several mm to several tens of mm. In the case of the rotation direction of the propeller 10 shown by the arrow in FIG. 4, the point where the reflected light from the laser sensors 20a and 20b appears and the point where the reflected light disappears are detected as the outline of the blade indicated by the one-dot chain line in the figure. . Further, the outer diameter of the blade is calculated from the detected contour.

【0020】次に、第3の駆動系の機能について説明す
る。レーザセンサ20a,20bは、通常、距離測定範
囲に制限がある。すなわち、レーザセンサから所定範囲
内にある対象物に対して距離測定が可能であり、所定範
囲は通常、数十cmである。これに対し、船舶用のプロ
ペラのように直径が数mにもなるような場合、測定点の
上下方向の差は数十cm以上となり、レーザセンサ20
a,20bの位置を上記所定範囲で固定とすると、レー
ザセンサ20a,20bが回転するプロペラ10に衝突
するおそれがある。
Next, the function of the third drive system will be described. The laser sensors 20a and 20b usually have a limited distance measurement range. That is, it is possible to measure the distance from the laser sensor to an object within a predetermined range, and the predetermined range is usually several tens cm. On the other hand, when the propeller for a ship has a diameter of several meters, the difference between the measurement points in the vertical direction becomes several tens cm or more, and the laser sensor 20
If the positions of a and 20b are fixed within the above predetermined range, the laser sensors 20a and 20b may collide with the rotating propeller 10.

【0021】そこで、プロペラ10の外形、すなわちお
およその曲面形状をあらかじめプログラムで作成して制
御部内のメモリに格納しておく。制御部は、このプログ
ラムにもとづいて第3の駆動系を制御して、プロペラ1
0が回転してもレーザセンサ20a,20bがプロペラ
10に衝突することのないよう、レーザセンサ20a,
20bのZ軸方向の位置を調整する。勿論、この場合の
レーザセンサ20a,20bの変位量は上記肉厚の算出
に考慮される。ここで、プロペラ10のような場合、羽
根の上下両面は同じ曲率で変化、すなわち同じような曲
面を持つので、レーザセンサ20a,20bのZ軸方向
への移動制御は、レーザセンサ20a,20bの間隔を
一定に保持したままで連動させるようにしている。
Therefore, the outer shape of the propeller 10, that is, an approximate curved surface shape is created in advance by a program and stored in the memory in the control unit. The control unit controls the third drive system based on this program, and the propeller 1
In order to prevent the laser sensors 20a, 20b from colliding with the propeller 10 even if 0 is rotated,
Adjust the position of 20b in the Z-axis direction. Of course, the displacement amounts of the laser sensors 20a and 20b in this case are considered in the calculation of the wall thickness. Here, in the case of the propeller 10, since the upper and lower surfaces of the blade change with the same curvature, that is, have the same curved surface, the movement control of the laser sensors 20a and 20b in the Z-axis direction is performed by the laser sensors 20a and 20b. It is designed to work together with the interval kept constant.

【0022】しかし、上下両面が同じような曲率で変化
しない曲面形状を持つ成形品の場合、レーザセンサ20
a,20bの間隔を一定に保持したままで、Z軸方向に
移動させるだけでは、一方のレーザセンサが成形品に衝
突することもあり得る。このような場合を考慮して、レ
ーザセンサ20a,20bを個別に移動制御するように
しても良い。この場合でも、レーザセンサ20a,20
bの個別の移動量を知ることができるので、これらの移
動量を考慮した計算を行うことで肉厚を算出することが
できる。
However, in the case of a molded product having curved surfaces whose upper and lower surfaces do not change with the same curvature, the laser sensor 20
One laser sensor may collide with the molded product only by moving it in the Z-axis direction while keeping the distance between a and 20b constant. In consideration of such a case, the laser sensors 20a and 20b may be individually controlled to move. Even in this case, the laser sensors 20a, 20
Since it is possible to know the individual movement amounts of b, it is possible to calculate the wall thickness by performing the calculation in consideration of these movement amounts.

【0023】勿論、このような第3の駆動系は、測定対
象となる成形品における測定点の上下方向の差が小さい
場合、すなわち平坦な形状の場合には不要である。この
場合、レーザセンサ20a,20bはそれらの間の距離
が一定の固定構造にされる。
Of course, such a third drive system is not necessary when the difference in the vertical direction of the measurement points in the molded product to be measured is small, that is, in the case of a flat shape. In this case, the laser sensors 20a and 20b have a fixed structure in which the distance between them is constant.

【0024】図5は制御部とその周辺の付属機器の構成
を示すブロック図である。制御部50は、上記したすべ
てのサーボモータ系からのフィードバック信号及びレー
ザセンサ20a,20bからの出力信号を受け、操作パ
ネル51からはそのキーボードから入力された各種設定
値を受ける。制御部50はまた、ハードディスクドライ
バやフロッピーディスクドライバ等の記憶装置を有し、
フロッピーディスクドライバを通して上記したプログラ
ム等のデータを受ける。これらの出力信号及びデータ
は、内蔵のメモリに格納される。制御部50は、メモリ
に格納されている各種設定値及びプログラムと各サーボ
モータ系からのフィードバック信号にもとづいて第1の
回転駆動系、第2,第3の駆動系を制御すると共に、レ
ーザセンサ20a,20bからの出力信号にもとづいて
プロペラ10の羽根の肉厚、輪郭、外径を算出する。そ
して、これらの算出結果をプリンタ52でプリントアウ
トしたり、プロット53で図4に示すような測定点とそ
この肉厚をプロットしたり、ディスプレイ54で算出結
果を表示したりする。
FIG. 5 is a block diagram showing the configuration of the control unit and its peripheral equipment. The control unit 50 receives feedback signals from all the servo motor systems described above and output signals from the laser sensors 20a and 20b, and receives various set values input from the keyboard from the operation panel 51. The control unit 50 also has a storage device such as a hard disk driver or a floppy disk driver,
Receive data such as the above programs through the floppy disk driver. These output signals and data are stored in a built-in memory. The control unit 50 controls the first rotary drive system, the second and third drive systems based on various set values and programs stored in the memory and feedback signals from each servo motor system, and also controls the laser sensor. The wall thickness, contour, and outer diameter of the blades of the propeller 10 are calculated based on the output signals from 20a and 20b. Then, these calculation results are printed out by the printer 52, the plot 53 plots the measurement points and the wall thickness thereof as shown in FIG. 4, and the display 54 displays the calculation results.

【0025】図6,図7を参照して、測定対象となる成
形品が比較的長尺のタービンブレード60のような場合
に適用される第2の実施の形態について説明する。この
ような長尺物の場合、タービンブレード60は回転駆動
可能な駆動支持機構61a,61bにより水平方向に支
持される。そして、その回転中心軸がW軸となる。この
駆動支持機構61a,61bは、図示しないサーボモー
タ駆動系により水平方向かつW軸に直角な方向(以下、
これをY軸方向と呼ぶ)に移動可能なテーブル62に搭
載される。そして、一対のレーザセンサ20a,20b
は、測定点の上下方向の間隔が一定の状態で支柱63に
沿ってレーザ照射軸方向(Z軸方向)に移動可能にされ
ている。支柱63は、図示しないサーボモータ駆動系に
より水平方向かつY軸に直角なX軸方向に移動される。
A second embodiment will be described with reference to FIGS. 6 and 7 which is applied to a case where the molded product to be measured is a relatively long turbine blade 60. In the case of such a long product, the turbine blade 60 is supported in the horizontal direction by the drive support mechanisms 61a and 61b capable of being rotationally driven. The rotation center axis is the W axis. The drive support mechanisms 61a and 61b are driven by a servo motor drive system (not shown) in a horizontal direction and a direction perpendicular to the W axis (hereinafter,
This is mounted on a table 62 that is movable in the Y-axis direction). Then, the pair of laser sensors 20a, 20b
Is movable along the support column 63 in the laser irradiation axis direction (Z-axis direction) with a constant vertical interval between the measurement points. The column 63 is moved in the horizontal direction and in the X-axis direction perpendicular to the Y-axis by a servo motor drive system (not shown).

【0026】ここで、テーブル62をY軸方向に駆動す
るサーボモータ駆動系は第1の駆動系、支柱63をX軸
方向に駆動するサーボモータ駆動系は第2の駆動系、駆
動支持機構61a,61bは回転駆動系、レーザセンサ
20a,20bをZ軸方向に駆動する駆動機構は第3の
駆動系と呼ばれても良い。いずれにしても、第1,第
2、及び第3の駆動系によるタービンブレード60に対
するレーザ照射の軌跡は、図8に一点鎖線で示すように
なる。なお、回転駆動系は、レーザ照射をタービンブレ
ード60の面に対して垂直にするためのものである。そ
れ故、回転駆動系の制御は、第1の駆動系によるタービ
ンブレード60に対するレーザ照射点、すなわち測定点
の位置制御に同期して行われる。勿論、測定対象物とな
る成形品が比較的小さな曲率の曲面を持つような場合に
は第3の駆動系及び回転駆動系は不要である。
Here, the servo motor drive system that drives the table 62 in the Y-axis direction is the first drive system, and the servo motor drive system that drives the support column 63 in the X-axis direction is the second drive system, and the drive support mechanism 61a. , 61b may be referred to as a rotary drive system, and the drive mechanism for driving the laser sensors 20a and 20b in the Z-axis direction may be referred to as a third drive system. In any case, the locus of laser irradiation on the turbine blade 60 by the first, second, and third drive systems is as shown by the alternate long and short dash line in FIG. The rotary drive system is for making the laser irradiation perpendicular to the surface of the turbine blade 60. Therefore, the control of the rotary drive system is performed in synchronization with the position control of the laser irradiation point, that is, the measurement point on the turbine blade 60 by the first drive system. Of course, the third drive system and the rotary drive system are not necessary when the molded product to be measured has a curved surface with a relatively small curvature.

【0027】[0027]

【発明の効果】以上説明してきたように、本発明による
形状計測方法及び装置は、一対のレーザセンサをそのレ
ーザ照射軸が同一直線上にあるように対向配置して計測
を行うようにしたことにより、次のような効果が得られ
る。
As described above, in the shape measuring method and apparatus according to the present invention, the pair of laser sensors are arranged so as to face each other so that their laser irradiation axes are on the same straight line, and the measurement is performed. As a result, the following effects are obtained.

【0028】a.レーザの測定応答時間は1万分の1秒
の単位であり、仮りに100mm/secで移動しなが
ら計測しても1mmあたり100点の計測点について計
測を行うことができる。
A. The measurement response time of the laser is in the unit of 1/10000 second, and even if the measurement is performed while moving at 100 mm / sec, it is possible to perform measurement at 100 measurement points per 1 mm.

【0029】b.プロペラのように大きな曲率の曲面を
持つ成形品に対しても一対のレーザセンサをあらかじめ
設定したプログラムにより位置制御することで、レーザ
センサの作動有効範囲の制約を受けることなく計測を行
うことができる。
B. By performing position control of a pair of laser sensors with a preset program, it is possible to perform measurements without being restricted by the effective operating range of laser sensors, even for molded products with a large curvature such as a propeller. .

【0030】c.一対のレーザセンサだけで成形品の厚
さ、輪郭、外径の計測を同時に行うことができる。
C. The thickness, contour, and outer diameter of a molded product can be measured simultaneously with only a pair of laser sensors.

【0031】d.非接触式であるので、剛性の低い成形
品に対しても適用可能である。
D. Since it is a non-contact type, it can be applied to a molded product having low rigidity.

【0032】e.以上の点から触針式のものに比べて高
速、かつ高精度の計測を簡単に行うことができる。
E. From the above points, it is possible to easily perform high-speed and highly accurate measurement as compared with the stylus type.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による形状計測装置の第1の実施の形態
の主要部の構成を示す正面図である。
FIG. 1 is a front view showing a configuration of a main part of a first embodiment of a shape measuring apparatus according to the present invention.

【図2】図1に示された形状計測装置の主要部の平面図
である。
FIG. 2 is a plan view of a main part of the shape measuring apparatus shown in FIG.

【図3】図1に示された形状計測装置の主要部の側面図
である。
FIG. 3 is a side view of a main part of the shape measuring device shown in FIG.

【図4】図1の形状計測装置により測定対象物であるプ
ロペラに対して設定される計測点の分布の一例を示した
図である。
FIG. 4 is a diagram showing an example of a distribution of measurement points set for a propeller which is an object to be measured by the shape measuring apparatus of FIG.

【図5】図1に示された形状計測装置の制御系及びそれ
に付随する各種入出力機器の構成を示したブロック図で
ある。
5 is a block diagram showing a configuration of a control system of the shape measuring apparatus shown in FIG. 1 and various input / output devices associated therewith.

【図6】本発明による形状計測装置の第2の実施の形態
の主要部の構成を示す正面図である。
FIG. 6 is a front view showing a configuration of a main part of a second embodiment of a shape measuring apparatus according to the present invention.

【図7】図6に示された形状計測装置の主要部の平面図
である。
FIG. 7 is a plan view of a main part of the shape measuring apparatus shown in FIG.

【図8】図6に示された形状計測装置により測定対象物
であるタービンブレードに対して行われるレーザ照射の
軌跡の一例を示した図である。
8 is a diagram showing an example of a locus of laser irradiation performed on a turbine blade that is an object to be measured by the shape measuring apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

10 プロペラ 20a,20b レーザセンサ 30 回転軸 31 減速機 32 駆動モータ 40 X軸テーブル 60 タービンブレード 61a,61b 駆動支持機構 62 テーブル 10 Propellers 20a, 20b Laser Sensor 30 Rotating Shaft 31 Reducer 32 Drive Motor 40 X-Axis Table 60 Turbine Blades 61a, 61b Drive Support Mechanism 62 Table

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 3次元曲面を持つ成形品にレーザを照射
して距離を測定するレーザセンサを用いて前記成形品の
形状を計測する方法であって、一対の前記レーザセンサ
をそれらのレーザ照射軸が同一直線上にあるように対向
配置し、前記成形品を、前記一対のレーザセンサの間で
前記レーザ照射軸を周期的に横切るように移動させると
共に、横切る位置が順次変化するように移動させること
により、前記一対のレーザセンサの出力から前記成形品
の厚さ、輪郭、外径に関する計測値を得ることを特徴と
する3次元曲面成形品の形状計測方法。
1. A method for measuring the shape of a molded article using a laser sensor for irradiating a molded article having a three-dimensional curved surface with a laser to measure the distance, the method comprising irradiating a pair of the laser sensors with the laser. Arranged so that the axes are on the same straight line, the molded product is moved so as to periodically traverse the laser irradiation axis between the pair of laser sensors, and the traverse position is sequentially changed. The shape measurement method for a three-dimensional curved surface molded product, characterized in that measurement values relating to the thickness, contour, and outer diameter of the molded product are obtained from the outputs of the pair of laser sensors.
【請求項2】 3次元曲面を持つ成形品の形状を、該成
形品にレーザを照射して距離を測定するレーザセンサを
用いて測定する形状計測装置であって、 一対の前記レーザセンサをそれらのレーザ照射軸が同一
直線上にあるように対向配置し、 前記成形品を、前記一対のレーザセンサの間で前記レー
ザ照射軸を周期的に横切るように移動させる第1の駆動
系と、 前記横切る位置が順次変化するように前記第1の駆動系
及び前記一対のレーザセンサの一方を移動させる第2の
駆動系と、 前記第1及び第2の駆動系を制御すると共に、前記一対
のレーザセンサからの出力信号をサンプリングして前記
成形品の厚さ、輪郭、外径に関する計測値を算出する制
御部とを備えたことを特徴とする3次元曲面成形品の形
状計測装置。
2. A shape measuring device for measuring the shape of a molded article having a three-dimensional curved surface by using a laser sensor for irradiating the molded article with a laser to measure a distance, wherein a pair of the laser sensors are provided. A first drive system that is arranged so as to oppose each other so that the laser irradiation axis is on the same straight line, and that moves the molded product so as to periodically cross the laser irradiation axis between the pair of laser sensors; A second drive system that moves one of the first drive system and one of the pair of laser sensors so that the crossing position sequentially changes, and the pair of lasers while controlling the first and second drive systems. A shape measuring device for a three-dimensional curved surface molded article, comprising: a control unit that samples an output signal from a sensor and calculates measured values relating to the thickness, contour, and outer diameter of the molded article.
【請求項3】 請求項2記載の形状計測装置において、
前記第1の駆動系は、前記成形品を、前記レーザ照射軸
と平行でかつ該レーザ照射軸から離れた位置に中心軸を
持つ第1の回転駆動系で構成され、前記第2の駆動系
は、前記成形品に対するレーザ照射の軌跡が部分的な同
心円となるように駆動するものであることを特徴とする
3次元曲面成形品の形状計測装置。
3. The shape measuring device according to claim 2,
The first drive system is configured by a first rotary drive system for the molded product, the first rotary drive system having a central axis parallel to the laser irradiation axis and apart from the laser irradiation axis, and the second drive system. Is a device for driving so that the locus of laser irradiation on the molded product becomes a partial concentric circle.
【請求項4】 請求項2あるいは3記載の形状計測装置
において、前記一対のレーザセンサを、それらの間隔を
一定に維持した状態で前記レーザ照射軸と同じ方向に移
動させる第3の駆動系を備えたことを特徴とする3次元
成形品の形状計測装置。
4. The shape measuring apparatus according to claim 2 or 3, further comprising a third drive system that moves the pair of laser sensors in the same direction as the laser irradiation axis while keeping the distance between them constant. A shape measuring device for a three-dimensional molded article, which is characterized by being provided.
【請求項5】 請求項4記載の形状計測装置において、
前記制御部は、あらかじめ設定された前記成形品の外形
に関するプログラムにもとづいて、前記一対のレーザセ
ンサを常に前記成形品に対する距離測定の可能な範囲内
におくように前記第3の駆動系を制御することを特徴と
する3次元曲面成形品の形状計測装置。
5. The shape measuring device according to claim 4,
The control unit controls the third drive system so as to always keep the pair of laser sensors within a range in which the distance to the molded product can be measured based on a preset program relating to the outer shape of the molded product. A shape measuring apparatus for a three-dimensional curved surface molded article, characterized by:
【請求項6】 3次元曲面を持つ成形品の形状を、該成
形品にレーザを照射して距離を測定するレーザセンサを
用いて測定する形状計測装置であって、 一対の前記レーザセンサをそれらのレーザ照射軸が同一
直線上にあるように対向配置し、 前記成形品を、前記一対のレーザセンサの間で前記レー
ザ照射軸を周期的に横切るように移動させる第1の駆動
系と、 前記横切る位置が順次変化するように前記第1の駆動系
及び前記一対のレーザセンサの一方を移動させる第2の
駆動系と、 前記成形品を、そのレーザ被照射面が前記レーザ照射軸
に直角になるように回転させる回転駆動系と、 前記第1及び第2の駆動系と前記回転駆動系とを制御す
ると共に、前記一対のレーザセンサからの出力信号をサ
ンプリングして前記成形品の厚さ、輪郭、外径に関する
計測値を算出する制御部とを備えたことを特徴とする3
次元曲面成形品の形状計測装置。
6. A shape measuring device for measuring the shape of a molded article having a three-dimensional curved surface by using a laser sensor for irradiating the molded article with a laser to measure the distance, wherein a pair of the laser sensors are provided. A first drive system that is arranged so as to oppose each other so that the laser irradiation axis is on the same straight line, and that moves the molded product so as to periodically cross the laser irradiation axis between the pair of laser sensors; A second drive system that moves one of the first drive system and one of the pair of laser sensors so that the position where the laser beam crosses is sequentially changed, and the molded product, in which the laser irradiation surface is perpendicular to the laser irradiation axis. A rotational drive system for rotating so as to control the first and second drive systems and the rotational drive system, and sampling the output signals from the pair of laser sensors to obtain the thickness of the molded product, Contour, outside 3, characterized in that a control unit for calculating the measured values for
Shape measuring device for three-dimensional curved surface molded products.
JP32204595A 1995-12-11 1995-12-11 Method and equipment for measuring shape of three-dimensional curved surface molding Pending JPH09159418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32204595A JPH09159418A (en) 1995-12-11 1995-12-11 Method and equipment for measuring shape of three-dimensional curved surface molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32204595A JPH09159418A (en) 1995-12-11 1995-12-11 Method and equipment for measuring shape of three-dimensional curved surface molding

Publications (1)

Publication Number Publication Date
JPH09159418A true JPH09159418A (en) 1997-06-20

Family

ID=18139311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32204595A Pending JPH09159418A (en) 1995-12-11 1995-12-11 Method and equipment for measuring shape of three-dimensional curved surface molding

Country Status (1)

Country Link
JP (1) JPH09159418A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530022A1 (en) * 2003-11-10 2005-05-11 TOYO TIRE & RUBBER CO., LTD . Thickness measurement method of a resin joint boot
CN102141389A (en) * 2010-11-22 2011-08-03 无锡透平叶片有限公司 Three-coordinate measuring method of tenon tooth blade
KR101105073B1 (en) * 2009-10-14 2012-01-13 대우조선해양 주식회사 Cavitation erosion test method and device using an inclined propeller dynamometer and propeller model
CN102788670A (en) * 2012-08-16 2012-11-21 中国计量学院 Device for detecting gas valve matching surface of gas meter
CN105444685A (en) * 2015-11-23 2016-03-30 镇江同舟螺旋桨有限公司 Large-scale propeller intelligent detection device
CN105526881A (en) * 2015-12-18 2016-04-27 四川大学 Blade automated detection device based on three-dimensional raster scanning and detection method thereof
CN108020160A (en) * 2017-12-12 2018-05-11 镇江同舟螺旋桨有限公司 Marine propeller blade automatic laser measuring device
CN112013787A (en) * 2020-10-21 2020-12-01 四川大学 Blade three-dimensional contour reconstruction method based on blade self-characteristics
CN112414354A (en) * 2020-12-15 2021-02-26 西安飞机工业(集团)有限责任公司 Method for planning appearance measuring points of curved surface part
CN112626516A (en) * 2020-12-10 2021-04-09 镇江同舟螺旋桨有限公司 Propeller surface forming technology based on laser cladding technology

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530022A1 (en) * 2003-11-10 2005-05-11 TOYO TIRE & RUBBER CO., LTD . Thickness measurement method of a resin joint boot
KR101105073B1 (en) * 2009-10-14 2012-01-13 대우조선해양 주식회사 Cavitation erosion test method and device using an inclined propeller dynamometer and propeller model
CN102141389A (en) * 2010-11-22 2011-08-03 无锡透平叶片有限公司 Three-coordinate measuring method of tenon tooth blade
CN102788670A (en) * 2012-08-16 2012-11-21 中国计量学院 Device for detecting gas valve matching surface of gas meter
CN105444685A (en) * 2015-11-23 2016-03-30 镇江同舟螺旋桨有限公司 Large-scale propeller intelligent detection device
CN105526881A (en) * 2015-12-18 2016-04-27 四川大学 Blade automated detection device based on three-dimensional raster scanning and detection method thereof
CN108020160A (en) * 2017-12-12 2018-05-11 镇江同舟螺旋桨有限公司 Marine propeller blade automatic laser measuring device
CN108020160B (en) * 2017-12-12 2023-11-07 镇江同舟螺旋桨有限公司 Automatic laser measuring device for marine propeller blade
CN112013787A (en) * 2020-10-21 2020-12-01 四川大学 Blade three-dimensional contour reconstruction method based on blade self-characteristics
CN112626516A (en) * 2020-12-10 2021-04-09 镇江同舟螺旋桨有限公司 Propeller surface forming technology based on laser cladding technology
CN112414354A (en) * 2020-12-15 2021-02-26 西安飞机工业(集团)有限责任公司 Method for planning appearance measuring points of curved surface part

Similar Documents

Publication Publication Date Title
JP5350216B2 (en) Processed product measuring apparatus and measuring method
JP4504818B2 (en) Workpiece inspection method
US4974165A (en) Real time machining control system including in-process part measuring and inspection
US20150160049A1 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
JP3467063B2 (en) Coordinate measuring device
EP1792139B1 (en) The use of surface measurement probes
JPS63285407A (en) Flexible cnc-multiple position measuring device
JPH09159418A (en) Method and equipment for measuring shape of three-dimensional curved surface molding
CN102554710A (en) Device and method for measuring rotation angle error of rotary table of machine tool
CN109737884A (en) A kind of quiet dynamic deformation amount on-Line Monitor Device of axial workpiece and method
JP3433710B2 (en) V-groove shape measuring method and apparatus
CN113733102B (en) Error calibration device for industrial robot
US20180203429A1 (en) Controller
JPH03121754A (en) Noncontact tracing control device
JP2009080616A (en) Numerical control device
JP2755346B2 (en) Method and apparatus for measuring motion accuracy of automatic machine tool
JP3880030B2 (en) V-groove shape measuring method and apparatus
JP2006349547A (en) Noncontact type three-dimensional shape measuring method and measuring machine
JPH09160617A (en) Multiaxial simultaneous control system
US20240017365A1 (en) Feed apparatus
JP2001159515A (en) Flatness measuring method and flatness measuring device
CN117470165B (en) Method for measuring radius and cylindrical runout of rotor assembly
JPS63175716A (en) Measuring instrument for tooth profile error
JPH0571907A (en) Cnc control apparatus
JP2010014638A (en) Method and device for measuring v slot shape

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040721