JP2006349547A - Noncontact type three-dimensional shape measuring method and measuring machine - Google Patents

Noncontact type three-dimensional shape measuring method and measuring machine Download PDF

Info

Publication number
JP2006349547A
JP2006349547A JP2005177390A JP2005177390A JP2006349547A JP 2006349547 A JP2006349547 A JP 2006349547A JP 2005177390 A JP2005177390 A JP 2005177390A JP 2005177390 A JP2005177390 A JP 2005177390A JP 2006349547 A JP2006349547 A JP 2006349547A
Authority
JP
Japan
Prior art keywords
movement
contact
data
contact type
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005177390A
Other languages
Japanese (ja)
Other versions
JP2006349547A5 (en
Inventor
Kazuaki Tomita
和明 富田
Satoshi Suzuki
敏 鈴木
Masaki Takabayashi
正樹 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
Pulstec Industrial Co Ltd
Original Assignee
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd, Pulstec Industrial Co Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2005177390A priority Critical patent/JP2006349547A/en
Publication of JP2006349547A publication Critical patent/JP2006349547A/en
Publication of JP2006349547A5 publication Critical patent/JP2006349547A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact type three-dimensional shape measuring method using such a conversion that noncontact type position sensor is attached as a substituting component, in consideration of utilizing a triaxial moving mechanism or the like of a contact type three-dimensional shape measuring machine as a noncontact type component. <P>SOLUTION: Original position calibration data representing a relation between the original position of the noncontact type position sensor 29 and the original position of a head 6 of the contact type three-dimensional shape measuring machine to which a contact type probe is attached fundamentally, are prepared, and commands including a motion start position and a motion end position in a motion range of the triaxial moving mechanism 8 are issued sequentially so as to drive and control driving means 7x, 7y and 7z, and in a process of moving and scanning the head 6, trigger commands are issued to the noncontact type position sensor 29 at a prescribed cycle period, and the original position of the head 6 defined by the motion start position, the motion end position and each motion position at the cycle period, is calibrated so as to correspond to the original position calibration data, and the original position of the noncontact type position sensor 8 is acquired, and then three-dimensional shape data of a car body 9 which is an object to be measured are obtained by noncontact detected position data of the noncontact type position sensor 8 on the original position. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、互いに直交する方向に移動する3軸移動機構に接触式プローブを取付けて移動走査することにより接触式に三次元形状を計測する計測機を、非接触式に三次元形状を計測するように転用するための非接触式三次元形状計測方法及び転用された計測機に関するものである。   The present invention measures a three-dimensional shape in a non-contact manner by using a measuring instrument that measures a three-dimensional shape in a contact manner by attaching a contact probe to a three-axis moving mechanism that moves in directions orthogonal to each other and moving and scanning. It is related with the non-contact-type three-dimensional shape measuring method for diverting, and the diverted measuring machine.

特許文献1等により、互いに直交する3軸方向に移動する3軸移動機構に支持させた触針を逐次移動させつつ計測対象物に当接させて、三次元形状を計測する接触式の三次元形状計測装置は周知である。また、特許文献2等により、レーザ式距離センサを3軸移動機構に支持させて面状に移動走査する非接触式の計測装置も周知である。
特開平10−19504号公報 特開平6−249626号公報
According to Patent Document 1, etc., a contact-type three-dimensional measurement that measures a three-dimensional shape by bringing a stylus supported by a three-axis moving mechanism that moves in three axial directions perpendicular to each other into contact with a measurement object while sequentially moving the stylus. Shape measuring devices are well known. Further, according to Patent Document 2 and the like, a non-contact type measuring apparatus that moves and scans a laser distance sensor in a planar shape with a triaxial moving mechanism is also well known.
Japanese Patent Laid-Open No. 10-19504 JP-A-6-249626

後者の非接触式によれば、計測対象物にセンサを接触させないで移動走査させ得ることにより相体的に高速に計測することができる。しかしながら、接触式三次元形状計測機が既に設備されている場合に、高速化を図るために非接触式三次元形状計測機を導入しようとすると、相応に設備コストが嵩むことになる。   According to the latter non-contact type, it is possible to perform high-speed measurement in a consistent manner by being able to move and scan without bringing the sensor into contact with the measurement object. However, when a contact-type three-dimensional shape measuring machine is already installed, if it is attempted to introduce a non-contact type three-dimensional shape measuring machine in order to increase the speed, the equipment cost will increase accordingly.

本発明は、接触式三次元形状計測機の3軸移動機構等を非接触式として利用できることに着眼して、接触式三次元形状計測機の転用を前提にした非接触式三次元形状計測方法及び計測機を提供することを目的とする。   The present invention pays attention to the fact that the three-axis moving mechanism of a contact type three-dimensional shape measuring machine can be used as a non-contact type, and a non-contact type three-dimensional shape measuring method based on diversion of the contact type three-dimensional shape measuring machine. And to provide a measuring instrument.

本発明は、この目的を達成するために、請求項1により、接触式プローブが取付けられるヘッドと、このヘッドを支持すると共に、計測対象物に対面する水平方向、垂直方向及びこれらの軸に直交する方向に移動する3軸移動機構と、その3軸の移動位置をそれぞれ検知する移動位置センサと、ヘッドを移動走査させるように3軸移動機構を指令された移動位置に駆動する駆動手段とを備えることにより、接触式プローブの計測対象物への当接時点の移動位置センサの検知信号を基に計測対象物の三次元位置を逐次検知して三次元形状を計測するようになった接触式三次元形状計測機を、ヘッドに接触式プローブに代えて所定の二次元又は三次元の検知範囲の位置を検知する非接触式位置センサを取付けて非接触式に三次元形状を計測するように転用するための非接触式三次元形状計測方法であって、ヘッドの原点位置に対する非接触式位置センサの原点位置の原点較正データを予め作成しておき、駆動手段を駆動制御するように3軸移動機構の移動範囲の移動始端位置及び移動終端位置を逐次指令し、ヘッドの移動走査過程において非接触式位置センサに対して所定の繰返し周期でトリガー指令を行い、移動始端位置及び移動終端位置並びに繰返し周期ごとの移動位置で規定されるヘッドの原点位置を原点較正データに対応して較正して非接触式位置センサの原点位置を求めて、この原点位置における非接触式位置センサの非接触検知位置データにより計測対象物の三次元形状データを作成すること特徴とする。   In order to achieve this object, the present invention provides, according to claim 1, a head to which a contact-type probe is attached, and supports the head, and faces the measurement object in the horizontal direction, the vertical direction, and orthogonal to these axes. A three-axis movement mechanism that moves in a moving direction, a movement position sensor that detects the movement position of each of the three axes, and a drive unit that drives the three-axis movement mechanism to the commanded movement position so as to move and scan the head. By providing, the contact type that measures the three-dimensional shape by sequentially detecting the three-dimensional position of the measurement object based on the detection signal of the movement position sensor when the contact type probe contacts the measurement object A non-contact type position sensor that detects the position of a predetermined two-dimensional or three-dimensional detection range is attached to the head instead of the contact type probe, and the three-dimensional shape is measured in a non-contact type. 3 is a non-contact type three-dimensional shape measuring method for diverting to the above, wherein the origin calibration data of the origin position of the non-contact type position sensor with respect to the origin position of the head is created in advance, and the drive means is driven and controlled. The movement start end position and the movement end position of the movement range of the axis movement mechanism are sequentially commanded, and a trigger command is given to the non-contact type position sensor at a predetermined repetition period during the head movement scanning process. In addition, the origin position of the non-contact position sensor is determined by calibrating the origin position of the head defined by the movement position for each repetition cycle in accordance with the origin calibration data, and the non-contact position sensor is not contacted at this origin position. It is characterized in that three-dimensional shape data of the measurement object is created from the detected position data.

3軸移動機構に対して3軸のそれぞれに1個の座標値もしくは少なくとも1軸の座標値で移動始端及び終端位置がそれぞれ指令され、ヘッドを移動走査させる3軸移動機構は各移動範囲の移動始端から終端位置へ順に移動する。その間、非接触式位置センサのトリガー指令ごとに移動位置センサの検知信号が導出されて、その都度非接触式位置センサが位置検知を行う。接触式プローブの原点であるヘッドの原点位置に対して非接触式位置センサの原点位置を較正し、この較正された原点位置における非接触式の検知位置群により走査範囲の三次元形状が計測される。   With respect to the three-axis movement mechanism, the movement start and end positions are each commanded with one coordinate value or at least one coordinate value for each of the three axes, and the three-axis movement mechanism for moving and scanning the head moves each movement range. Move from start to end. Meanwhile, the detection signal of the movement position sensor is derived for each trigger command of the non-contact type position sensor, and the non-contact type position sensor detects the position each time. The origin position of the non-contact position sensor is calibrated with respect to the origin position of the head, which is the origin of the contact probe, and the three-dimensional shape of the scanning range is measured by the non-contact detection position group at the calibrated origin position. The

その際、簡単な転用方法として、請求項2の発明により、接触式三次元形状計測機の移動位置センサがインクリメンタル式のリニアスケールであり、非接触式位置センサの原点位置が、指令した始端位置及び移動終端位置で規定される較正した原点位置と、リニアスケールの移動始端位置から移動終端位置に至る繰返し周期ごとのカウント値とにより求められる。非接触式位置センサの取付け位置を自在にするには、請求項3の発明により、ヘッドが、計測対象物に対面する水平方向及びこの水平方向に直交する水平方向の軸線に対してローリング及びピッチング回転自在であり、ヘッドの原点位置及び非接触式位置センサの原点位置が、それぞれローリング及びピッチング回転角に応じて較正される。非接触式位置センサとしては、請求項4の発明により、非接触式位置センサが、所定の二次元範囲の距離をレーザ光に扇形走査により検知するレーザセンサを用いることができる。   At that time, as a simple diversion method, according to the invention of claim 2, the movement position sensor of the contact type three-dimensional shape measuring instrument is an incremental linear scale, and the origin position of the non-contact type position sensor is the commanded start end position. And the calibrated origin position defined by the movement end position and the count value for each repetition period from the movement start position of the linear scale to the movement end position. In order to make the mounting position of the non-contact type position sensor freely, according to the invention of claim 3, the head is rolled and pitched with respect to a horizontal direction facing the measurement object and a horizontal axis perpendicular to the horizontal direction. It is rotatable and the origin position of the head and the origin position of the non-contact type position sensor are calibrated according to the rolling and pitching rotation angles, respectively. As the non-contact type position sensor, according to the invention of claim 4, the non-contact type position sensor can use a laser sensor that detects a distance in a predetermined two-dimensional range by a sector scan to the laser beam.

請求項1の方法を実施する装置としては、請求項5により、ヘッドの原点位置に対して非接触式位置センサの原点位置を較正するための原点較正データを格納する原点較正データ格納手段と、駆動手段を駆動制御するように3軸移動機構の移動範囲の移動始端位置及び移動終端位置を逐次指令する移動範囲指令手段と、ヘッドの移動走査過程において非接触式位置センサに対して所定の繰返し周期でトリガー指令を行う検知指令手段と、繰返し周期ごとに移動位置センサの検知信号に応答して移動範囲内の3軸の移動位置データを作成する移動位置データ作成手段と、前記移動始端位置データ及び前記移動終端位置データ並びに前記移動位置データで規定される前記ヘッドの原点位置データを前記原点較正データに対応して較正して前記非接触式位置センサの原点位置データを作成し、この原点位置データについての前記非接触式位置センサの非接触検知位置データにより前記計測対象物の三次元形状データを作成する形状データ作成手段と、を備えたことを特徴とする。その際、簡単な転用のために、請求項6の発明により、接触式三次元形状計測機の移動位置センサがインクリメンタル式のリニアスケールであり、形状データ作成手段が、非接触式位置センサの原点位置データを、指令した移動始端位置データ及び移動終端位置データで規定される較正された原点位置データと、移動始端位置及び移動終端位置間におけるリニアスケールの繰返し周期ごとのカウント値である移動位置データで規定した原点位置データとで作成する。   According to claim 5, an apparatus for performing the method of claim 1 includes origin calibration data storage means for storing origin calibration data for calibrating the origin position of the non-contact position sensor with respect to the origin position of the head; A movement range command means for sequentially commanding the movement start end position and the movement end position of the movement range of the three-axis movement mechanism so as to control the drive means, and a non-contact type position sensor in a predetermined repetition manner during the head movement scanning process. Detection command means for issuing a trigger command at a period; movement position data creation means for creating movement position data for three axes within a movement range in response to a detection signal of the movement position sensor for each repetition period; and the movement start end position data And the movement end position data and the origin position data of the head defined by the movement position data are calibrated corresponding to the origin calibration data, and the non-contact Shape data creating means for creating origin position data of the position sensor, and creating three-dimensional shape data of the measurement object based on the non-contact detection position data of the non-contact position sensor for the origin position data. It is characterized by that. At this time, for easy diversion, according to the invention of claim 6, the movement position sensor of the contact type three-dimensional shape measuring instrument is an incremental linear scale, and the shape data creation means is the origin of the non-contact type position sensor. The position data includes the calibrated origin position data defined by the commanded movement start position data and movement end position data, and movement position data that is a count value for each repetition cycle of the linear scale between the movement start position and the movement end position. Created with the origin position data specified in.

請求項1又は請求項5の発明によれば、接触式三次元形状計測機の回路装置部分を改造もしくは追加することにより、接触式三次元形状計測機の3軸移動機構を単位走査範囲で連続移動させると共に、その移動位置センサの検知信号を導出して、そのサンプリング時点の検知信号による移動位置と非接触式位置センサの非接触検知位置とにより、非接触式の三次元形状計測が可能になる。つまり、設備コストを節約して接触式から非接触式への転用が可能になる。その際、請求項2又は請求項6の発明によれば、接触式三次元形状計測機が移動位置センサとしてインクリメンタル式リニアスケールを備えることを前提に、その検知信号を取込むことにより、非接触式の三次元形状計測データが一層簡単な付加回路により作成可能になる。請求項3の発明によれば接触式プローブのヘッドが回転自在式である場合でも転用可能になり、請求項4の発明によれば単位走査範囲につき帯状の計測データが得られる。   According to the first or fifth aspect of the invention, the three-axis moving mechanism of the contact type three-dimensional shape measuring instrument is continuously operated in the unit scanning range by remodeling or adding the circuit device portion of the contact type three-dimensional shape measuring instrument. Along with the movement, the detection signal of the movement position sensor is derived, and non-contact type three-dimensional shape measurement is possible by the movement position based on the detection signal at the sampling time and the non-contact detection position of the non-contact type position sensor Become. That is, it is possible to divert from the contact type to the non-contact type while saving the equipment cost. In that case, according to the invention of claim 2 or claim 6, it is assumed that the contact-type three-dimensional shape measuring machine is provided with an incremental linear scale as a movement position sensor, and that the non-contact is obtained by taking the detection signal. The three-dimensional shape measurement data of the formula can be created by a simpler additional circuit. According to the invention of claim 3, even if the head of the contact probe is rotatable, it can be diverted, and according to the invention of claim 4, belt-like measurement data can be obtained per unit scanning range.

図1乃至図3を基に本発明の実施の形態による非接触式三次元形状計測方法を実施する計測機を説明する。接触式三次元形状計測機は、図2に示す感圧素子を先端に備えた接触式プローブ39が着脱自在に取付けられる回転式のヘッド6を3軸移動機構8に支持するように構成されて、計測対象物として例えば車両ボデー9を載置させる基台1の両側に配置されている。この3軸移動機構は、計測対象物として例えば車両ボデー9を載置させる基台1の両側に配置されたX軸方向のガイドレール2と、先端部にヘッド6を備えて、車両ボデー9に離接する水平方向のY軸に沿って可動のロッド状のセンサ支持キャリッジ4と、このキャリッジを垂直のZ軸に沿って昇降可能にガイドし、かつガイドレール2にX軸方向に可動にガイドされているスライダ式キャリッジ3とより構成されている。   A measuring machine that implements a non-contact type three-dimensional shape measuring method according to an embodiment of the present invention will be described with reference to FIGS. The contact-type three-dimensional shape measuring machine is configured to support a rotary head 6 on which a contact-type probe 39 having a pressure-sensitive element shown in FIG. For example, it is arrange | positioned at the both sides of the base 1 on which the vehicle body 9 is mounted as a measurement object. This three-axis movement mechanism includes, for example, guide rails 2 in the X-axis direction disposed on both sides of a base 1 on which a vehicle body 9 is placed as a measurement object, and a head 6 at a tip portion. A rod-shaped sensor support carriage 4 that is movable along the horizontal Y axis that is in contact with and away from the vehicle, and is guided by the guide rail 2 so as to be movable in the X axis direction while being guided up and down along the vertical Z axis. And a slider type carriage 3.

ガイドレール2には、移動位置センサとしてリニアスケール5x及びアクチュエータ6xが付属したX軸移動機構を内蔵し、その移動位置検知信号が指令信号に一致するように駆動手段7xにより駆動される。スライダ式キャリッジ3は、センサ支持キャリッジ4をZ軸方向に昇降させるZ軸移動機構を内蔵してリニアスケール5z及びアクチュエータ6zが付属し、同様に駆動手段7zによりサーボ制御される。さらに、スライダ式キャリッジ3は、センサ支持キャリッジ4をY軸方向に進退させるY軸移動機構を内蔵してリニアスケール5y及びアクチュエータ6yが付属し、駆動手段7yによりサーボ制御される。   The guide rail 2 incorporates an X-axis movement mechanism with a linear scale 5x and an actuator 6x as movement position sensors, and is driven by the drive means 7x so that the movement position detection signal coincides with the command signal. The slider carriage 3 incorporates a Z-axis moving mechanism that moves the sensor support carriage 4 up and down in the Z-axis direction, and includes a linear scale 5z and an actuator 6z, and is similarly servo-controlled by the driving means 7z. Further, the slider carriage 3 has a built-in Y-axis moving mechanism for moving the sensor support carriage 4 back and forth in the Y-axis direction, is attached with a linear scale 5y and an actuator 6y, and is servo-controlled by the driving means 7y.

接触式プローブ39が取付けられるヘッド6の基部は、X軸に沿った軸線を中心にピッチング回転自在で、かつY軸に沿った軸線を中心にローリング回転自在であり、計測に際してこれらの回転角を適宜設定して、接触式プローブ39を逐次計測対象物に当接させつつ3軸移動機構8を面状に移動させることにより、三次元形状が接触式に計測されるようになっている。   The base of the head 6 to which the contact type probe 39 is attached is capable of rotating by pitching around an axis along the X axis and rolling by rotating around an axis along the Y axis. The three-dimensional shape is measured in a contact manner by appropriately setting and moving the three-axis movement mechanism 8 in a planar shape while sequentially bringing the contact probe 39 into contact with the measurement object.

このような接触式三次元形状計測機を非接触式に転用するために、ヘッド6に、例えばレーザビームの扇形走査により10cm前後のライン状2次元範囲の位置もしくは形状を三角測量の原理で検知する非接触式位置センサ29が、代わりに取付けられると共に、これらを制御する回路装置として、パソコン10を付属させる。このパソコンには、接触式で作動させるプログラムを一部共用すると共に、プログラムを追加して内蔵のメモリ、CPU等を非接触式に作動させて、下記の各手段を構成するように機能させると共に、キーボード、マウス等の入力操作部11、ディスプレイ部12、プリンタ13が付属している。このような非接触式三次元形状計測機は、基台1の反対側にも配置される。   In order to divert such a contact type three-dimensional shape measuring machine to a non-contact type, the position or shape of a linear two-dimensional range of about 10 cm is detected on the head 6 by, for example, fan scanning of a laser beam based on the principle of triangulation. A non-contact position sensor 29 is attached instead, and the personal computer 10 is attached as a circuit device for controlling them. This personal computer shares a part of the program to be operated in a contact type, and the program is added to operate the built-in memory, CPU, etc. in a non-contact type to function as the following means. An input operation unit 11 such as a keyboard and a mouse, a display unit 12 and a printer 13 are attached. Such a non-contact type three-dimensional shape measuring machine is also arranged on the opposite side of the base 1.

即ち、ヘッド6の回転位置をサーボ制御により設定するために付属の制御部6aに回転位置指令を行うヘッド位置指令手段28と、本来接触式プローブ39の回転中心位置である原点位置になるへッド6の原点位置を3軸移動機構8の機械的な誤差に対応した補正データを格納する補正データ格納手段23bと、車両ボデー9に対してヘッド6を移動走査させて非接触式位置センサ29の検知範囲を移動させるように、3軸移動機構8の移動範囲の始端位置及び終端位置を駆動手段7x,7y,7zに逐次指令する移動範囲指令手段20と、3軸移動機構8が指令された終端位置へ移動する過程において、非接触式位置センサ29に付属の制御部29aに対してトリガー指令を所定の繰返し周期に行う検知指令手段21と、その繰返し周期ごとにリニアスケール5x,5y,5zの検知信号のカウント部22aにおけるカウント値に応答して移動範囲内の3軸それぞれの移動位置データを作成する移動位置データ作成手段22と、ヘッド6の回転位置で規定されるへッド6の原点位置に対して非接触式位置センサ29の原点位置を較正するための原点較正データを格納する原点較正データ格納手段26と、移動範囲の始端・終端位置を規定する3軸の移動位置について前述の補正データで補正し、また非接触式位置センサ29の原点位置として較正された三次元座標値を作成すると共に、これらの取得した三次元座標値と、その間を等分して発生するリニアスケール5x,5y,5zのカウント値による移動位置データを基に非接触式位置センサ29の原点位置データを作成し、その各原点位置における非接触式位置センサ29による非接触式検知位置データにより計測対象物の三次元形状データを作成する形状データ作成手段23と、作成した三次元形状データを格納する形状データ格納手段24と、ディスプレイ部12の2次元画面又は仮想三次元画面における対応位置に三次元形状の三次元座標値をポイント表示させる表示制御手段25と備えるように機能する。   That is, in order to set the rotational position of the head 6 by servo control, the head position command means 28 that issues a rotational position command to the attached control unit 6 a and the head position that is the original origin position that is the rotational center position of the contact probe 39. Correction data storage means 23b for storing correction data corresponding to the mechanical error of the triaxial moving mechanism 8 and the non-contact type position sensor 29 by moving the head 6 relative to the vehicle body 9 The movement range command means 20 for sequentially instructing the drive means 7x, 7y, and 7z of the start end position and the end position of the movement range of the triaxial movement mechanism 8 and the triaxial movement mechanism 8 are instructed so as to move the detection range. In the process of moving to the end position, the detection command means 21 for issuing a trigger command to the control unit 29a attached to the non-contact type position sensor 29 at a predetermined repetition period, and the repetition period The moving position data generating means 22 for generating the moving position data of each of the three axes in the moving range in response to the count value in the counting unit 22a of the detection signals of the linear scales 5x, 5y, 5z, and the rotational position of the head 6 Origin calibration data storage means 26 for storing origin calibration data for calibrating the origin position of the non-contact type position sensor 29 with respect to the origin position of the defined head 6 and the start / end positions of the movement range are defined. The three-axis movement position is corrected with the correction data described above, and a three-dimensional coordinate value calibrated as the origin position of the non-contact type position sensor 29 is created. The origin position data of the non-contact type position sensor 29 is created based on the movement position data based on the count values of the linear scales 5x, 5y, and 5z that are equally divided. Shape data creation means 23 for creating three-dimensional shape data of the measurement object based on non-contact detection position data by the non-contact type position sensor 29 at each origin position, and shape data storage means 24 for storing the created three-dimensional shape data. And a display control means 25 for displaying the three-dimensional coordinate value of the three-dimensional shape as a point at a corresponding position on the two-dimensional screen or the virtual three-dimensional screen of the display unit 12.

移動範囲指令手段20において、始端位置及び終端位置は、3軸方向にそれぞれ1個設定され、場合により2軸は不変で1軸方向のみ設定される。例えば、X軸方向に車両ボデー9の前後幅に対応して始端位置及び終端位置を設定し、その移動に伴ってボデー側面の変化形状に応じてY軸方向にも移動させることができる。さらに、次の単位走査範囲は、終端位置で非接触式位置センサ29の検知範囲に対応する分だけZ軸方向へ下降させて、X軸方向へ復動させるように設定する。以下、同様に複数の単位走査範囲で面状に移動走査されるように設定される。このように機能する移動範囲指令手段20は、接触式のプログラムを流用することができる。尚、移動範囲指令手段20は、移動位置指令を行うと共に、移動位置検知センサが検知した移動位置との差分データも作成することにより、駆動手段7x、7y、7zは単にその差分データに応じて駆動制御するようにも構成できる。   In the movement range command means 20, one start position and one end position are set in each of the three axis directions, and in some cases, the two axes are unchanged and are set only in the one axis direction. For example, the start end position and the end position can be set in the X-axis direction corresponding to the front-rear width of the vehicle body 9 and can be moved in the Y-axis direction according to the change shape of the body side surface along with the movement. Further, the next unit scanning range is set so that it is lowered in the Z-axis direction by an amount corresponding to the detection range of the non-contact type position sensor 29 at the end position and is moved back in the X-axis direction. Thereafter, similarly, the scanning is set so as to be moved and scanned in a planar manner within a plurality of unit scanning ranges. The moving range command means 20 that functions in this way can use a contact-type program. The movement range command unit 20 issues a movement position command and also creates difference data from the movement position detected by the movement position detection sensor, so that the driving units 7x, 7y, and 7z simply correspond to the difference data. It can also be configured to drive control.

補正データ格納手段23bには、3軸移動機構8の移動位置を基にヘッド6の原点位置、即ち本来の接触式プローブ39の原点位置の三次元座標値が規定される際に、3軸のそれぞれの撓み或は温度等の影響で僅かに変動する位置誤差を考慮して、それぞれの軸の所定移動範囲ごとに原点位置の三次元座標値に対する補正データが格納されている。同様に、接触式のプログラムを流用することができる。   When the three-dimensional coordinate value of the origin position of the head 6, that is, the origin position of the original contact probe 39, is defined in the correction data storage unit 23 b based on the movement position of the three-axis movement mechanism 8. In consideration of a position error that varies slightly due to the influence of each deflection or temperature, correction data for the three-dimensional coordinate value of the origin position is stored for each predetermined movement range of each axis. Similarly, a contact-type program can be used.

検知指令手段21は、非接触式位置センサ29に付属の制御部29aに1本ごとのレーザ光走査を外部トリガーで作動させるためのトリガー指令を所定の繰返し周期で行う。これにより、その都度Z軸方向の所定範囲の位置データが検知され、単位移動範囲について帯状に面走査が行われる。繰返し周期は、レーザ光による検知速度及び3軸移動機構8の移動速度に対応して、所定の計測精度を確保できるように設定されている。例えば数100μmの移動ピッチでトリガー指令されるように設定される。   The detection command means 21 performs a trigger command for causing the control unit 29a attached to the non-contact position sensor 29 to operate each laser beam scanning with an external trigger at a predetermined repetition cycle. As a result, position data in a predetermined range in the Z-axis direction is detected each time, and surface scanning is performed in a band shape for the unit movement range. The repetition period is set so as to ensure a predetermined measurement accuracy corresponding to the detection speed by the laser beam and the movement speed of the triaxial movement mechanism 8. For example, the trigger command is set at a moving pitch of several hundred μm.

移動位置データ作成手段22は、単位移動量ごとにパルスを出力するリニアスケール5x,5y,5zのインクリメンタル信号をカウントするカウント部22aのカウント値を検知指令手段21の繰返し周期ごとに取込んで3軸の移動範囲を当分する移動位置データを作成する。   The movement position data creation means 22 takes in the count value of the count unit 22a that counts the incremental signals of the linear scales 5x, 5y, and 5z that output pulses for each unit movement amount at every repetition cycle of the detection command means 21. Create the movement position data for the axis movement range for the time being.

原点較正データ格納手段26には、ヘッド6のローリング及びピッチング角に応じてその原点位置が変動する可能性があるために、その較正データが格納されると共に、この変動する原点位置に対して非接触式位置センサ29の原点位置の三次元座標値を較正する演算式を原点位置較正データとして格納されている。特に、ヘッド6が非回転式、或は可変範囲が狭い場合、原点位置較正データとして演算式に代えて単に換算テーブルを格納しておくこともできる。   Since the origin position may vary depending on the rolling and pitching angle of the head 6, the origin calibration data storage means 26 stores the calibration data, and the origin calibration data storage means 26 is non-related to the varying origin position. An arithmetic expression for calibrating the three-dimensional coordinate value of the origin position of the contact position sensor 29 is stored as origin position calibration data. In particular, when the head 6 is non-rotating or has a narrow variable range, the conversion table can be simply stored as the origin position calibration data instead of the arithmetic expression.

形状データ作成手段23は、そのデータ格納部23aに、移動範囲指令手段20から移動始端・終端位置データ、補正データ格納手段23bの温度に対応した補正データ及びヘッド位置指令手段28の指令した回転位置データを取込むと共に、移動位置データ作成手段22の3軸の移動位置データを取込む。そして、指令した移動始端・終端位置につき、補正データで誤差補正し、ヘッド6のローリング及びピッチング角に応じて原点較正データ格納手段26に格納された較正データに応じてヘッド6の原点位置の三次元座標値を求めると共に、次いでローリング及びピッチング角に応じて原点較正データ格納手段26に格納された演算式を基にヘッド6の原点位置から非接触式位置センサ29の原点位置の三次元座標値を取得する。さらに、この間に分布する移動位置データ作成手段22で作成された3軸の移動位置データと併せて原点位置データを作成する。さらに、トリガー指令ごとに非接触式位置センサ29のZ軸方向の所定範囲の非接触式検知位置データを制御部29aから取込んで、帯状走査範囲の三次元形状データを作成して形状データ格納手段24に格納する。   The shape data creating means 23 stores the rotation start / end position data from the movement range command means 20, correction data corresponding to the temperature of the correction data storage means 23b, and the rotational position commanded by the head position command means 28 in the data storage section 23a. The data is taken in, and the movement position data of the three axes of the movement position data creation means 22 is taken in. Then, with respect to the commanded movement start / end positions, error correction is performed with the correction data, and the origin position of the head 6 is tertiary according to the calibration data stored in the origin calibration data storage means 26 according to the rolling and pitching angles of the head 6. The original coordinate value is obtained, and then the three-dimensional coordinate value from the origin position of the head 6 to the origin position of the non-contact type position sensor 29 based on the arithmetic expression stored in the origin calibration data storage means 26 according to the rolling and pitching angles. To get. Further, the origin position data is created together with the three-axis movement position data created by the movement position data creation means 22 distributed in the meantime. Further, for each trigger command, non-contact detection position data in a predetermined range in the Z-axis direction of the non-contact position sensor 29 is fetched from the control unit 29a, and three-dimensional shape data of the belt-like scanning range is created and stored as shape data. Store in the means 24.

表示制御手段25は、ヘッド6が移動走査範囲の終端位置に達するごとに、単位走査範囲について作成されて形状データ格納手段24に格納された三次元座標値で規定された形状データをディスプレイ部12の画面上の座標系にプロットし、順に単位走査範囲ごとに三次元形状がポイント群で表示する。また、入力操作部11での選択操作により種々の画像が表示可能であり、例えば側面と上面とを併せた三次元形状を仮想三次元画面に表示する。両側の非接触式三次元形状計測機の計測が終了した時点で、車両ボデー9の全面の形状を回転式に表示する。   Each time the head 6 reaches the end position of the moving scanning range, the display control means 25 displays the shape data defined by the three-dimensional coordinate values created for the unit scanning range and stored in the shape data storage means 24 on the display unit 12. Are plotted in a coordinate system on the screen, and a three-dimensional shape is displayed as a point group for each unit scanning range. Also, various images can be displayed by a selection operation on the input operation unit 11. For example, a three-dimensional shape combining a side surface and an upper surface is displayed on a virtual three-dimensional screen. When the measurement by the non-contact type three-dimensional shape measuring machines on both sides is completed, the entire shape of the vehicle body 9 is displayed in a rotary manner.

このように構成された非接触式三次元形状計測機の動作を図3のフローチャートを参照して説明する。パソコン10において、予め入力操作部11により、単位移動範囲ごとにその始端位置及び終端位置を順に設定し、ヘッド6の回転位置を指示しておく。例えば、車両ボデー9の側面前部から後方へに向けてX軸に沿って移動し、その端部においては側面形状の変化に応じてY軸方向にも多少移動させる。また、Z軸方向へシフトさせつつX軸方向で往復動させる。計測に際して周囲温度を入力する。ヘッド6の回転位置は、単位走査範囲の切換え時に車両ボデー9の表面形状に応じて変更することができる。   The operation of the non-contact type three-dimensional shape measuring machine configured as described above will be described with reference to the flowchart of FIG. In the personal computer 10, the input operation unit 11 sets the start end position and the end position in order for each unit movement range in advance, and instructs the rotation position of the head 6. For example, the vehicle body 9 moves from the front side to the rear side along the X axis, and at the end, the vehicle body 9 is also moved slightly in the Y axis direction in accordance with the change in the side shape. Further, it is reciprocated in the X-axis direction while shifting in the Z-axis direction. Enter the ambient temperature for measurement. The rotational position of the head 6 can be changed according to the surface shape of the vehicle body 9 when the unit scanning range is switched.

次いで、動作開始を指示すると、カウント部22aのリセットの初期化が行われ、指令した移動範囲の移動始端位置について、ヘッド6のローリング及びピッチング角に応じたヘッド6の原点位置を誤差補正し、本来の接触式プローブ39の原点位置データから非接触式位置センサ29の原点位置データとして較正された正規の三次元座標値を取得しておく。ヘッド6が移動走査を開始し、非接触式位置センサ29は、そのトリガー指令ごとにZ軸方向の所定範囲の位置検知を行い、その都度リニアスケール5x,5y,5zのカウント値を取込むことにより、細かい移動ピッチで移動走査範囲について3軸移動機構8の移動位置データが作成される。移動終端位置に達した時点で、その移動終端位置の誤差補正及び較正された三次元座標値を取得する。これらの始端・終端の三次元座標値及びこれらの間を等分する移動位置データにより、非接触式位置センサ29の原点位置データが作成される。これにより、この原点位置データを基準にした所属のZ軸範囲の非接触検知位置データに応じて車両ボデー9の側面に対する帯状の三次元形状の計測データが得られる。因みに、本来の接触式三次元形状計測機からは接触式プローブ39が当接したときのみ三次元座標値が取得されるために、非接触式位置センサ29のトリガー指令ごとの原点位置データの取得は不可能である。   Next, when the operation start is instructed, the reset of the count unit 22a is initialized, and the origin position of the head 6 corresponding to the rolling and pitching angle of the head 6 is corrected for errors with respect to the movement start end position of the commanded movement range. A normal three-dimensional coordinate value calibrated as the origin position data of the non-contact type position sensor 29 is acquired from the origin position data of the original contact type probe 39. The head 6 starts moving scanning, and the non-contact position sensor 29 detects a position within a predetermined range in the Z-axis direction for each trigger command, and takes in the count values of the linear scales 5x, 5y, and 5z each time. Thus, the movement position data of the triaxial movement mechanism 8 is created for the movement scanning range with a fine movement pitch. When the movement end position is reached, error correction and calibrated three-dimensional coordinate values of the movement end position are acquired. The origin position data of the non-contact type position sensor 29 is created from the three-dimensional coordinate values of the start and end points and the movement position data that equally divides them. Thereby, the measurement data of the strip | belt-shaped three-dimensional shape with respect to the side surface of the vehicle body 9 is obtained according to the non-contact detection position data of the belonging Z-axis range on the basis of this origin position data. Incidentally, since the three-dimensional coordinate value is acquired from the original contact-type three-dimensional shape measuring instrument only when the contact-type probe 39 comes into contact, acquisition of the origin position data for each trigger command of the non-contact type position sensor 29 is acquired. Is impossible.

これにより、帯状範囲の形状データが、ディスプレイ部12の座標系におけるそれぞれの三次元座標値に対応する位置にポイント群で表示される。接触式に比べて短時間に高密度に計測データが表示される。以下、ヘッド6の移動走査範囲が逐次シフトされることにより、側面全域の計測データが表示される。同様に、車両ボデー9の上面の計測も行われ。反対側非接触式三次元形状計測機でも計測され、全ての面について計測が終了した時点で、反対側の計測データも合成することにより、ディスプレイ部12の仮想三次元画面において車両ボデー9の全域の形状を回転表示させて確認できる。   Thereby, the shape data of the belt-shaped range is displayed as a point group at a position corresponding to each three-dimensional coordinate value in the coordinate system of the display unit 12. Measurement data is displayed in high density in a short time compared to the contact type. Hereinafter, the measurement data of the entire side surface is displayed by sequentially shifting the moving scanning range of the head 6. Similarly, the upper surface of the vehicle body 9 is also measured. It is also measured by the opposite non-contact type three-dimensional shape measuring machine, and when all the surfaces have been measured, the whole area of the vehicle body 9 is displayed on the virtual three-dimensional screen of the display unit 12 by combining the measurement data on the opposite side. This can be confirmed by rotating and displaying the shape.

尚、前述の実施の形態において、ヘッド6のローリング及びピッチング角はサーボ制御により設定されるものとして説明したが、嵩張らない構造にするために、回転位置センサを付設することなく、オープンループで回転角を制御する方式の場合、誤差が大きくなる可能性があり、非接触式位置センサ29の原点位置の較正が複雑になる可能性がある。このような三次元形状計測機のセンサ原点のキャリブレーション方法は、本出願人より、特願2004−357929により提案されている。   In the above-described embodiment, the rolling and pitching angles of the head 6 have been described as being set by servo control. However, in order to make the structure less bulky, the head 6 rotates in an open loop without a rotational position sensor. In the case of the method of controlling the angle, there is a possibility that the error becomes large, and the calibration of the origin position of the non-contact type position sensor 29 may be complicated. A calibration method of the sensor origin of such a three-dimensional shape measuring machine has been proposed by the present applicant in Japanese Patent Application No. 2004-357929.

さらに、パソコン10に、入力操作部11で併せて操作できるように接触式のプログラムも並存させて置くことにより、特に高精度の計測を行う必要がある場合に、接触式プローブ39を装着してパソコン10の動作を切換えることにより、接触式三次元形状計測機として機能させることもできる。尚、パソコンを別途に用意して、本来の装置から移動範囲の移動始端位置及び移動終端位置データ、リニアスケールの検知信号等を取込むことにより、非接触式三次元形状計測機を構成するようにもできる。また、非接触式位置センサとしては、面範囲を位置検知するセンサを採用して、ヘッドを相応に移動走査させることにより、同様に非接触式三次元形状計測機を構成することもできる。   Furthermore, by placing a contact-type program on the personal computer 10 so that the input operation unit 11 can be operated together, the contact-type probe 39 is attached when particularly high-precision measurement is required. By switching the operation of the personal computer 10, it can also function as a contact-type three-dimensional shape measuring machine. A non-contact 3D shape measuring machine is configured by preparing a personal computer separately and importing the movement start position and movement end position data of the movement range, the detection signal of the linear scale, etc. from the original device. You can also. Further, as the non-contact type position sensor, a non-contact type three-dimensional shape measuring machine can be similarly configured by adopting a sensor for detecting the position of the surface range and moving the head accordingly.

本発明の実施の形態による非接触式三次元形状計測機の構成を説明する図である。It is a figure explaining the structure of the non-contact-type three-dimensional shape measuring machine by embodiment of this invention. 同非接触式三次元形状計測機のヘッドに本来取付けられるべき接触式プローブ部分を示す斜視図である。It is a perspective view which shows the contact-type probe part which should be originally attached to the head of the non-contact-type three-dimensional shape measuring machine. 同非接触式三次元形状計測機の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the non-contact-type three-dimensional shape measuring machine.

符号の説明Explanation of symbols

6 ヘッド
8 3軸移動機構
9 車両ボデー
10 パソコン
11 入力操作部
12 ディスプレイ部
29 非接触式位置センサ
39 接触式プローブ
6 head 8 triaxial moving mechanism 9 vehicle body 10 personal computer 11 input operation unit 12 display unit 29 non-contact type position sensor 39 contact type probe

Claims (6)

接触式プローブが取付けられるヘッドと、このヘッドを支持すると共に、計測対象物に対面する水平方向、垂直方向及びこれらの軸に直交する方向に移動する3軸移動機構と、その3軸の移動位置をそれぞれ検知する移動位置センサと、ヘッドを移動走査させるように3軸移動機構を指令された移動位置に駆動する駆動手段とを備えることにより、接触式プローブの計測対象物への当接時点の移動位置センサの検知信号を基に計測対象物の三次元位置を逐次検知して三次元形状を計測するようになった接触式三次元形状計測機を、ヘッドに接触式プローブに代えて所定の二次元又は三次元の検知範囲の位置を検知する非接触式位置センサを取付けて非接触式に三次元形状を計測するように転用するための非接触式三次元形状計測方法であって、
前記ヘッドの原点位置に対する前記非接触式位置センサの原点位置の原点較正データを予め作成しておき、
前記駆動手段を駆動制御するように前記3軸移動機構の移動範囲の移動始端位置及び移動終端位置を逐次指令し、
前記ヘッドの前記移動走査過程において前記非接触式位置センサに対して所定の繰返し周期でトリガー指令を行い、
前記移動始端位置及び前記移動終端位置並びに前記繰返し周期ごとの前記移動位置で規定される前記ヘッドの原点位置を前記原点較正データに対応して較正して前記非接触式位置センサの原点位置を求めて、この原点位置における前記非接触式位置センサの非接触検知位置データにより前記計測対象物の三次元形状データを作成すること特徴とする非接触式三次元形状計測方法。
A head to which a contact probe is attached, a three-axis movement mechanism that supports the head and moves in a horizontal direction, a vertical direction, and a direction perpendicular to these axes facing the measurement object, and a movement position of the three axes And a driving means for driving the three-axis movement mechanism to the commanded movement position so as to move and scan the head, respectively. A contact-type three-dimensional shape measuring machine adapted to measure the three-dimensional shape by sequentially detecting the three-dimensional position of the measurement object based on the detection signal of the moving position sensor is replaced with a predetermined probe instead of a contact type probe on the head. A non-contact type three-dimensional shape measuring method for diverting to measure a three-dimensional shape in a non-contact manner by attaching a non-contact type position sensor for detecting the position of a two-dimensional or three-dimensional detection range.
The origin calibration data of the origin position of the non-contact position sensor with respect to the origin position of the head is created in advance,
Sequentially instructing the movement start end position and movement end position of the movement range of the three-axis movement mechanism so as to drive-control the drive means;
In the moving scanning process of the head, a trigger command is given to the non-contact position sensor at a predetermined repetition cycle,
The origin position of the non-contact position sensor is obtained by calibrating the origin position of the head defined by the movement start end position, the movement end position, and the movement position for each repetition period in accordance with the origin calibration data. Then, the non-contact type three-dimensional shape measurement method is characterized in that the three-dimensional shape data of the measurement object is created from the non-contact detection position data of the non-contact type position sensor at the origin position.
接触式三次元形状計測機の移動位置センサがインクリメンタル式のリニアスケールであり、
非接触式位置センサの原点位置が、指令した始端位置及び移動終端位置で規定される較正した前記原点位置と、前記リニアスケールの前記移動始端位置から前記移動終端位置に至る繰返し周期ごとのカウント値とにより求められることを特徴とする請求項1記載の非接触式三次元形状計測方法。
The moving position sensor of the contact type 3D shape measuring machine is an incremental linear scale,
The origin position of the non-contact type position sensor is the calibrated origin position defined by the commanded start end position and movement end position, and the count value for each repetition cycle from the movement start end position of the linear scale to the movement end position. The non-contact type three-dimensional shape measuring method according to claim 1, wherein
ヘッドが、計測対象物に対面する水平方向及びこの水平方向に直交する水平方向の軸線に対してローリング及びピッチング回転自在であり、ヘッドの原点位置及び非接触式位置センサの原点位置が、それぞれ前記ローリング及び前記ピッチング回転角に応じて較正されることを特徴とする請求項1又は請求項2記載の非接触式三次元形状計測方法。   The head can be rotated and pitched with respect to a horizontal direction facing the measurement object and a horizontal axis perpendicular to the horizontal direction, and the origin position of the head and the origin position of the non-contact position sensor are respectively The non-contact type three-dimensional shape measuring method according to claim 1, wherein calibration is performed according to rolling and the pitching rotation angle. 非接触式位置センサが、所定の二次元範囲の距離をレーザ光に扇形走査により検知するレーザセンサであることを特徴とする請求項1又は請求項2又は請求項3記載の非接触式三次元形状計測方法。   4. The non-contact type three-dimensional sensor according to claim 1, wherein the non-contact type position sensor is a laser sensor that detects a distance in a predetermined two-dimensional range by means of fan-shaped scanning with laser light. Shape measurement method. 接触式プローブが取付けられるヘッドと、このヘッドを支持すると共に、計測対象物に対面する水平方向、垂直方向及びこれらの軸に直交する方向に移動する3軸移動機構と、その3軸の移動位置をそれぞれ検知する移動位置センサと、ヘッドを移動走査させるように3軸移動機構を指令された移動位置に駆動する駆動手段とを備えることにより、接触式プローブの計測対象物への当接時点の移動位置センサの検知信号を基に計測対象物の三次元位置を逐次検知して三次元形状を計測するようになった接触式三次元形状計測機を、ヘッドに接触式プローブに代えて所定の二次元又は三次元の検知範囲の位置を検知する非接触式位置センサを取付けて非接触式に三次元形状を計測するように転用した非接触式三次元形状計測装置であって、
前記ヘッドの原点位置に対して前記非接触式位置センサの原点位置を較正するための原点較正データを格納する原点較正データ格納手段と、前記駆動手段を駆動制御するように前記3軸移動機構の移動範囲の移動始端位置及び移動終端位置を逐次指令する移動範囲指令手段と、前記ヘッドの前記移動走査過程において前記非接触式位置センサに対して所定の繰返し周期でトリガー指令を行う検知指令手段と、前記繰返し周期ごとに前記移動位置センサの検知信号に応答して前記移動範囲内の3軸の移動位置データを作成する移動位置データ作成手段と、前記移動始端位置データ及び前記移動終端位置データ並びに前記移動位置データで規定される前記ヘッドの原点位置データを前記原点較正データに対応して較正して前記非接触式位置センサの原点位置データを作成し、この原点位置データについての前記非接触式位置センサの非接触検知位置データにより前記計測対象物の三次元形状データを作成する形状データ作成手段と、を備えたことを特徴とする非接触式三次元形状計測装置。
A head to which a contact probe is attached, a three-axis movement mechanism that supports the head and moves in a horizontal direction, a vertical direction, and a direction perpendicular to these axes facing the measurement object, and a movement position of the three axes And a driving means for driving the three-axis movement mechanism to the commanded movement position so as to move and scan the head, respectively. A contact-type three-dimensional shape measuring machine adapted to measure the three-dimensional shape by sequentially detecting the three-dimensional position of the measurement object based on the detection signal of the moving position sensor is replaced with a predetermined probe instead of a contact type probe on the head. A non-contact type three-dimensional shape measuring device diverted to measure a three-dimensional shape in a non-contact manner by attaching a non-contact type position sensor for detecting the position of a two-dimensional or three-dimensional detection range,
Origin calibration data storage means for storing origin calibration data for calibrating the origin position of the non-contact type position sensor with respect to the origin position of the head, and the three-axis movement mechanism so as to drive and control the drive means A movement range command means for sequentially commanding a movement start end position and a movement end position of a movement range; and a detection command means for issuing a trigger command to the non-contact type position sensor at a predetermined repetition period during the movement scanning process of the head. Moving position data generating means for generating moving position data of three axes in the moving range in response to a detection signal of the moving position sensor for each repetition period, the moving start position data, the moving end position data, and The non-contact position sensor is obtained by calibrating the origin position data of the head defined by the movement position data corresponding to the origin calibration data. Shape data creating means for creating origin position data and creating three-dimensional shape data of the measurement object based on the non-contact detection position data of the non-contact position sensor for the origin position data. A non-contact 3D shape measuring device.
接触式三次元形状計測機の移動位置センサがインクリメンタル式のリニアスケールであり、
形状データ作成手段が、前記非接触式位置センサの原点位置データを、指令した移動始端位置データ及び移動終端位置データで規定される較正された原点位置データと、前記移動始端位置及び前記移動終端位置間における前記リニアスケールの繰返し周期ごとのカウント値である移動位置データで規定した原点位置データとで作成することを特徴とする請求項5記載の非接触式三次元形状計測装置。
The moving position sensor of the contact type 3D shape measuring machine is an incremental linear scale,
The shape data creating means includes the origin position data of the non-contact type position sensor, the calibrated origin position data defined by the commanded movement start position data and movement end position data, the movement start position and the movement end position. 6. The non-contact type three-dimensional shape measuring apparatus according to claim 5, wherein the non-contact type three-dimensional shape measuring apparatus is created with origin position data defined by movement position data which is a count value for each repetition cycle of the linear scale.
JP2005177390A 2005-06-17 2005-06-17 Noncontact type three-dimensional shape measuring method and measuring machine Pending JP2006349547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177390A JP2006349547A (en) 2005-06-17 2005-06-17 Noncontact type three-dimensional shape measuring method and measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177390A JP2006349547A (en) 2005-06-17 2005-06-17 Noncontact type three-dimensional shape measuring method and measuring machine

Publications (2)

Publication Number Publication Date
JP2006349547A true JP2006349547A (en) 2006-12-28
JP2006349547A5 JP2006349547A5 (en) 2008-07-10

Family

ID=37645559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177390A Pending JP2006349547A (en) 2005-06-17 2005-06-17 Noncontact type three-dimensional shape measuring method and measuring machine

Country Status (1)

Country Link
JP (1) JP2006349547A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145095A (en) * 2007-12-12 2009-07-02 Canon Inc Three-dimensional shape measuring device
DE102018208364A1 (en) 2017-05-29 2018-11-29 Mitutoyo Corporation OPERATING METHOD OF A POSITION MEASUREMENT DEVICE
JPWO2018033947A1 (en) * 2016-08-18 2019-06-13 ダイキン工業株式会社 Magnetic bearing device and fluid mechanical system
JP2022542186A (en) * 2019-08-22 2022-09-29 エムウントハー インプロセス メステクニク ゲーエムベーハー measuring system
EP3950222A4 (en) * 2019-03-28 2022-12-28 Hexagon Metrology Kabushiki Kaisha Method for calibrating cnc processing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186025A (en) * 1992-12-16 1994-07-08 Yunisun:Kk Three dimensional measuring device
JPH06249626A (en) * 1993-02-26 1994-09-09 Kenji Mimura Three-dimensional shape measuring instrument
JPH11509928A (en) * 1995-07-26 1999-08-31 ジェームス クランプトン,ステファン Scanning apparatus and method
JP2002310641A (en) * 2001-04-19 2002-10-23 Kanto Auto Works Ltd Coordinate system calibrating method for three- dimensional shape measuring instrument
JP2003505682A (en) * 1999-07-13 2003-02-12 メトロノール・エイエスエイ A system for scanning the geometry of large objects
WO2004051179A1 (en) * 2002-12-05 2004-06-17 Renishaw Plc Workpiece inspection method
JP2006162537A (en) * 2004-12-10 2006-06-22 Kanto Auto Works Ltd Calibration method for sensor original position of three-dimensional shape measuring machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186025A (en) * 1992-12-16 1994-07-08 Yunisun:Kk Three dimensional measuring device
JPH06249626A (en) * 1993-02-26 1994-09-09 Kenji Mimura Three-dimensional shape measuring instrument
JPH11509928A (en) * 1995-07-26 1999-08-31 ジェームス クランプトン,ステファン Scanning apparatus and method
JP2003505682A (en) * 1999-07-13 2003-02-12 メトロノール・エイエスエイ A system for scanning the geometry of large objects
JP2002310641A (en) * 2001-04-19 2002-10-23 Kanto Auto Works Ltd Coordinate system calibrating method for three- dimensional shape measuring instrument
WO2004051179A1 (en) * 2002-12-05 2004-06-17 Renishaw Plc Workpiece inspection method
JP2006162537A (en) * 2004-12-10 2006-06-22 Kanto Auto Works Ltd Calibration method for sensor original position of three-dimensional shape measuring machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145095A (en) * 2007-12-12 2009-07-02 Canon Inc Three-dimensional shape measuring device
JPWO2018033947A1 (en) * 2016-08-18 2019-06-13 ダイキン工業株式会社 Magnetic bearing device and fluid mechanical system
DE102018208364A1 (en) 2017-05-29 2018-11-29 Mitutoyo Corporation OPERATING METHOD OF A POSITION MEASUREMENT DEVICE
US10690474B2 (en) 2017-05-29 2020-06-23 Mitutoyo Corporation Operation method of position measuring device
EP3950222A4 (en) * 2019-03-28 2022-12-28 Hexagon Metrology Kabushiki Kaisha Method for calibrating cnc processing device
JP2022542186A (en) * 2019-08-22 2022-09-29 エムウントハー インプロセス メステクニク ゲーエムベーハー measuring system
US11913770B2 (en) 2019-08-22 2024-02-27 M & H Inprocess Messtechnik Gmbh Measuring system

Similar Documents

Publication Publication Date Title
EP2788714B1 (en) Coordinate measuring machine having a camera
US9797706B2 (en) Coordinate measuring machine
JP4504818B2 (en) Workpiece inspection method
EP1975557B1 (en) Apparatus, method and program for measuring surface texture
CN104969028B (en) The method of analogue measurement scanning and corresponding machine tool are carried out on lathe
US20160298959A1 (en) Calibration of motion systems
CA2807204A1 (en) Device for error correction for cnc machines
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
US7415775B2 (en) Orientable probe
CN109959333A (en) Spatial accuracy bearing calibration and equipment
TWI329246B (en) Measuring method and system for cnc machine
JP2006349547A (en) Noncontact type three-dimensional shape measuring method and measuring machine
JP5528038B2 (en) Shape measuring device
EP3382327B1 (en) Compact coordinate measurement machine configuration with large working volume relative to size
CN112050710A (en) Coordinate measuring machine and computer-readable storage medium
JP5371532B2 (en) CMM
JP2006349547A5 (en)
JP4791568B2 (en) 3D measuring device
JP5064725B2 (en) Shape measurement method
JP2008032496A (en) Optical measuring device
CN114061502A (en) Control method of shape measuring apparatus and storage medium
JP3042157U (en) Three-dimensional coordinate measuring machine
JP2009288227A (en) Three-dimensional measuring machine
JP2019158385A (en) measuring device
JP5858673B2 (en) Position measuring device, optical component manufacturing method, and mold manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A621 Written request for application examination

Effective date: 20080528

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706