JPH09157062A - Porous ceramic film and its production - Google Patents

Porous ceramic film and its production

Info

Publication number
JPH09157062A
JPH09157062A JP33603695A JP33603695A JPH09157062A JP H09157062 A JPH09157062 A JP H09157062A JP 33603695 A JP33603695 A JP 33603695A JP 33603695 A JP33603695 A JP 33603695A JP H09157062 A JPH09157062 A JP H09157062A
Authority
JP
Japan
Prior art keywords
film
metal
ceramic
phase
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33603695A
Other languages
Japanese (ja)
Other versions
JP3135110B2 (en
Inventor
Koichi Kikuta
浩一 菊田
Shinji Kondo
新二 近藤
Shinichi Hirano
眞一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS GIJUTSU KENKYU K
FINE CERAMICS GIJUTSU KENKYU KUMIAI
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
FINE CERAMICS GIJUTSU KENKYU K
FINE CERAMICS GIJUTSU KENKYU KUMIAI
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS GIJUTSU KENKYU K, FINE CERAMICS GIJUTSU KENKYU KUMIAI, Agency of Industrial Science and Technology filed Critical FINE CERAMICS GIJUTSU KENKYU K
Priority to JP33603695A priority Critical patent/JP3135110B2/en
Publication of JPH09157062A publication Critical patent/JPH09157062A/en
Application granted granted Critical
Publication of JP3135110B2 publication Critical patent/JP3135110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide ceramic filters having various compositions, each of which is provided with one-dimensional through-pores low in pressure drop and is appropriately used for separating molecules or fine particles. SOLUTION: This ceramic film is provided with one-dimensional through-pores each of which extends from one surface of the film to the other and has a pore size of a few nanometers, and produced on a substrate made of glass, a ceramic material, plastic material or heat-resistant metal by forming a composite film consisting of a ceramic phase and a metallic phase with a vapor growth method and then, removing the metallic phase in the composite film with an etching method. Thus, the objective porous ceramic film provided with one- dimensional through-pores each having a pore size of the order of a few nanometers can be synthesized with good reproducibility. Also, by forming such ceramic films on various substrates, ceramic filters each of which shows an excellent function capable of separating molecules or fine particles each having a size of a few nanometers can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質セラミック
ス膜とその製造方法に関する。さらに詳しくは、本発明
は、分子や微粒子を分離するために好適に使用される、
圧力損失の少ない一次元貫通気孔を有する様々な組成の
多孔質セラミックス膜と当該多孔質セラミックス膜を再
現性良く製造する方法に関する。本発明の多孔質セラミ
ックス膜は、ナノメーターサイズでの分離機能を発現す
ることから、各種の分子や微粒子の分離手段等として有
用である。
TECHNICAL FIELD The present invention relates to a porous ceramic film and a method for producing the same. More specifically, the present invention is preferably used for separating molecules and fine particles,
The present invention relates to a porous ceramic film having various compositions having one-dimensional through pores with a small pressure loss, and a method for producing the porous ceramic film with good reproducibility. The porous ceramic membrane of the present invention exhibits a separation function in the nanometer size, and is useful as a means for separating various molecules and fine particles.

【0002】[0002]

【従来の技術】高温のガスや腐食性の液体中に含まれる
分子や微粒子を分離することを目的とする耐熱性と耐食
性に優れたセラミックスフィルタが開発されている。多
孔質セラミックス体もしくは多孔質セラミックス膜を作
製する方法としては、セラミックス原料粉体を焼結し、
セラミックス体が緻密化する過程で形成される開放気孔
(セラミックス体の表面に開口する連通気孔)をそのま
ま利用する方法が多く採用されている(特開平7−87
29号公報)。しかしながら、このようにして作製した
セラミックス体やセラミックス膜では細孔径のサイズを
揃えることが難しく、かつナノメーターオーダーの細孔
を再現性良く作製するのが難しいという問題があった。
2. Description of the Related Art Ceramic filters having excellent heat resistance and corrosion resistance have been developed for the purpose of separating molecules and fine particles contained in a high temperature gas or a corrosive liquid. As a method for producing a porous ceramic body or a porous ceramic film, a ceramic raw material powder is sintered,
Many methods have been adopted in which the open pores formed in the process of densification of the ceramic body (open air holes opening on the surface of the ceramic body) are used as they are (JP-A-7-87).
No. 29). However, in the ceramic body and the ceramic film produced in this way, there are problems that it is difficult to make the pore diameters uniform in size, and it is difficult to produce nanometer-order pores with good reproducibility.

【0003】ナノメーターオーダーの揃った細孔径を有
する多孔体を再現性良く作製する試みとして、ゾル・ゲ
ル法とスピノーダル分解を組み合わせた手法で多孔質シ
リカが作製されているが(Nakanishi et al., "Ceramic
Transactions, Porous Materials", The American Cer
amics Society, 51-60 (1992))、この場合にはシリカ相
が網目状に繋がった組織が形成され、細孔の形状は不規
則でその方向はランダムである。
As an attempt to reproducibly produce a porous body having a uniform pore size on the order of nanometers, porous silica has been produced by a method combining a sol-gel method and spinodal decomposition (Nakanishi et al. , "Ceramic
Transactions, Porous Materials ", The American Cer
amics Society, 51-60 (1992)), in this case, a structure in which silica phases are connected in a network is formed, and the shape of pores is irregular and the direction thereof is random.

【0004】このように、細孔の形状が不規則でその方
向が無配向であると、濾過方向に移動する分子や粒子を
散乱して移動を妨げるセラミックス部分が多く存在する
ことから圧力損失が発生する問題があった。
As described above, when the shape of the pores is irregular and the direction thereof is non-oriented, there are many ceramic parts that scatter molecules and particles moving in the filtering direction and hinder the movement of the pores, resulting in pressure loss. There was a problem that occurred.

【0005】上記の問題を解決するため、細孔径がナノ
メーターサイズで、しかも、一次元的に貫通する細孔
(以下、一次元貫通気孔ということがある)を有するセ
ラミックス膜の開発が試みられている。その代表的な例
として、アルミニウムの陽極酸化による多孔質アルミナ
膜がある(特公平6−37291号公報)。アルミニウ
ムの陽極酸化で作製された膜は、その作製条件によって
細孔径が数ナノメーターから数十ナノメーターの範囲で
制御でき、また膜の組成がアルミナであるため、相当の
耐熱性と耐食性が期待できるという利点がある。しか
し、陽極酸化による多孔質アルミナ膜の場合、金属アル
ミニウム箔や厚さのあるアルミニウム板の電解液中での
陽極酸化を利用するという原理上の制約から、得られる
膜が常温付近でのみ安定な無定形のアルミナに限られ、
また、基板としてアルミニウム板しか選べないという欠
点がある。
In order to solve the above problems, it has been attempted to develop a ceramic film having a pore size of nanometer size and having pores penetrating one-dimensionally (hereinafter, sometimes referred to as one-dimensional penetrating pores). ing. A typical example thereof is a porous alumina film formed by anodic oxidation of aluminum (Japanese Patent Publication No. 6-37291). The film made by anodizing aluminum can control the pore diameter in the range of several nanometers to several tens of nanometers depending on the manufacturing conditions, and since the film is made of alumina, considerable heat resistance and corrosion resistance are expected. There is an advantage that you can. However, in the case of a porous alumina film by anodic oxidation, the obtained film is stable only at around room temperature due to the principle constraint of utilizing anodic oxidation of a metallic aluminum foil or a thick aluminum plate in an electrolytic solution. Limited to amorphous alumina,
Further, there is a drawback that only an aluminum plate can be selected as a substrate.

【0006】上記陽極酸化による多孔質アルミナ膜の欠
点を補う方法として、陽極酸化で作製した多孔質アルミ
ナ膜を鋳型として用い、ポリマーメンブレンに細孔パタ
ーンを転写する方法が試みられている(益田ら;日本セ
ラミックス協会、1995年春期年会予稿、p485
3F4 01)。しかし、この場合には陽極酸化による
多孔質アルミナ膜の構造を転写する材料が有機物に限ら
れており、また膜構造を転写したメンブレンを他の基板
上に密着させて新たな複合膜とするのが難しいという欠
点がある。
As a method of compensating for the above-mentioned defects of the porous alumina film by anodic oxidation, a method of transferring a pore pattern to a polymer membrane using a porous alumina film prepared by anodic oxidation as a template has been tried (Masuda et al. ; Ceramic Society of Japan, Spring Annual Meeting 1995, p485
3F401). However, in this case, the material that transfers the structure of the porous alumina film by anodic oxidation is limited to organic substances, and the membrane that has transferred the film structure is brought into close contact with another substrate to form a new composite film. Is difficult.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有する前述の欠点を解消し、ガス分離膜や触媒に
利用可能なナノメーターサイズの一次元貫通気孔を持つ
多孔質セラミックス膜を多様なセラミックス材料(金属
酸化物、金属炭化物又は金属ホウ化物等)で提供するこ
とにある。さらに、各種の多孔質セラミックス膜をガラ
ス、セラミックス、プラスチックスあるいは耐熱金属か
らなる緻密質又は多孔質の基板上に形成した新規な複合
膜を提供することと、このようなセラミックス膜を再現
性良く製造する方法を提供することにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a porous ceramic membrane having one-dimensional through-holes of nanometer size which can be used for gas separation membranes and catalysts. The purpose is to provide various ceramic materials (metal oxide, metal carbide, metal boride, etc.). Furthermore, it is possible to provide a new composite film in which various porous ceramic films are formed on a dense or porous substrate made of glass, ceramics, plastics, or heat-resistant metal, and to provide such a ceramic film with good reproducibility. It is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の課題を
解決すべくなされたものであり、本発明の多孔質セラミ
ックス膜は、気相成長法によって成膜したセラミックス
相と金属相からなる複合膜中の金属相を除去して得られ
る、膜の一方の表面からもう一方の表面に一次元的に貫
通するナノメーターサイズの気孔を有する多孔質セラミ
ックス膜であって、当該多孔質セラミックス膜がガラ
ス、セラミックス、プラスチックス又は耐熱金属の基板
上に形成されていることを特徴とする。本発明による好
ましい多孔質セラミックス膜は、前記の多孔質セラミッ
クス膜を構成する物質が金属酸化物、金属炭化物及び金
属ホウ化物から選ばれた少なくとも一種類の化合物であ
る。本発明の他の好ましい多孔質セラミックス膜は、前
記多孔質セラミックス膜を支持する基板が多孔質体であ
る。本発明の他の好ましい多孔質セラミックス膜は、前
記一次元的に貫通する気孔の平均孔径が5〜100ナノ
メートルである。本発明の多孔質セラミックス膜の製造
方法は、気相成長法によって基板上にセラミックス相と
金属相とからなる複合膜を形成し、次いで複合膜中の金
属相をエッチングで除去することを特徴とする。
The present invention has been made to solve the above problems, and a porous ceramic film of the present invention comprises a ceramic phase and a metal phase formed by a vapor phase growth method. A porous ceramic film having nanometer-sized pores penetrating from one surface of the film to the other surface, which is obtained by removing the metal phase in the composite film, wherein the porous ceramic film Is formed on a substrate made of glass, ceramics, plastics, or heat-resistant metal. In a preferred porous ceramic film according to the present invention, the substance forming the porous ceramic film is at least one compound selected from metal oxides, metal carbides and metal borides. In another preferred porous ceramic film of the present invention, the substrate supporting the porous ceramic film is a porous body. In another preferred porous ceramic film of the present invention, the pores penetrating one-dimensionally have an average pore diameter of 5 to 100 nanometers. The method for producing a porous ceramic film of the present invention is characterized in that a composite film comprising a ceramic phase and a metal phase is formed on a substrate by a vapor phase growth method, and then the metal phase in the composite film is removed by etching. To do.

【0009】[0009]

【発明の実施の形態】続いて、本発明についてさらに詳
細に説明する。すなわち、本発明の多孔質セラミックス
膜は二段階のプロセスで作製される。第一段階ではスパ
ッタ法などの気相成長法を用いて金属とセラミックス材
料(金属酸化物、金属炭化物あるいは金属ホウ化物)が
ナノメータースケールで混在した膜を作製する。このと
き、用いる金属相とセラミックス材料の混合比及び成膜
条件を制御することにより柱状に成長した金属相のまわ
りをセラミックス材料が取り囲んだ微細組織が形成され
る(図1)。本発明においては、金属相の粒径により孔
径を変化させることが可能である。この場合、金属相の
平均粒径は金属相とセラミックス相の体積分率及び成膜
条件(基板温度、スパッタ時の残留ガス圧力等)によ
り、およそ5〜500nmの範囲で変えることができ
る。また、セラミックスフィルター部分として残留する
粒界相の厚みは金属相とセラミックス相の体積分率で変
化させることができる。従って、膜を作製する場合のパ
ラメーターとして膜組成と成膜条件を独立に変えること
が可能であり、粒界相の平均の厚みはおよそ1〜50n
m程度で変化させることができる。図1において暗く見
える部分がCo結晶粒であり、白い網目状の部分がCo
結晶粒の粒界に析出したSiO2 の部分である。Co結
晶粒の平均粒径は約12nm,SiO2 粒界層の幅は約
2nmである。これと類似の膜構造は、例えば、ハード
磁気ディスクの磁性膜でCo−Pt系合金とSiO2
混合系で実現している(特願平7−51410号)。引
き続き、第二段階で酸あるいはアルカリを用いて金属部
分を除去することにより最終的に一次元の貫通気孔を有
する多孔質セラミックス膜が得られる。本発明の多孔質
セラミックス膜を多孔質セラミックス基板上に形成する
手順の概略図を図2に示す。図中、(a)は多孔質セラ
ミックス基板の断面図、(b)はセラミックス基板上に
金属膜を形成した状況(基板表面の細孔は金属で充填さ
れる)、(c)はセラミックス基板表面が現れるまで表
面を研磨した状態、(d)は(c)で得られた膜の上に
本発明の金属・セラミックス複合膜を形成した状態、
(e)は酸によるエッチングで金属を溶出した後の状
態、をそれぞれ示す。
Next, the present invention will be described in more detail. That is, the porous ceramic film of the present invention is produced by a two-step process. In the first step, a film in which a metal and a ceramic material (metal oxide, metal carbide or metal boride) are mixed on a nanometer scale is prepared by using a vapor phase growth method such as a sputtering method. At this time, a fine structure in which the ceramic material surrounds the columnar grown metal phase is formed by controlling the mixing ratio of the used metal phase and the ceramic material and the film forming conditions (FIG. 1). In the present invention, the pore size can be changed depending on the particle size of the metal phase. In this case, the average particle size of the metal phase can be changed within a range of about 5 to 500 nm depending on the volume fraction of the metal phase and the ceramic phase and the film forming conditions (substrate temperature, residual gas pressure during sputtering, etc.). Further, the thickness of the grain boundary phase remaining as the ceramics filter portion can be changed by the volume fractions of the metal phase and the ceramics phase. Therefore, it is possible to independently change the film composition and film forming conditions as parameters for forming a film, and the average thickness of the grain boundary phase is about 1 to 50 n.
It can be changed by about m. In FIG. 1, dark portions are Co crystal grains, and white mesh portions are Co.
This is the portion of SiO 2 deposited at the grain boundaries of crystal grains. The average grain size of Co crystal grains is about 12 nm, and the width of the SiO 2 grain boundary layer is about 2 nm. A film structure similar to this is realized, for example, in a magnetic film of a hard magnetic disk by a mixed system of Co—Pt type alloy and SiO 2 (Japanese Patent Application No. 7-51410). Subsequently, in the second step, the metal portion is removed using acid or alkali to finally obtain a porous ceramic film having one-dimensional through pores. FIG. 2 shows a schematic diagram of the procedure for forming the porous ceramic film of the present invention on the porous ceramic substrate. In the figure, (a) is a cross-sectional view of a porous ceramic substrate, (b) is a situation in which a metal film is formed on the ceramic substrate (pores on the substrate surface are filled with metal), and (c) is the ceramic substrate surface. The state where the surface is polished until appears, (d) the state in which the metal / ceramic composite film of the present invention is formed on the film obtained in (c),
(E) shows the state after the metal is eluted by etching with acid.

【0010】第一段階で用いられる気相成長法として
は、スパッタ法、蒸着法、CVD法、レーザーアブレー
ション法あるいは分子線エピタキシー法などが考えられ
るが、量産性や大面積成膜の可能性を考慮してスパッタ
法を用いることが好ましい。
The vapor phase growth method used in the first stage may be a sputtering method, a vapor deposition method, a CVD method, a laser ablation method, a molecular beam epitaxy method or the like. Considering this, it is preferable to use the sputtering method.

【0011】金属とセラミックス材料の組み合わせとし
ては、金属とセラミックス材料が成膜時に相分離を起こ
す組み合わせであれば良い。本発明においては、柱状に
成長する金属相をエッチング後の細孔部分に、柱状に成
長した金属相の粒界部分に析出したセラミックス相を残
留相として利用するため、金属相としては柱状に成長し
易い金属であって、酸・アルカリに容易に溶解し、酸
素、炭素、ホウ素との結合エネルギーが小さく還元され
易い金属又は合金が好ましい。実用的にはスパッタ時の
取り扱いの容易さを考慮し、V、Cr、Mn、Ni、F
e、Co、Cu、Znなどの3d遷移金属及びそれらを
主成分とする合金、Mgなどのアルカリ土類金属及びそ
れを主成分とする合金から選ばれる一種以上が好適であ
る。その他、Al、In、Sn及びPbなどが利用可能
である。残留相として利用するセラミックス相として
は、アルミナ、ムライト、コーディエライト、スピネ
ル、ゼオライト、フォルステライトなどの酸化物、炭化
ケイ素、炭化チタン、炭化ジルコニウムなどの炭化物、
ホウ化チタン、ホウ化ジルコニウム、炭化ホウ素などの
ホウ化物から選ばれる一種以上が好適に利用できる。
The combination of the metal and the ceramic material may be a combination of the metal and the ceramic material that causes phase separation during film formation. In the present invention, the metal phase that grows in a columnar shape is used as the pore portion after etching, and the ceramic phase that precipitates in the grain boundary portion of the metal phase that grows in a columnar shape is used as the residual phase. A metal or an alloy which is easy to dissolve and easily dissolves in an acid / alkali, has a small binding energy with oxygen, carbon and boron and is easily reduced is preferable. Practically, considering the ease of handling during sputtering, V, Cr, Mn, Ni, F
One or more selected from 3d transition metals such as e, Co, Cu and Zn and alloys containing them as a main component, alkaline earth metals such as Mg and alloys containing them as a main component are preferable. In addition, Al, In, Sn, Pb and the like can be used. As the ceramic phase used as the residual phase, oxides such as alumina, mullite, cordierite, spinel, zeolite and forsterite, carbides such as silicon carbide, titanium carbide and zirconium carbide,
One or more selected from borides such as titanium boride, zirconium boride, and boron carbide can be preferably used.

【0012】スパッタ法等によって上記金属とセラミッ
クスの複合膜を成膜する場合、金属のターゲットの上に
金属酸化物、金属炭化物、金属ホウ化物などのセラミッ
クス材料の小片を置き複合ターゲットとして用いること
ができる。さらに好ましくは、成膜後の膜内部での組成
のばらつきを小さくするため、ターゲット作製時に粉末
冶金的方法によって均一に混合した複合材料を用意す
る。
When the above-mentioned metal-ceramic composite film is formed by a sputtering method or the like, a small piece of a ceramic material such as a metal oxide, a metal carbide or a metal boride is placed on the metal target and used as a composite target. it can. More preferably, in order to reduce the variation in composition within the film after film formation, a composite material is prepared that is uniformly mixed by a powder metallurgical method at the time of producing the target.

【0013】上述のような多孔質セラミックス膜を製造
する際に用いる基板は、ガラス、セラミックス、プラス
チックス及び耐熱金属から選ぶことができ、さらに緻密
な基板でなく多孔質の基板を用いることも可能である。
基板に用いる耐熱金属としては、Fe、Ni、Cr、V
などからなるステンレスやハステロイなどの耐酸化性の
合金が好適である。図2は、一例として、多孔質セラミ
ックス基板を用いて成膜する方法を示したものである。
すなわち、平均孔径数ナノメーターから数十ミクロンメ
ーターのセラミックス多孔体の表面に金属あるいは樹脂
を含浸した状態でその表面を研磨し、平滑な表面を形成
する。次いで、この表面を水、界面活性剤、有機溶媒等
を用いて洗浄し、これを基板としてその上にスパッタ膜
を形成する。このとき、含浸する金属あるいは樹脂とし
ては上記金属ターゲットの材料と同一のエッチング条件
で取り除けるものを使用するのが好ましい。
The substrate used for producing the above-mentioned porous ceramic film can be selected from glass, ceramics, plastics and heat-resistant metals, and it is also possible to use a porous substrate instead of a dense substrate. Is.
As the heat-resistant metal used for the substrate, Fe, Ni, Cr, V
Oxidation-resistant alloys such as stainless steel and Hastelloy are suitable. FIG. 2 shows, as an example, a method for forming a film using a porous ceramic substrate.
That is, the surface of a ceramic porous body having an average pore diameter of several nanometers to several tens of micrometers is impregnated with a metal or a resin, and the surface is polished to form a smooth surface. Next, this surface is washed with water, a surfactant, an organic solvent or the like, and this is used as a substrate to form a sputtered film thereon. At this time, as the metal or resin to be impregnated, it is preferable to use one that can be removed under the same etching conditions as the material of the metal target.

【0014】次に、得られた複合膜中の金属成分を酸又
はアルカリ溶液でエッチング処理して取り除く。このエ
ッチング処理で用いる酸としては、硫酸、塩酸、硝酸、
シュウ酸、酢酸などを用いることができ、溶出すべき金
属の種類によって適宜選ぶことが好ましい。最初の成膜
プロセスによって形成されるセラミックス部分はアモル
ファスあるいは結晶化の程度の低いものが多いため、十
分に希釈された溶液を用いて弱いエッチング条件でエッ
チングすることが好ましい。例えば、金属成分としてC
oを用い、セラミックス成分としてSiO2 を用いる場
合、0.003規定の硝酸水溶液を用い、毎秒0.3ナ
ノメーターのエッチング速度で処理することが好まし
い。
Next, the metal component in the obtained composite film is removed by etching with an acid or alkali solution. Acids used in this etching treatment include sulfuric acid, hydrochloric acid, nitric acid,
Oxalic acid, acetic acid, or the like can be used, and it is preferable to select appropriately depending on the kind of metal to be eluted. Since the ceramic portion formed by the first film forming process is often amorphous or has a low degree of crystallization, it is preferable to perform etching under a weak etching condition using a sufficiently diluted solution. For example, C as a metal component
When o is used and SiO 2 is used as the ceramic component, it is preferable to use a 0.003N nitric acid aqueous solution and perform the treatment at an etching rate of 0.3 nanometer per second.

【0015】以上述べたように、本発明の多孔質セラミ
ックス膜の製造方法は、多孔質セラミックス膜を形成す
る際に金属とセラミックスの複合膜を気相成長法で作製
し、次いでエッチングによって金属相を除去する方法を
組み合わせて用いることを特徴としており、新規な構造
と組成を有する種々の多孔質セラミックス膜を提供しう
るものである。本発明の多孔質セラミックス膜は、ナノ
メーターサイズでの分離機能を発現させることが可能で
あり、分子や微粒子を分離するためのフィルターなどと
して有用である。本発明の多孔質セラミックス膜は、細
孔径と粒界相の幅を独立に制御すること(特に、粒界相
の幅を厚くすること)が可能であり、この点で、従来の
陽極酸化アルミナ膜などと本質的に異なるものである。
As described above, according to the method for producing a porous ceramics film of the present invention, when forming the porous ceramics film, a composite film of metal and ceramics is produced by a vapor phase growth method, and then a metal phase is formed by etching. It is characterized in that it is used in combination with a method of removing the above, and it can provide various porous ceramic films having a novel structure and composition. INDUSTRIAL APPLICABILITY The porous ceramic membrane of the present invention can exhibit a separation function in a nanometer size, and is useful as a filter for separating molecules and fine particles. The porous ceramic film of the present invention can control the pore size and the width of the grain boundary phase independently (in particular, thicken the width of the grain boundary phase). It is essentially different from a membrane or the like.

【0016】[0016]

【作用】本発明では、スパッタ法などの成膜法により、
金属とセラミックス(金属酸化物、金属ホウ化物、金属
炭化物)からなる化学的耐久性の異なる二相がナノメー
ターオーダーで混在する複合膜を形成し、次いで酸エッ
チング等により金属部分のみを取り除いてセラミックス
部分を残留せしめることにより、圧力損失の少ない一次
元貫通気孔を有する多孔質セラミックス膜を合成するこ
とが可能となる。すなわち、成膜条件を適切に制御する
ことによって主要な膜成分の一つである金属相を柱状に
成長させ、その粒界にセラミックス材料を析出させ、さ
らに金属相をエッチングで除くことによってナノメータ
ーオーダーの細孔径の一次元貫通気孔を有する多孔質セ
ラミックス膜を得ることが可能となる。
In the present invention, by the film forming method such as the sputtering method,
Ceramics by forming a composite film in which two phases consisting of metal and ceramics (metal oxide, metal boride, metal carbide) with different chemical durability are mixed in nanometer order, and then removing only the metal part by acid etching etc. By allowing the portion to remain, it becomes possible to synthesize a porous ceramic film having one-dimensional through pores with a small pressure loss. That is, by appropriately controlling the film formation conditions, a metal phase, which is one of the main film components, grows in a columnar shape, a ceramic material is precipitated at the grain boundaries, and the metal phase is removed by etching to obtain nanometers. It is possible to obtain a porous ceramics film having one-dimensional through pores with a pore size of the order.

【0017】また、酸エッチングする前の複合膜はスパ
ッタ法等によって形成するため、膜を支持する基板には
金属、ガラス、セラミックス、プラスチックスなど多
種、多様な材料と形態のものが利用可能となる。
Further, since the composite film before acid etching is formed by the sputtering method or the like, a wide variety of materials and forms such as metal, glass, ceramics and plastics can be used for the substrate supporting the film. Become.

【0018】[0018]

【実施例】以下に本発明を実施例によって具体的に説明
する。 実施例1 厚さ1.2mmのソーダライムガラス基板上に金属Co
とSiO2 の2相からなる複合薄膜を形成した。スパッ
タには、直径6インチの金属Coターゲット上に1cm
角のSiO2 ガラスチップを置いた複合ターゲットを用
いた。このとき、ターゲットの片面の全表面積のうち2
0%を占めるようにSiO2 ガラスチップの量を調節し
た。真空槽を5×10-6Torrまで排気したのちにA
rガスを導入し、真空槽内部のガス圧が2×10-2To
rrとなるようにArガスの流量を調節し、600Wの
高周波を入力してプラズマを発生させた。このときの成
膜速度はおよそ1nm/secであり、成膜時には基板
加熱やバイアス電圧の印加は行わなかった。
The present invention will be specifically described below with reference to examples. Example 1 Metallic Co was deposited on a 1.2 mm thick soda lime glass substrate.
And a composite thin film consisting of two phases of SiO 2 was formed. For sputtering, 1 cm on a metal Co target with a diameter of 6 inches
A composite target with square SiO 2 glass chips was used. At this time, 2 out of the total surface area of one side of the target
The amount of SiO 2 glass chips was adjusted to occupy 0%. After evacuating the vacuum chamber to 5 × 10 -6 Torr, A
The gas pressure inside the vacuum chamber was 2 × 10 -2 To when r gas was introduced.
The flow rate of Ar gas was adjusted to rr and a high frequency of 600 W was input to generate plasma. The film formation rate at this time was about 1 nm / sec, and the substrate was not heated and the bias voltage was not applied during the film formation.

【0019】成膜した複合薄膜の構造を図1の透過型電
子顕微鏡写真に示す。図1はガラス基板を研削して取り
除き、さらに複合膜をイオン研磨して薄くし、膜面に垂
直な方向から見た拡大写真である。この写真では、平均
粒径12nmのCo結晶粒子が柱状に成長しており、粒
界にアモルファスにSiO2 が析出している。
The structure of the formed composite thin film is shown in the transmission electron micrograph of FIG. FIG. 1 is an enlarged photograph of the glass substrate ground and removed, and further, the composite film is ion-polished to be thinned and viewed from a direction perpendicular to the film surface. In this photograph, Co crystal particles having an average particle diameter of 12 nm grow in a columnar shape, and SiO 2 is amorphously precipitated at the grain boundaries.

【0020】次に、上記の方法で作製した膜厚50nm
の複合膜を0.003規定の硝酸水溶液に5分間浸漬し
てCo相を溶解除去した。図3はこのCo相を溶解除去
した後の膜を走査型電子顕微鏡で観察した拡大写真であ
る。Co相がほぼ完全に溶出し、粒界のSiO2 がメッ
シュ状に残留していた。図4にこのようにして得られた
セラミックス膜の拡大、斜視図の一例を示す。
Next, a film thickness of 50 nm produced by the above method
The composite film of was immersed in a 0.003N aqueous nitric acid solution for 5 minutes to dissolve and remove the Co phase. FIG. 3 is an enlarged photograph of the film after dissolution and removal of the Co phase observed by a scanning electron microscope. The Co phase was almost completely eluted, and SiO 2 at the grain boundaries remained in a mesh form. FIG. 4 shows an example of an enlarged and perspective view of the ceramic film thus obtained.

【0021】実施例2 実施例1と同様の手順で、厚さ1.2mmのソーダライ
ムガラス基板上に金属CoとSiO2 の2相からなる複
合薄膜を形成した。スパッタには、直径6インチの金属
Coターゲット上に1cm角のSiO2 ガラスチップを
置いた複合ターゲットを用いた。このとき、ターゲット
の片面の全表面積のうち10%を占めるようにSiO2
ガラスチップの量を調節した。真空槽を5×10-6To
rrまで排気したのちにArガスを導入し、真空槽内部
のガス圧が2×10-2TorrになるようにArガスの
流量を調節し、600Wの高周波を入力してプラズマを
発生させた。このときの成膜速度はおよそ1nm/se
cであり、成膜時には基板の加熱やバイアス電圧の印加
は行わなかった。
Example 2 By the same procedure as in Example 1, a composite thin film composed of two phases of metal Co and SiO 2 was formed on a 1.2 mm thick soda lime glass substrate. For the sputtering, a composite target in which a 1 cm square SiO 2 glass chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, SiO 2 should be contained so as to occupy 10% of the total surface area of one side of the target.
The amount of glass chips was adjusted. Vacuum chamber 5 × 10 -6 To
After exhausting to rr, Ar gas was introduced, the flow rate of Ar gas was adjusted so that the gas pressure inside the vacuum chamber was 2 × 10 −2 Torr, and a high frequency of 600 W was input to generate plasma. The film forming rate at this time is about 1 nm / se
c, and the substrate was not heated and the bias voltage was not applied during film formation.

【0022】成膜した複合薄膜の構造は図1と非常に良
く似たものであり、Coの結晶粒子が柱状に成長し、そ
の粒界にアモルファスのSiO2 が析出しており、この
場合にはCo結晶の平均粒子径は約20nmと若干大き
くなっていた。この膜厚50nmの複合膜を0.003
規定の硝酸水溶液に5分間浸漬してCo相を溶解除去し
た。実施例1の場合と同様に、Co相がほぼ完全に溶出
し、粒界のSiO2 がメッシュ状に残留していた。
The structure of the formed composite thin film is very similar to that shown in FIG. 1, in which Co crystal grains grow in columns and amorphous SiO 2 is deposited at the grain boundaries. The average particle size of Co crystals was about 20 nm, which was slightly large. This composite film with a thickness of 50 nm is 0.003
The Co phase was dissolved and removed by immersing in a specified aqueous nitric acid solution for 5 minutes. Similar to the case of Example 1, the Co phase was almost completely eluted, and the SiO 2 at the grain boundaries remained in a mesh form.

【0023】実施例3 実施例1と同様の手順で、厚さ1.2mmのソーダライ
ムガラス基板上に金属CoとSiO2 の2相からなる複
合薄膜を形成した。スパッタには、直径6インチの金属
Coターゲットの上に1cm角のSiO2 ガラスチップ
を置いた複合ターゲットを用いた。このとき、ターゲッ
トの片面の全表面積のうち10%を占めるようにSiO
2 ガラスチップの量を調節した。真空槽を5×10-6
orrまで排気したのちにArガスを導入し、真空槽内
部のガス圧が2×10-2TorrになるようにArガス
の流量を調節し、600Wの高周波を入力してプラズマ
を発生させた。このときの成膜速度はおよそ1nm/s
ecであり、成膜時に基板を約200℃に加熱した。
Example 3 By the same procedure as in Example 1, a composite thin film composed of two phases of metal Co and SiO 2 was formed on a 1.2 mm thick soda lime glass substrate. For sputtering, a composite target in which a 1 cm square SiO 2 glass chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, the SiO 2 is made to occupy 10% of the total surface area of one side of the target.
2 The amount of glass chips was adjusted. Vacuum chamber 5 × 10 -6 T
After evacuating to orr, Ar gas was introduced, the flow rate of Ar gas was adjusted so that the gas pressure inside the vacuum chamber was 2 × 10 −2 Torr, and a high frequency of 600 W was input to generate plasma. The film forming rate at this time is about 1 nm / s.
ec, and the substrate was heated to about 200 ° C. during film formation.

【0024】成膜した複合薄膜の構造は図1と非常に良
く似たものであり、Co結晶粒子が柱状に成長し、その
粒界にアモルファスのSiO2 が析出しており、この場
合にはCo結晶の平均粒子径は約35nmとさらに大き
いことがわかった。
The structure of the formed composite thin film is very similar to that shown in FIG. 1. Co crystal grains grow in columns and amorphous SiO 2 is deposited at the grain boundaries. In this case, It was found that the average particle size of the Co crystal was as large as about 35 nm.

【0025】この膜厚50nmの複合膜を0.003規
定の硝酸水溶液に5分間浸漬してCo相を溶解除去し
た。実施例1の場合と同様に、Co相がほぼ完全に溶出
し、粒界のSiO2 がメッシュ状に残留していた。
The composite film having a thickness of 50 nm was immersed in a 0.003N nitric acid aqueous solution for 5 minutes to dissolve and remove the Co phase. Similar to the case of Example 1, the Co phase was almost completely eluted, and the SiO 2 at the grain boundaries remained in a mesh form.

【0026】実施例4 実施例1と同様の手順で、厚さ2mmのハステロイ基板
上に金属CoとSiO2 の2相からなる複合薄膜を形成
した。スパッタには、直径6インチの金属Coターゲッ
トの上に1cm角のSiO2 ガラスチップを置いた複合
ターゲットを用いた。このとき、ターゲットの片面の全
表面積のうち10%を占めるようにSiO2 ガラスチッ
プの量を調節した。真空槽を5×10-6Torrまで排
気したのちにArガスを導入し、真空槽内部のガス圧が
2×10-2TorrになるようにArガスの流量を調節
し、600Wの高周波を入力してプラズマを発生させ
た。このときの成膜速度はおよそ1nm/secであ
り、成膜時には基板の加熱やバイアス電圧の印加は行わ
なかった。
Example 4 By the same procedure as in Example 1, a composite thin film composed of two phases of metal Co and SiO 2 was formed on a Hastelloy substrate having a thickness of 2 mm. For sputtering, a composite target in which a 1 cm square SiO 2 glass chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, the amount of SiO 2 glass chips was adjusted so that 10% of the total surface area of one side of the target was occupied. After evacuating the vacuum chamber to 5 × 10 -6 Torr, introducing Ar gas, adjusting the Ar gas flow rate so that the gas pressure inside the vacuum chamber is 2 × 10 -2 Torr, and inputting a high frequency of 600 W Then, plasma was generated. The film formation rate at this time was about 1 nm / sec, and the substrate was not heated or the bias voltage was not applied during the film formation.

【0027】成膜した複合薄膜の構造は図1に非常に良
く似たものであり、Co結晶粒子が柱状に成長し、その
粒界にアモルファスのSiO2 が析出しており、この場
合のCo結晶の平均粒子径は約25nmであった。
The structure of the formed composite thin film is very similar to that shown in FIG. 1, in which Co crystal grains grow in columns and amorphous SiO 2 is deposited at the grain boundaries. The average particle size of the crystal was about 25 nm.

【0028】この膜厚50nmの複合膜を0.003規
定の硝酸水溶液に5分間浸漬してCo相を溶解除去し
た。実施例1の場合と同様に、Co相がほぼ完全に溶出
し粒界のSiO2 がメッシュ状に残留しており、ハステ
ロイ基板からの膜の剥離は殆ど認められなかった。
The composite film having a thickness of 50 nm was immersed in a 0.003N nitric acid aqueous solution for 5 minutes to dissolve and remove the Co phase. Similar to the case of Example 1, the Co phase was almost completely eluted and the SiO 2 at the grain boundaries remained in a mesh shape, and almost no peeling of the film from the Hastelloy substrate was observed.

【0029】実施例5 実施例1と同様の手順で、厚さ5mmのアルミナ基板上
に金属CoとSiO2の2相からなる複合薄膜を形成し
た。スパッタには、直径6インチの金属Coターゲット
の上に1cm角のSiO2 ガラスチップを置いた複合タ
ーゲットを用いた。このとき、ターゲットの片面の全表
面積のうち10%を占めるようにSiO2 ガラスチップ
の量を調節した。真空槽を5×10-6Torrまで排気
したのちにArガスを導入し、真空槽内部のガス圧が2
×10-2TorrになるようにArガスの流量を調節
し、600Wの高周波を入力してプラズマを発生させ
た。このときの成膜速度はおよそ1nm/secであ
り、成膜時には基板の加熱やバイアス電圧の印加は行わ
なかった。
Example 5 By the same procedure as in Example 1, a composite thin film composed of two phases of metal Co and SiO 2 was formed on an alumina substrate having a thickness of 5 mm. For sputtering, a composite target in which a 1 cm square SiO 2 glass chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, the amount of SiO 2 glass chips was adjusted so that 10% of the total surface area of one side of the target was occupied. After evacuating the vacuum chamber to 5 × 10 −6 Torr, Ar gas was introduced, and the gas pressure inside the vacuum chamber was set to 2
The flow rate of Ar gas was adjusted so as to be × 10 -2 Torr, and a high frequency of 600 W was input to generate plasma. The film formation rate at this time was about 1 nm / sec, and the substrate was not heated or the bias voltage was not applied during the film formation.

【0030】成膜した複合薄膜の構造は図1に非常に良
く似たものであり、Co結晶粒子が柱状に成長し、その
粒界にアモルファスのSiO2 が析出しており、Co結
晶の平均粒子径は約19nmであった。
The structure of the formed composite thin film is very similar to that shown in FIG. 1. Co crystal grains grow in columns and amorphous SiO 2 is deposited at the grain boundaries. The particle size was about 19 nm.

【0031】この膜厚50nmの複合膜を0.003規
定の硝酸水溶液に5分間浸漬してCo相を溶解除去し
た。実施例1の場合と同様に、Co相がほぼ完全に溶出
し、粒界のSiO2 がメッシュ状に残留しており、アル
ミナ基板からの膜の剥離は殆ど認められなかった。
This composite film having a thickness of 50 nm was immersed in a 0.003N nitric acid aqueous solution for 5 minutes to dissolve and remove the Co phase. Similar to the case of Example 1, the Co phase was almost completely eluted, SiO 2 at the grain boundaries remained in a mesh form, and almost no peeling of the film from the alumina substrate was observed.

【0032】実施例6 実施例1と同様の手順で、厚さ0.8mmのポリエチレ
ンフィルム基板上に金属CoとSiO2 の2相からなる
複合薄膜を形成した。スパッタには、直径6インチの金
属Coターゲットの上に1cm角のSiO2 ガラスチッ
プを置いた複合ターゲットを用いた。このとき、ターゲ
ットの片面の全表面積のうち10%を占めるようにSi
2 ガラスチップの量を調節した。真空槽を5×10-6
Torrまで排気したのちにArガスを導入し、真空槽
内部のガス圧が2×10-2TorrになるようにArガ
スの流量を調節し、600Wの高周波を入力してプラズ
マを発生させた。このときの成膜速度はおよそ0.8n
m/secであり、成膜時には基板の加熱やバイアス電
圧の印加は行わなかった。
Example 6 By the same procedure as in Example 1, a composite thin film composed of two phases of metal Co and SiO 2 was formed on a polyethylene film substrate having a thickness of 0.8 mm. For sputtering, a composite target in which a 1 cm square SiO 2 glass chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, the Si should be 10% of the total surface area of one side of the target.
The amount of O 2 glass chips was adjusted. Vacuum chamber 5 × 10 -6
After evacuating to Torr, Ar gas was introduced, the flow rate of Ar gas was adjusted so that the gas pressure inside the vacuum chamber was 2 × 10 −2 Torr, and a high frequency of 600 W was input to generate plasma. The film forming rate at this time is about 0.8 n
m / sec, the substrate was not heated and a bias voltage was not applied during film formation.

【0033】成膜した複合薄膜の構造は図1に非常に良
く似たものであり、Co結晶粒子が柱状に成長し、その
粒界にアモルファスのSiO2 が析出しており、Co結
晶の平均粒子径は約26nmであった。
The structure of the formed composite thin film is very similar to that shown in FIG. 1, in which Co crystal grains grow in columns and amorphous SiO 2 is deposited at the grain boundaries. The particle size was about 26 nm.

【0034】膜厚50nmの複合膜を0.003規定の
硝酸水溶液に5分間浸漬してCo相を溶解除去した。実
施例1の場合と同様に、Co相がほぼ完全に溶出し粒界
のSiO2 がメッシュ状に残留していた。ポリエチレン
フィルムを基板とする場合、酸によるエッチング処理の
過程でかなり顕著に膜の剥離が起こった。しかし、スパ
ッタ法で複合膜を形成する前にポリエチレンフィルムの
表面をコロナ放電処理あるいはシランカップリング剤で
処理しておくと剥離がかなり押さえられることがわかっ
た。
A Co film having a film thickness of 50 nm was immersed in a 0.003N aqueous nitric acid solution for 5 minutes to dissolve and remove the Co phase. As in the case of Example 1, the Co phase was almost completely eluted and SiO 2 at the grain boundaries remained in a mesh form. When a polyethylene film was used as the substrate, the film peeling occurred significantly during the acid etching process. However, it was found that if the surface of the polyethylene film was treated with a corona discharge treatment or a silane coupling agent before forming the composite film by the sputtering method, the peeling was considerably suppressed.

【0035】実施例7 スパッタ法で100nmの厚さの金属Coを厚さ2mm
の多孔質シリカ基板上に成膜した。成膜後の基板の表面
をダイヤモンド研磨装置で研磨し、シリカの細孔に詰ま
ったCoを残して基板上のCo相を除去し、平滑な研磨
面を得た。この基板上に金属CoとSiO2 の2相から
なる複合薄膜を形成した。スパッタには、直径6インチ
の金属Coターゲットの上に1cm角のSiO2 ガラス
チップを置いた複合ターゲットを用いた。このとき、タ
ーゲットの片面の全表面積のうち10%を占めるように
SiO2 ガラスチップの量を調節した。真空槽を5×1
-6Torrまで排気したのちにArガスを導入し、真
空槽内部のガス圧が2×10-2TorrになるようにA
rガスの流量を調節し、600Wの高周波を入力してプ
ラズマを発生させた。成膜速度はおよそ0.8nm/s
ecであり、成膜時には基板の加熱やバイアス電圧の印
加は行わなかった。
Example 7 Metal Co having a thickness of 100 nm was formed to a thickness of 2 mm by a sputtering method.
Was formed on the porous silica substrate of. The surface of the substrate after the film formation was polished by a diamond polishing apparatus to remove the Co phase on the substrate while leaving Co clogged in the pores of silica to obtain a smooth polished surface. A composite thin film composed of two phases of metal Co and SiO 2 was formed on this substrate. For sputtering, a composite target in which a 1 cm square SiO 2 glass chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, the amount of SiO 2 glass chips was adjusted so that 10% of the total surface area of one side of the target was occupied. 5 x 1 vacuum chamber
After evacuating to 0 -6 Torr, Ar gas was introduced to adjust the gas pressure inside the vacuum chamber to 2 × 10 -2 Torr.
The flow rate of r gas was adjusted, and a high frequency of 600 W was input to generate plasma. Deposition rate is about 0.8 nm / s
ec, the substrate was not heated and the bias voltage was not applied during film formation.

【0036】成膜した薄膜の構造は図1に非常に良く似
たものであり、Co結晶粒子が柱状に成長し、その粒界
にアモルファスのSiO2 が析出しており、Co結晶の
平均粒子径は約26nmであった。
The structure of the formed thin film is very similar to that shown in FIG. 1, in which Co crystal grains grow in columns and amorphous SiO 2 is deposited at the grain boundaries. The diameter was about 26 nm.

【0037】この膜厚50nmの複合膜を0.003規
定の硝酸水溶液に5分間浸漬してシリカの細孔に詰まっ
たCo相とその上に形成したCo−SiO2 複合膜中の
Co相を溶解除去した。実施例1の場合と同様に、Co
相がほぼ完全に溶出し、粒界のSiO2 がメッシュ状に
残留しており、多孔質シリカ基板の細孔に詰まったCo
相もほぼ完全に除去されていることががわかった。ま
た、多孔質シリカ基板からの複合膜の剥離は殆ど認めら
れなかった。
This 50 nm-thick composite film was immersed in a 0.003 N aqueous nitric acid solution for 5 minutes to remove the Co phase clogged in the pores of silica and the Co phase in the Co—SiO 2 composite film formed thereon. It was dissolved and removed. As in the case of Example 1, Co
The phases were almost completely eluted, and the SiO 2 at the grain boundaries remained in the form of a mesh.
It was found that the phases were almost completely removed. Further, almost no peeling of the composite film from the porous silica substrate was observed.

【0038】実施例8 実施例1と同様の手順で、厚さ1.2mmのソーダライ
ムガラス基板上に金属CoとSiCの2相からなる複合
薄膜を形成した。スパッタには、直径6インチの金属C
oターゲットの上に1cm角のSiC焼結体チップを置
いた複合ターゲットを用いた。このとき、ターゲットの
片面の全表面積のうち20%を占めるようにSiC焼結
体チップの量を調節した。真空槽を5×10-6Torr
まで排気したのちにArガスを導入し、真空槽内部のガ
ス圧が2×10-2TorrになるようにArガスの流量
を調節し、600Wの高周波を入力してプラズマを発生
させた。成膜速度はおよそ0.9nm/secであり、
成膜時には基板の加熱やバイアス電圧の印加は行わなか
った。
Example 8 By the same procedure as in Example 1, a composite thin film composed of two phases of metallic Co and SiC was formed on a soda lime glass substrate having a thickness of 1.2 mm. For spatter, metal C with a diameter of 6 inches
o A composite target in which a 1 cm square SiC sintered chip chip was placed on the target was used. At this time, the amount of the SiC sintered body chips was adjusted so as to occupy 20% of the total surface area of one surface of the target. Vacuum chamber 5 × 10 -6 Torr
After evacuation to the above, Ar gas was introduced, the flow rate of Ar gas was adjusted so that the gas pressure inside the vacuum chamber was 2 × 10 −2 Torr, and a high frequency of 600 W was input to generate plasma. The film forming speed is about 0.9 nm / sec,
The substrate was not heated and the bias voltage was not applied during the film formation.

【0039】成膜した複合薄膜の構造は図1に非常に良
く似たものであり、Co結晶粒子が柱状に成長し、その
粒界にアモルファスのSiCと考えられる相が析出し
た。このCo結晶粒子の平均粒子径は約35nmであっ
た。
The structure of the formed composite thin film was very similar to that shown in FIG. 1. Co crystal grains grew in a columnar shape, and a phase considered to be amorphous SiC was precipitated at the grain boundary. The average particle size of the Co crystal particles was about 35 nm.

【0040】膜厚50nmの複合膜を0.003規定の
硝酸水溶液に5分間浸漬してCo相を溶解除去した。実
施例1の場合と同様に、Co相がほぼ完全に溶出し、粒
界のSiCがメッシュ状に残留していた。
The composite film having a thickness of 50 nm was immersed in a 0.003N aqueous nitric acid solution for 5 minutes to dissolve and remove the Co phase. Similar to the case of Example 1, the Co phase was almost completely eluted, and the SiC at the grain boundary remained in a mesh shape.

【0041】実施例9 実施例1と同様の手順で、厚さ1.2mmのソーダライ
ムガラス基板上に金属CoとZrB2 の2相からなる複
合薄膜を形成した。スパッタには、直径6インチの金属
Coターゲットの上に1cm角のZrB2 セラミックス
チップを置いた複合ターゲットを用いた。このとき、タ
ーゲットの片面の全表面積のうち20%を占めるように
ZrB2 セラミックスチップの量を調節した。真空槽を
5×10-6Torrまで排気したのちにArガスを導入
し、真空槽内部のガス圧が2×10-2Torrになるよ
うにArガスの流量を調節し、600Wの高周波を入力
してプラズマを発生させた。成膜速度はおよそ0.9n
m/secであり、成膜時には基板の加熱やバイアス電
圧の印加は行わなかった。
Example 9 By the same procedure as in Example 1, a composite thin film composed of two phases of metal Co and ZrB 2 was formed on a 1.2 mm thick soda lime glass substrate. For the sputtering, a composite target in which a 1 cm square ZrB 2 ceramic chip was placed on a metal Co target having a diameter of 6 inches was used. At this time, the amount of ZrB 2 ceramic chips was adjusted so as to occupy 20% of the total surface area of one side of the target. After evacuating the vacuum chamber to 5 × 10 -6 Torr, introducing Ar gas, adjusting the Ar gas flow rate so that the gas pressure inside the vacuum chamber is 2 × 10 -2 Torr, and inputting a high frequency of 600 W Then, plasma was generated. Deposition rate is about 0.9n
m / sec, the substrate was not heated and a bias voltage was not applied during film formation.

【0042】成膜した複合薄膜の構造は図1に非常に良
く似たものであり、Co結晶粒子が柱状に成長し、その
粒界にアモルファスのZrB2 が析出しており、このC
o結晶粒子の平均粒子径は約21nmであった。
The structure of the formed composite thin film is very similar to that shown in FIG. 1, in which Co crystal grains grow in columns and amorphous ZrB 2 is deposited at the grain boundaries.
The average particle size of the o crystal particles was about 21 nm.

【0043】膜厚50nmの複合膜を0.003規定の
硝酸水溶液に5分間浸漬してCo相を溶解除去した。実
施例1の場合と同様に、Co相がほぼ完全に溶出し、粒
界のZrB2 がメッシュ状に残留しており、ソーダライ
ムガラス基板からの膜の剥離は殆ど認められなかった。
The composite film having a thickness of 50 nm was immersed in a 0.003N aqueous nitric acid solution for 5 minutes to dissolve and remove the Co phase. Similar to the case of Example 1, the Co phase was almost completely eluted and ZrB 2 at the grain boundaries remained in a mesh shape, and almost no peeling of the film from the soda lime glass substrate was observed.

【0044】[0044]

【発明の効果】以上詳述したように、本発明は、膜の一
方の表面からもう一方の表面に一次元的に貫通するナノ
メーターサイズの気孔を有する多孔質セラミックス膜で
あって、多孔質セラミックス膜がガラス、セラミック
ス、プラスチックス又は耐熱金属の基板上に形成されて
いることを特徴とする多孔質セラミックス膜及びその製
造方法に係るものであり、本発明によれば、圧力損失の
少ない一次元貫通孔を有する多孔質セラミックス膜を提
供することができる。また、本発明の多孔質セラミック
ス膜は多孔質セラミックス基板と組み合わせればセラミ
ックスフィルタとして使用することができる。しかも、
このセラミックスフィルタの材質は金属酸化物、金属炭
化物、金属ホウ化物等から幅広く選べるので、2000
℃付近の高耐熱性が要求される場合には金属炭化物、金
属ホウ化物等の高融点材質を選択し、高温の酸化雰囲気
中で使用する場合には金属酸化物を選択するというよう
に使い分けることができる。また、本発明の多孔質セラ
ミックス膜をスパッタ法とエッチングで作製すれば、基
板材料に金属、ガラス、セラミックスの他プラスチック
スなどの有機材料等殆ど全ての材料の基板上に多孔質セ
ラミックス膜を形成することができる。また、複合膜を
スパッタ法で成膜する場合には、基板の表面形状は平坦
でなくても成膜可能であり、数平方メートルに及ぶ大面
積の基板上に均一に成膜することも可能である。
As described in detail above, the present invention provides a porous ceramic membrane having nanometer-sized pores penetrating from one surface of the membrane to the other surface in a one-dimensional manner. The present invention relates to a porous ceramic film, characterized in that the ceramic film is formed on a substrate made of glass, ceramics, plastics or heat-resistant metal, and a method for producing the same. It is possible to provide a porous ceramic film having original through holes. Further, the porous ceramic film of the present invention can be used as a ceramic filter when combined with a porous ceramic substrate. Moreover,
Since the material of this ceramics filter can be widely selected from metal oxides, metal carbides, metal borides, etc., 2000
Select a high melting point material such as metal carbide or metal boride when high heat resistance around ℃ is required, and select metal oxide when used in a high temperature oxidizing atmosphere. You can Further, if the porous ceramic film of the present invention is produced by the sputtering method and etching, the porous ceramic film is formed on the substrate of almost all materials such as organic materials such as metal, glass, ceramics and plastics as the substrate material. can do. Further, when the composite film is formed by the sputtering method, the film can be formed even if the surface shape of the substrate is not flat, and it can be evenly formed on a substrate having a large area of several square meters. is there.

【0045】本発明の多孔質セラミックス膜と多孔質セ
ラミックス膜を多孔質セラミックス基板と組み合わせた
セラミックスフィルタは単なるガス分離膜としてだけで
なく、細孔径を目的に合わせて制御すれば一般の工場排
気、火力発電所の排気ガス、自動車の排気ガス中に含ま
れる有害な微粒子の除去等に使用できる。また、液体中
の微細粒子状物質、例えば、ウィルスのような極微小な
微生物の分離、溶媒中に分散したコロイド状分子集団の
分離、特定の分子のふるい分け等にも使用することがで
きる。
The ceramic filter of the present invention in which the porous ceramic membrane and the porous ceramic membrane are combined with the porous ceramic substrate is not only a gas separation membrane, but is also a general factory exhaust gas if the pore diameter is controlled according to the purpose. It can be used to remove harmful fine particles contained in exhaust gas from thermal power plants and exhaust gas from automobiles. It can also be used for separating fine particulate matter in a liquid, for example, microscopic microorganisms such as viruses, separating colloidal molecule populations dispersed in a solvent, and sieving specific molecules.

【0046】さらに、膜の貫通気孔の表面を無機あるい
は有機の触媒で修飾すれば、より活性の高い触媒膜を得
ることが可能である。
Furthermore, by modifying the surface of the through pores of the membrane with an inorganic or organic catalyst, it is possible to obtain a catalyst membrane with higher activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Co−SiO2 系試作試料を透過型電子顕微鏡
により膜面に垂直な方向から観察した拡大写真。
FIG. 1 is an enlarged photograph of a Co—SiO 2 system prototype sample observed by a transmission electron microscope from a direction perpendicular to a film surface.

【図2】本発明の多孔質セラミックス膜を多孔質セラミ
ックス基板上に形成する手順の概略図。
FIG. 2 is a schematic view of a procedure for forming a porous ceramic film of the present invention on a porous ceramic substrate.

【図3】本発明において、ソーダライムガラス基板上に
Co−SiO2 複合膜をスパッタ法で作成した後0.0
03規定の硝酸でエッチングしたものを膜の断面方向か
ら見た走査型電子顕微鏡写真。
FIG. 3 is a graph showing the composition of a Co-SiO 2 composite film formed on a soda-lime glass substrate by sputtering according to the present invention.
A scanning electron micrograph of a film etched with 03 normal nitric acid as viewed from the cross-sectional direction of the film.

【図4】本発明による多孔質セラミックス膜の概要を示
す斜視図。
FIG. 4 is a perspective view showing an outline of a porous ceramic film according to the present invention.

【符号の説明】[Explanation of symbols]

(a) 多孔質セラミックス基板の断面図 (b) セラミックス基板上に金属膜を形成した状況
(基板表面の細孔は金属で充填される) (c) セラミックス基板表面が現れるまで表面を研磨
した状態 (d) (c)で得られた膜の上に本発明の金属・セラ
ミックス複合膜を形成した状態 (e) 酸によるエッチングで金属を溶出した後の状態
(A) Cross-sectional view of porous ceramic substrate (b) Situation where metal film is formed on ceramic substrate (pores on substrate surface are filled with metal) (c) State where surface is polished until ceramic substrate surface appears (D) A state in which the metal / ceramic composite film of the present invention is formed on the film obtained in (c). (E) A state after the metal is eluted by etching with an acid.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23F 1/00 103 C23F 1/00 103 // C23C 14/06 C23C 14/06 L 14/34 14/34 A (72)発明者 近藤 新二 愛知県名古屋市名東区亀の井二丁目27番地 ハーベストヒルズ一社302 (72)発明者 平野 眞一 愛知県知多郡東浦町大字緒川字丸池台3番 地2号Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display area C23F 1/00 103 C23F 1/00 103 // C23C 14/06 C23C 14/06 L 14/34 14/34 A (72) Inventor Shinji Kondo 2-27 Kamenoi, Meito-ku, Nagoya, Aichi Prefecture Harvest Hills, Ltd. 302 (72) Inventor Shinichi Hirano, Maruikedai, Ogawa, Higashiura-cho, Chita-gun, Aichi Prefecture.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気相成長法によって成膜したセラミック
ス相と金属相からなる複合膜中の金属相を除去して得ら
れる、膜の一方の表面からもう一方の表面に一次元的に
貫通するナノメーターサイズの気孔を有する多孔質セラ
ミックス膜であって、当該多孔質セラミックス膜がガラ
ス、セラミックス、プラスチックス又は耐熱金属の基板
上に形成されていることを特徴とする多孔質セラミック
ス膜。
1. One-dimensionally penetrating from one surface of the film to the other surface obtained by removing a metal phase in a composite film composed of a ceramic phase and a metal phase formed by a vapor phase growth method. A porous ceramic film having nanometer-sized pores, characterized in that the porous ceramic film is formed on a substrate of glass, ceramics, plastics, or heat-resistant metal.
【請求項2】 前記多孔質セラミックス膜が金属酸化
物、金属炭化物及び金属ホウ化物から選ばれる一種以上
の化合物である請求項1記載の多孔質セラミックス膜。
2. The porous ceramic film according to claim 1, wherein the porous ceramic film is one or more compounds selected from metal oxides, metal carbides and metal borides.
【請求項3】 前記多孔質セラミックス膜を支持する基
板が多孔質体である請求項1又は2記載の多孔質セラミ
ックス膜。
3. The porous ceramic film according to claim 1, wherein the substrate supporting the porous ceramic film is a porous body.
【請求項4】 前記一次元的に貫通する気孔の平均孔径
が5〜100ナノメートルである請求項1記載の多孔質
セラミックス膜。
4. The porous ceramic film according to claim 1, wherein the pores penetrating one-dimensionally have an average pore diameter of 5 to 100 nanometers.
【請求項5】 気相成長法によって基板上にセラミック
ス相と金属相からなる複合膜を形成し、次いで複合膜中
の金属相をエッチングで除去することを特徴とする膜の
一方の表面からもう一方の表面に一次元的に貫通するナ
ノメーターサイズの気孔を有する多孔質セラミックス膜
の製造方法。
5. A composite film comprising a ceramic phase and a metal phase is formed on a substrate by a vapor phase growth method, and then the metal phase in the composite film is removed by etching. A method for producing a porous ceramics film having nanometer-sized pores penetrating one surface in one dimension.
JP33603695A 1995-11-29 1995-11-29 Porous ceramic film and method for producing the same Expired - Lifetime JP3135110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33603695A JP3135110B2 (en) 1995-11-29 1995-11-29 Porous ceramic film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33603695A JP3135110B2 (en) 1995-11-29 1995-11-29 Porous ceramic film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09157062A true JPH09157062A (en) 1997-06-17
JP3135110B2 JP3135110B2 (en) 2001-02-13

Family

ID=18295049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33603695A Expired - Lifetime JP3135110B2 (en) 1995-11-29 1995-11-29 Porous ceramic film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3135110B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266400A (en) * 2002-12-13 2003-09-24 Canon Inc Method of manufacturing silicon oxide nanostructure body
JP2004237431A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
JP2004237430A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
JP2005068558A (en) * 2003-08-07 2005-03-17 Canon Inc Nano-structure and process of production thereof
JP2006008435A (en) * 2004-06-24 2006-01-12 Noritake Co Ltd Inorganic porous body and method for manufacturing the same
JP2006150349A (en) * 2004-10-29 2006-06-15 Brother Ind Ltd Method for manufacturing filter
US7070855B2 (en) 2002-03-15 2006-07-04 Canon Kabushiki Kaisha Porous material and production process thereof
US7074480B2 (en) 2002-03-15 2006-07-11 Canon Kabushiki Kaisha Porous body and method of manufacturing the same
US7081303B2 (en) 2002-03-15 2006-07-25 Canon Kabushiki Kaisha Function device and method for manufacturing the same, perpendicular magnetic recording medium, magnetic recording/reproduction apparatus and information processing apparatus
JP2006297580A (en) * 2005-03-25 2006-11-02 Canon Inc Structure, method for manufacturing the same, and device using the structure
US7183127B2 (en) 2002-12-13 2007-02-27 Canon Kabushiki Kasha Method of manufacturing a semiconductor device
JP2007252966A (en) * 2006-03-20 2007-10-04 Toshiba Corp Membrane module and water treatment system
US7282268B2 (en) 2002-02-12 2007-10-16 Canon Kabushiki Kaisha Structure, method of manufacturing the same, and device using the same
US7329387B2 (en) 2003-08-11 2008-02-12 Canon Kabushiki Kaisha Field-effect transistor, sensor using it, and production method thereof
JP2008037089A (en) * 2006-03-17 2008-02-21 Canon Inc Manufacturing process of mold with rugged structure and mold for optical element, and optical element
US7387967B2 (en) 2002-12-13 2008-06-17 Canon Kabushiki Kaisha Columnar structured material and method of manufacturing the same
JP2009541080A (en) * 2006-06-28 2009-11-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Component manufacturing method, in particular micromechanical component and / or microfluidic component and / or microelectronic component manufacturing method and component
US8435899B2 (en) 2002-12-13 2013-05-07 Canon Kabushiki Kaisha Method for producing columnar structured material
JP2018083742A (en) * 2016-11-25 2018-05-31 株式会社福山医科 Method of manufacturing porous ceramic, and porous ceramic
WO2019187640A1 (en) * 2018-03-30 2019-10-03 日本碍子株式会社 Zeolite membrane composite body, method for producing zeolite membrane composite body, and separation method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282268B2 (en) 2002-02-12 2007-10-16 Canon Kabushiki Kaisha Structure, method of manufacturing the same, and device using the same
US7070855B2 (en) 2002-03-15 2006-07-04 Canon Kabushiki Kaisha Porous material and production process thereof
US7081303B2 (en) 2002-03-15 2006-07-25 Canon Kabushiki Kaisha Function device and method for manufacturing the same, perpendicular magnetic recording medium, magnetic recording/reproduction apparatus and information processing apparatus
JP2004237430A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
US7879734B2 (en) 2002-03-15 2011-02-01 Canon Kabushiki Kaisha Method of manufacturing porous body
US7393458B2 (en) 2002-03-15 2008-07-01 Canon Kabushiki Kaisha Porous material and production process thereof
JP2004237431A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
US7074480B2 (en) 2002-03-15 2006-07-11 Canon Kabushiki Kaisha Porous body and method of manufacturing the same
US8435899B2 (en) 2002-12-13 2013-05-07 Canon Kabushiki Kaisha Method for producing columnar structured material
US7183127B2 (en) 2002-12-13 2007-02-27 Canon Kabushiki Kasha Method of manufacturing a semiconductor device
JP2003266400A (en) * 2002-12-13 2003-09-24 Canon Inc Method of manufacturing silicon oxide nanostructure body
US7387967B2 (en) 2002-12-13 2008-06-17 Canon Kabushiki Kaisha Columnar structured material and method of manufacturing the same
US7892979B2 (en) 2002-12-13 2011-02-22 Canon Kabushiki Kaisha Columnar structured material and method of manufacturing the same
JP2005068558A (en) * 2003-08-07 2005-03-17 Canon Inc Nano-structure and process of production thereof
US7329387B2 (en) 2003-08-11 2008-02-12 Canon Kabushiki Kaisha Field-effect transistor, sensor using it, and production method thereof
JP2006008435A (en) * 2004-06-24 2006-01-12 Noritake Co Ltd Inorganic porous body and method for manufacturing the same
JP2006150349A (en) * 2004-10-29 2006-06-15 Brother Ind Ltd Method for manufacturing filter
JP2006297580A (en) * 2005-03-25 2006-11-02 Canon Inc Structure, method for manufacturing the same, and device using the structure
JP2008037089A (en) * 2006-03-17 2008-02-21 Canon Inc Manufacturing process of mold with rugged structure and mold for optical element, and optical element
JP2007252966A (en) * 2006-03-20 2007-10-04 Toshiba Corp Membrane module and water treatment system
US8529781B2 (en) 2006-06-28 2013-09-10 Robert Bosch Gmbh Method for producing a component, in particular a micromechanical and/or microfluidic and/or microelectronic component, and component
JP2009541080A (en) * 2006-06-28 2009-11-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Component manufacturing method, in particular micromechanical component and / or microfluidic component and / or microelectronic component manufacturing method and component
JP2018083742A (en) * 2016-11-25 2018-05-31 株式会社福山医科 Method of manufacturing porous ceramic, and porous ceramic
WO2019187640A1 (en) * 2018-03-30 2019-10-03 日本碍子株式会社 Zeolite membrane composite body, method for producing zeolite membrane composite body, and separation method
CN111902203A (en) * 2018-03-30 2020-11-06 日本碍子株式会社 Zeolite membrane composite, method for producing zeolite membrane composite, and separation method
JPWO2019187640A1 (en) * 2018-03-30 2021-02-25 日本碍子株式会社 Zeolite membrane composite, method for producing zeolite membrane composite, and method for separation
US11498035B2 (en) 2018-03-30 2022-11-15 Ngk Insulators, Ltd. Zeolite membrane complex, method for producing zeolite membrane complex, and separation method

Also Published As

Publication number Publication date
JP3135110B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP3135110B2 (en) Porous ceramic film and method for producing the same
JP3182522B2 (en) Ceramic membrane having one-dimensional through-holes and method of manufacturing the same
Chau et al. The role of surface chemistry in zeolite membrane formation
US6309546B1 (en) Micro and ultrafilters with controlled pore sizes and pore size distribution and methods for making
KR20090087869A (en) Sinter bonded porous metallic coatings
US4801380A (en) Method of producing a silicon film with micropores
KR101451322B1 (en) Process for forming a non-stick coating based on silicon carbide
JP2008507395A (en) Composite gas separation module with a layer of particles with uniform binder metal distribution
JPH0395288A (en) Abrasive coated with refractory metal oxide and grinding wheel made therefrom
US20040244589A1 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
JP3769739B2 (en) Porous ceramic film and manufacturing method thereof
JP2001261376A (en) Anti-fogging film, and substrate with anti-fogging film
JP2006335591A (en) Treating method for carbon material
WO2017149886A1 (en) Method for producing porous carbon material, and spherical porous carbon material
Masuda et al. Fabrication of through-hole diamond membranes by plasma etching using anodic porous alumina mask
JPH08250427A (en) Tungsten target for semiconductor
KR100659919B1 (en) A fabrication method of the photocatalytic filter for water treatment using the aerosol deposition method, photocatalytic filter be gained by the same
JPS62270473A (en) Pore size control for porous body
JP2006193820A (en) Composite material and its production method
RU2040371C1 (en) Method of making filtering material
JPH09256140A (en) Production of fine particle of gold, silver or copper
JP2004083376A (en) Ceramic porous membrane with porosity and membrane thickness controlled simultaneously, and its producing method
JP7093085B2 (en) Porous carbon material
JPH11116352A (en) Production of porous ceramic
RU2117081C1 (en) Method of preparing regular silicon filamentary crystals

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term