JPH09153356A - Hydrogen storage alloy electrode and manufacture - Google Patents

Hydrogen storage alloy electrode and manufacture

Info

Publication number
JPH09153356A
JPH09153356A JP7312346A JP31234695A JPH09153356A JP H09153356 A JPH09153356 A JP H09153356A JP 7312346 A JP7312346 A JP 7312346A JP 31234695 A JP31234695 A JP 31234695A JP H09153356 A JPH09153356 A JP H09153356A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
alloy powder
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7312346A
Other languages
Japanese (ja)
Other versions
JP3553708B2 (en
Inventor
Tadashi Ise
忠司 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31234695A priority Critical patent/JP3553708B2/en
Publication of JPH09153356A publication Critical patent/JPH09153356A/en
Application granted granted Critical
Publication of JP3553708B2 publication Critical patent/JP3553708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the battery characteristics such as the cycle characteristic, the high rate discharge characteristic, and the like by suppressing occurrence of the inactive state and the pulverization of hydrogen storage alloy. SOLUTION: Hydrogen storage alloy manufactured by a rapidly solidifying method is pulverized so as to manufacture hydrogen storage alloy powder, and one part of the hydrogen storage alloy powder is contained by an electrode 2. Then, among the hydrogen storage alloy powder having various particle diameters, the large particle diameter hydrogen storage alloy powder whose weight cumulation from a large particle side reaches 60% or less is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属−水素アルカ
リ二次電池の負極として用いられる水素吸蔵合金電極に
係わり、詳しくは、サイクル特性と高率放電特性との向
上を図ることを目的とした、電極材料たる水素吸蔵合金
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a metal-hydrogen alkaline secondary battery, and more specifically, to improve cycle characteristics and high rate discharge characteristics. , And to improvement of hydrogen storage alloy as electrode material.

【0002】[0002]

【従来の技術】近年、水素を可逆的に吸蔵,放出するこ
とができる水素吸蔵合金の開発が盛んに行われており、
斯かる水素吸蔵合金を負極材料として用いる金属−水素
アルカリ二次電池が、従来汎用されている鉛蓄電池、ニ
ッケル−カドミウム蓄電池などに比べて、軽量で、且
つ、高容量化が可能であるなどの理由から、次世代のア
ルカリ二次電池の主流を占めるものとして有望視されて
いる。
2. Description of the Related Art In recent years, hydrogen storage alloys capable of reversibly storing and releasing hydrogen have been actively developed.
Metal-hydrogen alkaline secondary batteries using such a hydrogen storage alloy as a negative electrode material are lighter in weight and higher in capacity than lead storage batteries, nickel-cadmium storage batteries and the like which have been generally used conventionally. For this reason, it is regarded as promising as the mainstream of the next-generation alkaline secondary batteries.

【0003】ところで、電池用水素吸蔵合金は、室温近
傍で可逆的に水素を吸蔵放出し得るものでなければなら
ない。斯かる水素吸蔵合金を用いた電極の作製方法とし
ては、以下のような方法が提案されている。
By the way, the hydrogen storage alloy for batteries must be capable of reversibly storing and releasing hydrogen near room temperature. The following method has been proposed as a method for producing an electrode using such a hydrogen storage alloy.

【0004】先ず、金属元素を秤量し、金属元素を溶解
炉内で溶融した後、この溶湯をロール法等の急冷凝固法
等で冷却して水素吸蔵合金塊を作製する。次に、この水
素吸蔵合金塊を機械的粉砕法或いは水素化粉砕法等によ
り粉砕して水素吸蔵合金粉末を作製した後、この水素吸
蔵合金粉末と結着剤とを混練して活物質ペーストを作製
する。しかる後、この活物質ペーストを集電体の両面に
圧着し、プレスすることにより作製していた。
First, a metal element is weighed, the metal element is melted in a melting furnace, and then this molten metal is cooled by a rapid solidification method such as a roll method to prepare a hydrogen storage alloy ingot. Next, the hydrogen storage alloy ingot is pulverized by a mechanical pulverization method or a hydrogenation pulverization method to prepare a hydrogen storage alloy powder, and then the hydrogen storage alloy powder and a binder are kneaded to form an active material paste. Create. Then, the active material paste was pressure-bonded to both sides of the current collector and pressed to produce the active material paste.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の水素吸蔵合金電極を用いた金属−水素アルカリ
二次電池では、充放電時の水素原子を吸蔵,放出する際
に、合金の結晶格子に膨張,収縮の応力が加わる。この
ため、充放電を繰り返し行うと水素吸蔵合金が次第に微
粉化し、新生面ができ、この新生面に露出した合金の元
素が酸化されて、合金表面に不活性な皮膜が生じたり、
合金の元素が電解液中に溶解して合金組成が変化する。
However, in the metal-hydrogen alkaline secondary battery using the above-mentioned conventional hydrogen storage alloy electrode, when the hydrogen atoms are stored and released during charge and discharge, the crystal lattice of the alloy is changed. Expansion and contraction stress is applied. For this reason, when repeatedly charged and discharged, the hydrogen storage alloy is gradually pulverized to form a new surface, the elements of the alloy exposed on the new surface are oxidized, and an inert film is formed on the alloy surface,
The elements of the alloy are dissolved in the electrolytic solution to change the alloy composition.

【0006】特に、急冷凝固法(格別、ロール法)によ
って作製した水素吸蔵合金は、通常の鋳込み法(水冷さ
れた鋳型に水素吸蔵合金溶湯を流し込んで冷却凝固させ
る方法)と比べて冷却速度が大きいため、例えばロール
法による場合にあっては、ロール面側(ロールと接触し
ている側であって、水素吸蔵合金の溶湯が急冷される部
分)の合金と、ロール面と反対側(気体と接触している
側であって、水素吸蔵合金の溶湯の冷却が若干遅い部
分)の合金とでは、合金組織と水素吸蔵合金を粉砕した
後の水素吸蔵合金粉末の粒径が異なる。具体的には、急
冷部の合金は組織が均一なチル晶となり、且つ、硬度が
高く粉砕した後の水素吸蔵合金粉末の粒径が大きくなる
一方、徐冷部の合金は組織が若干不均一となり、且つ、
硬度が低く粉砕した後の水素吸蔵合金粉末の粒径が小さ
くなる。
In particular, the hydrogen storage alloy produced by the rapid solidification method (special method, roll method) has a cooling rate higher than that of the ordinary casting method (the method of pouring the molten hydrogen storage alloy into a water-cooled mold for cooling and solidification). For example, in the case of the roll method, since it is large, the alloy on the roll surface side (the portion in contact with the roll where the molten metal of the hydrogen storage alloy is rapidly cooled) and the opposite side to the roll surface (gas The alloy structure and the alloy on the side in contact with the hydrogen storage alloy in which the cooling of the molten metal of the hydrogen storage alloy is slightly slower) differ in the grain structure of the hydrogen storage alloy powder after crushing the hydrogen storage alloy. Specifically, the alloy in the quenching part has a chilled crystal with a uniform structure, and the particle size of the hydrogen storage alloy powder after crushing is high, while the alloy in the slow cooling part has a slightly nonuniform structure. And, and
The particle size of the hydrogen storage alloy powder after crushing is low because of its low hardness.

【0007】そして、大小全ての粒径の水素吸蔵合金粉
末を用いて電極及び電池を作製し、充放電サイクルを繰
り返した場合には、小径の水素吸蔵合金粉末が選択的に
充放電されて微粉化が促進され、しかも新生面に露出し
た合金の元素が酸化される一方、大径の水素吸蔵合金粉
末は充放電されず不活性な状態となる。これらのことか
ら、サイクル特性や高率放電特性が低下するという課題
を有していた。
When an electrode and a battery are produced by using hydrogen storage alloy powders of all sizes, large and small, and the charge and discharge cycle is repeated, the hydrogen storage alloy powders of small size are selectively charged and discharged to form fine powder. While the elements of the alloy exposed on the nascent surface are oxidized, the large-diameter hydrogen storage alloy powder is not charged and discharged and becomes inactive. For these reasons, there is a problem that cycle characteristics and high rate discharge characteristics are deteriorated.

【0008】本発明の目的とするところは、サイクル特
性及び高率放電特性に優れた金属−水素アルカリ二次電
池を得ることを可能にする、充放電サイクルの進行に伴
う水素吸蔵合金の微粉化と不活性化とが起こりにくい水
素吸蔵合金電極及びその製造方法を提供するにある。
The object of the present invention is to finely pulverize a hydrogen storage alloy with the progress of charge / discharge cycles, which makes it possible to obtain a metal-hydrogen alkaline secondary battery having excellent cycle characteristics and high rate discharge characteristics. Another object of the present invention is to provide a hydrogen storage alloy electrode that is less likely to be deactivated and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る水素吸蔵合金電極は、急冷凝固法にて作
製せる水素吸蔵合金を粉砕して作製した水素吸蔵合金粉
末の一部が含有する水素吸蔵合金電極であって、上記水
素吸蔵合金の粉砕時における種々の粒径を有する水素吸
蔵合金粉末のうち、下記数3で示される値が60%以下
となるよう大粒径の水素吸蔵合金粉末が含有されている
ことを特徴とする。
Means for Solving the Problems A hydrogen storage alloy electrode according to the present invention for achieving the above object is obtained by pulverizing a hydrogen storage alloy produced by a rapid solidification method, and A hydrogen storage alloy electrode containing hydrogen having a large particle size such that the value represented by the following mathematical formula 3 is 60% or less among the hydrogen storage alloy powders having various particle sizes when the hydrogen storage alloy is pulverized. The storage alloy powder is contained.

【0010】[0010]

【数3】 (Equation 3)

【0011】また、本発明による水素吸蔵合金電極の製
造方法は、急冷凝固法にて水素吸蔵合金を作製する第1
ステップと、上記水素吸蔵合金を粉砕して水素吸蔵合金
粉末を作製する第2ステップと、上記粉砕時における種
々の粒径を有する水素吸蔵合金粉末のうち、上記数3で
示される値が60%以下となるよう大粒径の水素吸蔵合
金粉末を選別する第3ステップとを有することを特徴と
する。
The method for producing a hydrogen storage alloy electrode according to the present invention is the first method for producing a hydrogen storage alloy by the rapid solidification method.
A step, a second step of crushing the hydrogen-absorbing alloy to produce a hydrogen-absorbing alloy powder, and a value of 60% of the value of the hydrogen-absorbing alloy powder having various particle diameters at the time of the crushing. And a third step of selecting a hydrogen storage alloy powder having a large particle size as follows.

【0012】[0012]

【発明の実施の形態】本発明の水素吸蔵合金電極は、急
冷凝固法にて作製せる水素吸蔵合金を粉砕して作製した
水素吸蔵合金粉末のうち、下記数4で示される値が60
%以下となるよう大粒径の水素吸蔵合金粉末が含有され
ているものである。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy electrode of the present invention has a hydrogen storage alloy powder produced by crushing a hydrogen storage alloy produced by a rapid solidification method, and the value represented by the following formula 4 is 60.
The hydrogen-absorbing alloy powder having a large particle size is contained so that the content of the hydrogen-absorbing alloy powder is not more than%.

【0013】[0013]

【数4】 (Equation 4)

【0014】詳しくは、図2を用いて説明する。図2に
おいて縦軸は重量%、横軸は粒径を示し、又粉砕時の水
素吸蔵合金粉末の総量はA+Bで示され、大粒径側から
の水素吸蔵合金粉末の総量はAで示され、不使用の水素
吸蔵合金粉末はBで示される。そして、上記数4で示さ
れる値が60%以下となるように大粒径側の水素吸蔵合
金粉末のみを分離し、この分離した大粒径側の水素吸蔵
合金粉末のみを水素吸蔵合金電極に用いるものである。
Details will be described with reference to FIG. In FIG. 2, the vertical axis represents% by weight, the horizontal axis represents the particle size, the total amount of hydrogen storage alloy powder at the time of crushing is indicated by A + B, and the total amount of hydrogen storage alloy powder from the large particle size side is indicated by A. An unused hydrogen storage alloy powder is indicated by B. Then, only the hydrogen-storing alloy powder on the large particle size side is separated so that the value represented by the above mathematical expression 4 becomes 60% or less, and only the separated hydrogen-storing alloy powder on the large particle size side is used as the hydrogen storage alloy electrode. It is used.

【0015】このような構成とすれば、電池の充放電時
に小径の水素吸蔵合金のみが選択的に充放電されること
なく、全ての水素吸蔵合金が均一に充放電される。した
がって、水素吸蔵合金が不活性な状態となったり微粉化
したりするのを抑制することができる。
With such a structure, all the hydrogen storage alloys are uniformly charged and discharged without selectively charging and discharging only the hydrogen storage alloy having a small diameter when charging and discharging the battery. Therefore, it is possible to suppress the hydrogen storage alloy from becoming inactive or being pulverized.

【0016】上記急冷凝固法としては、ロール法、アト
マイズ法、遠心噴霧法、又は水中鋳込み法(通常の鋳込
み法と異なり、水中で水素吸蔵合金溶湯が冷却されるた
め急冷される)が例示されるが、これらの方法に限定さ
れるものではない。尚、上記ロール法を用いた場合に
は、ロール法は急冷凝固法の中でも特に冷却速度が大き
いため、上記の微粉化防止等の作用が一層発揮される。
Examples of the rapid solidification method include a roll method, an atomizing method, a centrifugal atomizing method, and an underwater casting method (unlike the ordinary casting method, the molten hydrogen storage alloy is cooled in water so that it is rapidly cooled). However, the method is not limited to these methods. When the above-mentioned roll method is used, the roll method has a particularly high cooling rate among the rapid solidification methods, so that the above-mentioned effects such as prevention of pulverization are further exhibited.

【0017】上記水素吸蔵合金鋳塊の粉砕方法としては
水素化粉砕法又は機械的粉砕法を用いることができる。
特に、水素化粉砕法を用いた場合には、水素化粉砕法は
電池の充放電と同様に水素の出し入れにより水素吸蔵合
金を粉砕するものであるため、電池の充放電時の微粉化
と強い相関性を有する。したがって、水素化粉砕法を用
いると本発明の目的を一層達成することができる。
As a method of crushing the above-mentioned hydrogen storage alloy ingot, a hydrogenation crushing method or a mechanical crushing method can be used.
In particular, when the hydrogenation and pulverization method is used, the hydrogenation and pulverization method pulverizes the hydrogen storage alloy by taking in and out hydrogen similarly to the charging and discharging of the battery, and therefore, it is strong in pulverization during charging and discharging of the battery. It has a correlation. Therefore, the object of the present invention can be further achieved by using the hydro-grinding method.

【0018】また、水素吸蔵合金としてはMm1.0 Ni
3.4 Co0.8 Al0.2 Mn0.6 、LaNi5 、MmNi
5 等が例示されるが、これらの水素吸蔵合金に限定され
ないことは勿論である。
As the hydrogen storage alloy, Mm 1.0 Ni
3.4 Co 0.8 Al 0.2 Mn 0.6 , LaNi 5 , MmNi
Although 5 and the like are exemplified, it goes without saying that the hydrogen storage alloy is not limited to these.

【0019】尚、上記数4の値を余り小さく設定する
と、不使用の水素吸蔵合金粉末が多くなって製造コスト
が上昇する。したがって、上記数4の値は40〜60%
の間であることが望ましい。
If the value of the above equation 4 is set too small, the amount of unused hydrogen storage alloy powder increases and the manufacturing cost rises. Therefore, the value of the above equation 4 is 40 to 60%.
It is desirable to be between.

【0020】[0020]

【実施例】【Example】

(第1実施例) (実施例I) 〔水素吸蔵合金の作製〕市販のMm(ミッシュメタ
ル)、Ni、Co、Al及びMnを、モル比1.0:
3.4:0.8:0.2:0.6の割合で混合し、高周
波溶解炉で溶融させて溶湯を作製した後、この溶湯を高
速回転するロールの周面に噴出させる所謂ロール法によ
って凝固させた。この際、溶湯の冷却速度が10×10
3 ℃/秒以上となるようにロール周速度を調整した。以
上の工程を経て、組成式Mm1.0 Ni3. 4 Co0.8 Al
0.2 Mn0.6 で表される水素吸蔵合金塊を得た。
(First Example) (Example I) [Preparation of Hydrogen Storage Alloy] Commercially available Mm (Misch metal), Ni, Co, Al and Mn were used in a molar ratio of 1.0:
A so-called roll method in which the melt is mixed at a ratio of 3.4: 0.8: 0.2: 0.6, melted in a high-frequency melting furnace to prepare a melt, and the melt is ejected onto the peripheral surface of a roll rotating at a high speed. Solidified by. At this time, the cooling rate of the molten metal was 10 × 10
The roll peripheral speed was adjusted so as to be 3 ° C / sec or more. Through the above steps, the composition formula Mm 1.0 Ni 3. 4 Co 0.8 Al
A hydrogen storage alloy ingot represented by 0.2 Mn 0.6 was obtained.

【0021】〔水素吸蔵合金電極の作製〕上記水素吸蔵
合金塊を不活性ガス中でボールミルによりに機械的に粉
砕して水素吸蔵合金粉末を作製した。この際、粉砕時間
は13分30秒とした。次に、上記水素吸蔵合金粉末を
粒径毎に分級した後、上記水素吸蔵合金粉末のうち、前
記数4で示される値が40%となるようメッシュ分けに
より分離した。尚、このようにして分離された水素吸蔵
合金粉末の平均粒径は50μmである。
[Preparation of Hydrogen Storage Alloy Electrode] The above hydrogen storage alloy ingot was mechanically pulverized by a ball mill in an inert gas to prepare hydrogen storage alloy powder. At this time, the grinding time was 13 minutes and 30 seconds. Next, the hydrogen-absorbing alloy powder was classified according to particle size, and then the hydrogen-absorbing alloy powder was separated by meshing so that the value represented by the equation 4 was 40%. The average particle size of the hydrogen storage alloy powder thus separated is 50 μm.

【0022】次に、活物質としての上記大粒径側の水素
吸蔵合金粉末に、結着剤としてのポリテトラフルオロエ
チレン粉末を活物質重量に対して5重量%加えて活物質
ペーストを作製した後、この活物質ペーストをパンチン
グメタルから成る集電体の両面に圧着し、更にプレスす
ることにより負極を作製した。このようにして作製した
電極を、以下本発明電極A1と称する。
Next, 5 wt% of polytetrafluoroethylene powder as a binder was added to the above hydrogen absorbing alloy powder on the large particle size side as an active material to prepare an active material paste. Then, this active material paste was pressure-bonded to both sides of a current collector made of punching metal, and further pressed to produce a negative electrode. The electrode thus manufactured is hereinafter referred to as an electrode A1 of the invention.

【0023】〔正極〕正極として、公知の焼結式ニッケ
ル正極を作製した。
[Positive Electrode] As a positive electrode, a known sintered nickel positive electrode was prepared.

【0024】〔電解液〕30重量%のKOH水溶液を調
製した。
[Electrolytic Solution] A 30% by weight KOH aqueous solution was prepared.

【0025】〔電池の作製〕以上の正負両極及びアルカ
リ電解液を用いて円筒型の本発明電池を作製した。な
お、セパレータとしては不織布を使用し、これに先の電
解液を含浸させた。
[Production of Battery] A cylindrical battery of the present invention was produced using the positive and negative electrodes and the alkaline electrolyte described above. A non-woven fabric was used as the separator, which was impregnated with the electrolytic solution.

【0026】図1は本発明電極A1を用いた電池を模式
的に示す断面図であり、図1の本発明電池は、正極1、
負極2、これら両電極を離間するセパレータ3、正極リ
ード4、負極リード5、正極外部端子6、負極缶7など
からなる。正極1及び負極2は、電解液を注入されたセ
パレータ3を介して渦巻き状に巻き取られた状態で、負
極缶7内に収容されており、正極1は正極リード4を介
して正極外部端子6に、また負極2は負極リード5を介
して負極缶7に接続され、電池内部で生じた化学エネル
ギーを電気エネルギーとして外部へ取り出し得るように
なっている。尚、このようにして作製した電池の理論容
量は1000mAhである。
FIG. 1 is a sectional view schematically showing a battery using the electrode A1 of the present invention. The battery of the present invention shown in FIG.
The negative electrode 2, a separator 3 separating these two electrodes, a positive electrode lead 4, a negative electrode lead 5, a positive electrode external terminal 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are accommodated in the negative electrode can 7 in a state of being spirally wound via the separator 3 into which the electrolytic solution is injected, and the positive electrode 1 is connected to the positive electrode external terminal via the positive electrode lead 4. 6, and the negative electrode 2 is connected to a negative electrode can 7 via a negative electrode lead 5 so that chemical energy generated inside the battery can be taken out as electric energy to the outside. The theoretical capacity of the battery thus manufactured is 1000 mAh.

【0027】(実施例II)前記数4で示される値が60
%となるように調整して負極を作製する他は、上記実施
例Iと同様にして電極及び電池を作製した。但し、上記
実施例Iと同様に水素吸蔵合金粉末の平均粒径を50μ
mとすべく、本実施例IIにおける水素吸蔵合金の粉砕時
間は13分とした。このようにして作製した電極を、以
下本発明電極A2と称する。
(Embodiment II) The value represented by the above equation 4 is 60.
%. An electrode and a battery were produced in the same manner as in Example I above, except that the negative electrode was produced by adjusting the content to be%. However, the average particle size of the hydrogen storage alloy powder was 50 μm as in Example I.
The crushing time of the hydrogen storage alloy in this Example II was set to 13 minutes in order to obtain m. The electrode thus manufactured is hereinafter referred to as an electrode A2 of the invention.

【0028】(実施例III )平均粒径が40μmの水素
吸蔵合金粉末を用いて負極を作製する他は、上記実施例
Iと同様にして電極及び電池を作製した。尚、上記実施
例Iと同様に前記数4で示される値が60%とすべく、
本実施例III における水素吸蔵合金の粉砕時間は14分
とした。このようにして作製した電極を、以下本発明電
極A3と称する。
(Example III) An electrode and a battery were produced in the same manner as in Example I except that the negative electrode was produced using a hydrogen storage alloy powder having an average particle size of 40 μm. In addition, as in the above-mentioned Example I, the value shown by the above-mentioned equation 4 should be 60%,
The grinding time of the hydrogen storage alloy in Example III was set to 14 minutes. The electrode thus manufactured is hereinafter referred to as an electrode A3 of the invention.

【0029】(比較例I、II)前記数4で示される値
が、各80%、100%となるように調整して負極を作
製する他は、上記実施例Iと同様にして電極及び電池を
作製した。但し、上記実施例Iと同様に水素吸蔵合金粉
末の平均粒径を50μmとすべく、水素吸蔵合金の粉砕
時間を各12分、10分とした。このようにして作製し
た電極を、以下それぞれ比較電極X1、比較電極X2と
称する。
(Comparative Examples I and II) An electrode and a battery were prepared in the same manner as in Example I except that the negative electrode was prepared by adjusting the values shown in the above equation 4 to be 80% and 100%, respectively. Was produced. However, the grinding time of the hydrogen storage alloy was set to 12 minutes and 10 minutes, respectively, so that the average particle diameter of the hydrogen storage alloy powder was set to 50 μm as in Example I. The electrodes thus manufactured are hereinafter referred to as a comparison electrode X1 and a comparison electrode X2, respectively.

【0030】(比較例III )平均粒径が40μmの水素
吸蔵合金粉末を用いて負極を作製する他は、上記比較例
IIと同様にして電極及び電池を作製した。尚、上記比較
例IIと同様に前記数4で示される値が100%とすべ
く、本比較例III における水素吸蔵合金の粉砕時間は1
1分とした。このようにして作製した電極を、以下比較
電極X3と称する。
(Comparative Example III) The above Comparative Example except that a negative electrode was prepared using a hydrogen storage alloy powder having an average particle size of 40 μm.
An electrode and a battery were prepared in the same manner as II. As in Comparative Example II, the crushing time of the hydrogen storage alloy in Comparative Example III was set to 1 so that the value expressed by the equation 4 was 100%.
It was 1 minute. The electrode thus manufactured is hereinafter referred to as a reference electrode X3.

【0031】〔充放電サイクル試験I〕先ず、本発明電
極A1〜A3及び比較電極X1〜X3を用いた電池につ
いて、常温(25℃)下で、100mAで16時間充電
して1時間休止した後、200mAで放電終止電圧1.
0Vまで放電して1時間休止する工程を1サイクルとす
るサイクルを3サイクル行い電池の活性化を行った。
[Charge / Discharge Cycle Test I] First, for batteries using the electrodes A1 to A3 of the present invention and the reference electrodes X1 to X3, after charging at 100 mA for 16 hours at room temperature (25 ° C.) and resting for 1 hour, , 200 mA, discharge end voltage 1.
The battery was activated by performing 3 cycles of 1 cycle including a step of discharging to 0 V and resting for 1 hour.

【0032】次に、各電池について、常温(25℃)下
で、1500mAで48分充電して1時間休止した後、
1500mAで放電終止電圧1.0Vまで放電して1時
間休止する工程を1サイクルとする充放電サイクル試験
を行い、電池容量が500mA(初期容量の半分)とな
った時点を寿命とした。この結果を、下記表1に示す。
Next, each battery was charged at 1500 mA for 48 minutes at room temperature (25 ° C.) and rested for 1 hour.
A charging / discharging cycle test in which one cycle includes a step of discharging at 1500 mA to an end-of-discharge voltage of 1.0 V and resting for 1 hour was performed, and the time when the battery capacity reached 500 mA (half the initial capacity) was defined as the life. The results are shown in Table 1 below.

【0033】[0033]

【表1】 [Table 1]

【0034】上記表1に示すように、前記数4で示され
る値が60%以下の本発明電極A1〜A3を用いた電池
では、前記数4で示される値が60%を超える比較電極
X1〜X3を用いた電池に比べて、サイクル寿命が長く
なっていることが認められる。これは、本発明電極A1
〜A3を用いた電池では、小径の水素吸蔵合金のみが選
択的に充放電されることなく全ての水素吸蔵合金が均一
に充放電されるため、水素吸蔵合金が微粉化するのを抑
制することができるのに対して、比較電極X1〜X3を
用いた電池では、小径の水素吸蔵合金のみが選択的に充
放電されるため、水素吸蔵合金が微粉化するのが促進さ
れるという理由によるものと考えられる。
As shown in Table 1 above, in the battery using the electrodes A1 to A3 of the present invention in which the value represented by the formula 4 is 60% or less, the reference electrode X1 in which the value represented by the formula 4 exceeds 60%. It can be seen that the cycle life is longer than that of the battery using ~ X3. This is the electrode A1 of the present invention.
In the battery using ~ A3, since all the hydrogen storage alloys are uniformly charged and discharged without selectively charging and discharging only the hydrogen storage alloy having a small diameter, it is possible to prevent the hydrogen storage alloy from being pulverized. On the other hand, in the battery using the reference electrodes X1 to X3, only the hydrogen storage alloy having a small diameter is selectively charged and discharged, and therefore, the hydrogen storage alloy is promoted to be pulverized. it is conceivable that.

【0035】(実施例IV、V )水素吸蔵合金の鋳造方法
としてアトマイズ法を用いて負極を作製する他は、上記
実施例I及び実施例IIと同様にして電極及び電池を作製
した。尚、上記アトマイズ法は、上記実施例Iと同様に
して作製した水素吸蔵合金溶湯をアルゴンガス圧により
細孔より噴霧し、急冷させるという方法である。この噴
霧終了後の水素吸蔵合金粉末の平均粒径は100μmで
あり、その後これを機械的に粉砕した。このようにして
作製した電極を、以下それぞれ本発明電極A4、A5と
称する。
(Examples IV and V) Electrodes and batteries were produced in the same manner as in Examples I and II above, except that the anode was produced by using the atomization method as the method for casting the hydrogen storage alloy. The atomizing method is a method of spraying the molten hydrogen-absorbing alloy produced in the same manner as in Example I from the pores by the argon gas pressure and quenching it. The average particle size of the hydrogen storage alloy powder after this spraying was 100 μm, and it was then mechanically crushed. The electrodes thus manufactured are hereinafter referred to as electrodes A4 and A5 of the invention, respectively.

【0036】(比較例IV、V )水素吸蔵合金の鋳造方法
として上記実施例IV及びV に示すアトマイズ法を用いて
負極を作製する他は、上記比較例I及び比較例IIと同様
にして電極及び電池を作製した。このようにして作製し
た電極を、以下それぞれ比較電極X4、X5と称する。
(Comparative Examples IV and V) Electrodes were prepared in the same manner as in Comparative Examples I and II except that the anode was prepared by using the atomizing method shown in Examples IV and V as a method for casting the hydrogen storage alloy. And the battery was produced. The electrodes thus manufactured are hereinafter referred to as reference electrodes X4 and X5, respectively.

【0037】〔充放電サイクル試験II〕本発明電極A
4、A5及び比較電極X4、X5を用いた電池につい
て、上記充放電サイクル試験Iと同様の条件及び方法で
電池の活性化と、充放電サイクル試験を行った。この結
果を、前記表1に併せて示す。
[Charge / Discharge Cycle Test II] Inventive Electrode A
With respect to the battery using No. 4, A5 and the comparative electrodes X4, X5, activation of the battery and a charge / discharge cycle test were performed under the same conditions and method as in the charge / discharge cycle test I. The results are also shown in Table 1 above.

【0038】前記表1に示すように、前記数4で示され
る値が60%以下の本発明電極A4、A5を用いた電池
では、前記数4で示される値が60%を超える比較電極
X4、X5を用いた電池に比べて、サイクル寿命が長く
なっていることが認められる。これは、上記充放電サイ
クル試験Iで示す理由と同様の理由によるものと考えら
れる。
As shown in Table 1, in the battery using the electrodes A4 and A5 according to the present invention, the value of which is 60% or less, the reference electrode X4 whose value of 60 is more than 60%. It is recognized that the cycle life is longer than that of the battery using X5. It is considered that this is due to the same reason as that shown in the charge / discharge cycle test I.

【0039】(比較例VI〜IX)水素吸蔵合金の鋳造方法
として通常の鋳込み法を用いて負極を作製する他は、上
記実施例I、実施例II、比較例I及び比較例IIと同様に
して電極及び電池を作製した。尚、上記鋳込み法は、上
記実施例Iと同様にして作製した水素吸蔵合金溶湯を水
冷された銅製の鋳型に流し込んで、冷却させるという方
法である。このようにして作製した電極を、以下それぞ
れ比較電極X6〜X9と称する。
(Comparative Examples VI to IX) The same procedure as in Example I, Example II, Comparative Example I and Comparative Example II was repeated except that a negative electrode was produced by using a normal casting method as a method for casting a hydrogen storage alloy. To produce electrodes and batteries. The casting method is a method of pouring a molten hydrogen-absorbing alloy produced in the same manner as in Example I into a water-cooled copper mold to cool it. The electrodes thus manufactured are hereinafter referred to as comparative electrodes X6 to X9, respectively.

【0040】〔充放電サイクル試験III 〕比較電極X6
〜X9を用いた電池について、上記充放電サイクル試験
Iと同様の条件及び方法で電池の活性化と、充放電サイ
クル試験を行った。この結果を、前記表1に併せて示
す。
[Charge / discharge cycle test III] Comparative electrode X6
For the batteries using X9 to X9, the battery activation and the charge / discharge cycle test were performed under the same conditions and method as in the charge / discharge cycle test I. The results are also shown in Table 1 above.

【0041】前記表1に示すように、前記数4で示され
る値が60%以下の比較電極X6、X7を用いた電池
と、前記数4で示される値が60%を超える比較電極X
8、X9を用いた電池とでは、サイクル寿命に差異が認
められない。これは、水素吸蔵合金溶湯を急冷しない鋳
込み法では、粉砕が均一に行われるため粒度による組織
の差異が少ないということに起因するものと考えられ
る。したがって、本発明は水素吸蔵合金溶湯を急冷する
急冷凝固法を用いた場合に有用である。
As shown in Table 1, a battery using the reference electrodes X6 and X7 having a value shown by the formula 4 of 60% or less, and a reference electrode X having a value shown by the formula 4 of more than 60%.
No difference in cycle life is observed between the batteries using No. 8 and X9. It is considered that this is because in the casting method in which the molten hydrogen-absorbing alloy is not rapidly cooled, the pulverization is performed uniformly, so that the difference in the structure due to the grain size is small. Therefore, the present invention is useful when the rapid solidification method for quenching the molten hydrogen storage alloy is used.

【0042】〔試験セルの組立〕上記本発明電極A1〜
A5及び比較電極X1〜X9に用いられる水素吸蔵合金
粉末と同じ水素吸蔵合金粉末を各1gに、導電剤として
のカルボニルニッケル粉末1.2g及び結着剤としての
ポリテトラフルオロエチレン(PTFE)粉末0.2g
を混合し、圧延して14種の合金ペーストを得た。しか
る後、各合金ペーストの所定量をニッケルメッシュで包
み、プレス加工して本発明電極a1〜a5及び比較電極
x1〜x9を作製した。次いで、この電極よりも充分に
大きな容量を持つ焼結式ニッケル正極を密閉容器内に配
置し、更に電解液としてのKOHを過剰量入れて、試験
セルを作製した。
[Assembly of Test Cell] The electrodes A1 to A1 of the present invention
A5 and the same hydrogen storage alloy powder as the hydrogen storage alloy powder used for the reference electrodes X1 to X9 are added to 1 g each, carbonyl nickel powder as a conductive agent 1.2 g, and polytetrafluoroethylene (PTFE) powder as a binder 0 .2g
Were mixed and rolled to obtain 14 kinds of alloy pastes. Then, a predetermined amount of each alloy paste was wrapped in nickel mesh and pressed to produce the electrodes a1 to a5 of the present invention and the reference electrodes x1 to x9. Next, a sintered nickel positive electrode having a sufficiently larger capacity than this electrode was placed in a closed container, and an excessive amount of KOH as an electrolytic solution was further added to prepare a test cell.

【0043】〔高率放電特性試験〕先ず、本発明電極a
1〜a5及び比較電極x1〜x9を用いた試験セルにつ
いて、合金1gあたり50mAで8時間充電して1時間
休止した後、合金1gあたり200mAで放電終止電圧
1.0Vまで放電した。このときの放電容量をCHとす
る。次に、1時間休止した後(これにより電圧を復帰さ
せる)、合金1gあたり50mAで放電終止電圧1.0
Vまで放電した。このときの放電容量をCLとする。そ
して、下記数5により高率放電特性(%)を算出した。
[High Rate Discharge Characteristic Test] First, the electrode a of the present invention
The test cells using 1 to a5 and the comparative electrodes x1 to x9 were charged at 50 mA per gram of alloy for 8 hours and rested for 1 hour, and then discharged at 200 mA per gram of alloy to a discharge end voltage of 1.0V. The discharge capacity at this time is C H. Next, after resting for 1 hour (which restores the voltage), the discharge end voltage is 1.0 at 50 mA / g of alloy.
Discharged to V. The discharge capacity at this time is C L. Then, the high rate discharge characteristic (%) was calculated by the following expression 5.

【0044】[0044]

【数5】 (Equation 5)

【0045】この結果を、前記表1に併せて示す。前記
表1に示すように、前記数4で示される値が60%以下
の本発明電極a1〜a5を用いた試験セルでは、前記数
4で示される値が60%を超える比較電極x1〜x5を
用いた試験セルに比べて、高率放電特性に優れることが
認められる。これは、本発明電極a1〜a5を用いた試
験セルでは、全ての水素吸蔵合金が均一に充放電される
ため電極全体の活性化が図られるのに対して、比較電極
x1〜x5を用いた試験セルでは、大径の水素吸蔵合金
が充放電されないため、電極全体の活性化が図られない
という理由によるものと考えられる。
The results are also shown in Table 1 above. As shown in Table 1, in the test cell using the electrodes a1 to a5 of the present invention, the value of which is represented by the formula 4 is 60% or less, the reference electrodes x1 to x5 whose value represented by the formula 4 exceeds 60%. It is recognized that the high-rate discharge characteristics are excellent as compared with the test cell using. This is because in the test cell using the electrodes a1 to a5 of the present invention, all the hydrogen storage alloys are uniformly charged and discharged, so that the activation of the entire electrode is achieved, whereas the comparison electrodes x1 to x5 are used. It is considered that this is because in the test cell, since the large-diameter hydrogen storage alloy is not charged / discharged, activation of the entire electrode cannot be achieved.

【0046】尚、前記数4で示される値が60%以下の
比較電極x6、x7を用いた試験セルと、前記数4で示
される値が60%を超える比較電極x8、x9を用いた
試験セルとでは、高率放電特性に差異が認められない。
これは、水素吸蔵合金溶湯を急冷しない鋳込み法では、
粉砕が均一に行われるため粒度による組織の差異が少な
いということに起因するものと考えられる。したがっ
て、本発明は水素吸蔵合金溶湯を急冷する急冷凝固法を
用いた場合に有用である。
Incidentally, a test cell using the reference electrodes x6 and x7 whose value shown by the formula 4 is 60% or less and a test cell using the reference electrodes x8 and x9 whose value shown by the formula 4 exceeds 60%. There is no difference in high rate discharge characteristics between the cell and the cell.
This is because the casting method that does not quench the molten hydrogen storage alloy,
It is considered that this is because the difference in the structure due to the particle size is small because the pulverization is performed uniformly. Therefore, the present invention is useful when the rapid solidification method for quenching the molten hydrogen storage alloy is used.

【0047】(第2実施例) (実施例I〜V )水素吸蔵合金の粉砕方法として、水素
吸蔵合金に水素を吸蔵放出させて粉砕する水素化粉砕法
を用いる他は、前記第1の形態の実施例I〜実施例V と
同様にして、電極及び電池を作製した。このようにして
作製した電極を、以下それぞれ本発明電極B1〜B5と
称する。
(Second Embodiment) (Examples I to V) As a pulverization method of a hydrogen storage alloy, a hydrogenation pulverization method in which hydrogen is occluded and released in a hydrogen storage alloy and pulverized is used, except that the first embodiment is used. Electrodes and batteries were produced in the same manner as in Examples I to V. The electrodes produced in this manner are hereinafter referred to as present invention electrodes B1 to B5, respectively.

【0048】(比較例I〜IX)水素吸蔵合金の粉砕方法
として、水素吸蔵合金に水素を吸蔵放出させて粉砕する
水素化粉砕法を用いる他は、前記第1の形態の比較例I
〜比較例IXと同様にして、電極及び電池を作製した。こ
のようにして作製した電極を、以下それぞれ比較電極Y
1〜Y9と称する。
(Comparative Examples I to IX) Comparative Example I of the first embodiment except that a hydrogenation crushing method in which hydrogen is occluded and released by a hydrogen occluding alloy is used as a pulverizing method of a hydrogen occluding alloy
-An electrode and a battery were produced in the same manner as in Comparative Example IX. The electrodes prepared in this manner are referred to below as comparative electrodes Y, respectively.
1 to Y9.

【0049】〔充放電サイクル試験〕本発明電極B1〜
B5及び比較電極Y1〜X9を用いた電池について、前
記第1の形態の充放電サイクル試験Iと同様の条件及び
方法で電池の活性化と、充放電サイクル試験を行った。
この結果を、下記表2に示す。
[Charge / Discharge Cycle Test] Inventive Electrodes B1 to
With respect to the battery using B5 and the comparative electrodes Y1 to X9, activation and charging / discharging cycle test of the battery were performed under the same conditions and method as in the charging / discharging cycle test I of the first embodiment.
The results are shown in Table 2 below.

【0050】[0050]

【表2】 [Table 2]

【0051】上記表2に示すように、前記数4で示され
る値が60%以下の本発明電極B1〜B5を用いた電池
では、前記数4で示される値が60%を超える比較電極
Y1〜Y5を用いた電池に比べて、サイクル寿命が長く
なっていることが認められる。これは、前記第1の形態
の充放電サイクル試験Iで示す理由と同様の理由による
ものと考えられる。
As shown in Table 2 above, in the battery using the electrodes B1 to B5 of the present invention whose value shown by the above-mentioned equation 4 is 60% or less, the reference electrode Y1 whose value shown by the above-mentioned equation 4 exceeds 60%. It can be seen that the cycle life is longer than that of the batteries using ~ Y5. It is considered that this is due to the same reason as that shown in the charge / discharge cycle test I of the first embodiment.

【0052】但し、前記数4で示される値が60%以下
の比較電極Y6、Y7を用いた電池と、前記数4で示さ
れる値が60%を超える比較電極Y8、Y9を用いた電
池とでは、サイクル寿命に差異が認められない。これ
は、前記第1の形態の充放電サイクル試験III で示す理
由と同様の理由によるものと考えられる。
However, a battery using the reference electrodes Y6 and Y7 whose value shown by the formula 4 is 60% or less and a battery using the reference electrodes Y8 and Y9 whose value shown by the formula 4 exceeds 60%. In, there is no difference in cycle life. It is considered that this is due to the same reason as that shown in the charge / discharge cycle test III of the first embodiment.

【0053】〔試験セルの組立〕上記本発明電極B1〜
B5及び比較電極Y1〜Y9に用いられる水素吸蔵合金
粉末と同じ水素吸蔵合金粉末を用い、前記第1の形態の
試験セルの組立方法と同様の方法で試験セルを作製し
た。これら試験セルに用いられる電極を、以下それぞれ
本発明電極b1〜b5及び比較電極y1〜y9と称す
る。
[Assembly of Test Cell] The electrodes B1 to B1 of the present invention
Using the same hydrogen storage alloy powder as that used for B5 and the comparison electrodes Y1 to Y9, a test cell was produced by the same method as the method for assembling the test cell of the first embodiment. The electrodes used in these test cells are hereinafter referred to as the electrodes b1 to b5 of the present invention and the comparison electrodes y1 to y9, respectively.

【0054】〔高率放電特性試験〕先ず、本発明電極b
1〜b5及び比較電極y1〜y9を用いた試験セルにつ
いて、前記第1の形態の高率放電特性試験と同様の条件
で試験を行い、前記数5により高率放電特性(%)を算
出した。この結果を、前記表2に併せて示す。
[High Rate Discharge Characteristic Test] First, the electrode b of the present invention
The test cells using 1 to b5 and the comparison electrodes y1 to y9 were tested under the same conditions as the high rate discharge characteristic test of the first embodiment, and the high rate discharge characteristic (%) was calculated by the equation 5. . The results are also shown in Table 2 above.

【0055】前記表2に示すように、前記数4で示され
る値が60%以下の本発明電極b1〜b5を用いた試験
セルでは、前記数4で示される値が60%を超える比較
電極y1〜y5を用いた試験セルに比べて、高率放電特
性に優れることが認められる。これは、前記第1の形態
の高率放電特性試験で示す理由と同様の理由によるもの
と考えられる。
As shown in Table 2, in the test cell using the electrodes b1 to b5 of the present invention, the value of which is 60% or less, the reference electrode whose value of the above 4 exceeds 60%. It is recognized that the high rate discharge characteristics are superior to the test cells using y1 to y5. It is considered that this is due to the same reason as that shown in the high rate discharge characteristic test of the first embodiment.

【0056】尚、前記数4で示される値が60%以下の
比較電極y6、y7を用いた試験セルと、前記数4で示
される値が60%を超える比較電極y8、y9を用いた
試験セルとでは、高率放電特性に差異が認められない。
これは、前記第1の形態の高率放電特性試験で示す理由
と同様の理由によるものと考えられる。
A test cell using the reference electrodes y6 and y7 whose value shown by the above formula 4 is 60% or less and a test cell using the reference electrodes y8 and y9 whose value shown by the above formula 4 exceeds 60% are used. There is no difference in high rate discharge characteristics between the cell and the cell.
It is considered that this is due to the same reason as that shown in the high rate discharge characteristic test of the first embodiment.

【0057】[0057]

【発明の効果】以上説明したように本発明によれば、水
素吸蔵合金が不活性な状態となったり微粉化したりする
のを抑制することができるので、サイクル特性や高率放
電特性等の電池特性を向上させることができるといった
優れた効果を奏する。
As described above, according to the present invention, it is possible to prevent the hydrogen storage alloy from becoming inactive or pulverized, so that the battery having cycle characteristics and high rate discharge characteristics can be obtained. It has an excellent effect that the characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電極を用いた電池を模式的に示す断面図
である。
FIG. 1 is a sectional view schematically showing a battery using an electrode of the present invention.

【図2】水素吸蔵合金を粉砕した後の粒径と重量%との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the particle size and the weight% after crushing a hydrogen storage alloy.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:セパレータ 1: Positive electrode 2: Negative electrode 3: Separator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】急冷凝固法にて作製せる水素吸蔵合金を粉
砕して作製した水素吸蔵合金粉末の一部を含有する水素
吸蔵合金電極であって、 上記水素吸蔵合金の粉砕時における種々の粒径を有する
水素吸蔵合金粉末のうち、下記数1で示される値が60
%以下となるよう大粒径の水素吸蔵合金粉末が含有され
ていることを特徴とする水素吸蔵合金電極。 【数1】
1. A hydrogen storage alloy electrode containing a part of a hydrogen storage alloy powder produced by pulverizing a hydrogen storage alloy produced by a rapid solidification method, wherein various particles are produced when the hydrogen storage alloy is pulverized. Among the hydrogen storage alloy powders having a diameter, the value represented by the following mathematical formula 1 is 60
% Hydrogen storage alloy powder containing a large particle size hydrogen storage alloy powder. (Equation 1)
【請求項2】上記急冷凝固法がロール法であることを特
徴とする請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the rapid solidification method is a roll method.
【請求項3】上記水素吸蔵合金鋳塊の粉砕方法が、機械
的粉砕法及び/又は水素化粉砕法であることを特徴とす
る請求項1記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the crushing method of the hydrogen storage alloy ingot is a mechanical crushing method and / or a hydrogenating crushing method.
【請求項4】急冷凝固法にて水素吸蔵合金を作製する第
1ステップと、 上記水素吸蔵合金を粉砕して水素吸蔵合金粉末を作製す
る第2ステップと、 上記粉砕時における種々の粒径を有する水素吸蔵合金粉
末のうち、下記数2で示される値が60%以下となるよ
う大粒径の水素吸蔵合金粉末を選別する第3ステップ
と、 【数2】 を有することを特徴とする水素吸蔵合金電極の製造方
法。
4. A first step of producing a hydrogen storage alloy by a rapid solidification method, a second step of pulverizing the hydrogen storage alloy to produce a hydrogen storage alloy powder, and various particle sizes during the pulverization. Of the hydrogen storage alloy powders that it has, a third step of selecting a hydrogen storage alloy powder having a large particle size such that the value shown by the following formula 2 is 60% or less, and A method of manufacturing a hydrogen storage alloy electrode, comprising:
【請求項5】上記急冷凝固法がロール法であることを特
徴とする請求項4記載の水素吸蔵合金電極の製造方法。
5. The method for producing a hydrogen storage alloy electrode according to claim 4, wherein the rapid solidification method is a roll method.
【請求項6】上記水素吸蔵合金鋳塊の粉砕方法が、機械
的粉砕法及び/又は水素化粉砕法であることを特徴とす
る請求項4記載の水素吸蔵合金電極の製造方法。
6. The method for producing a hydrogen storage alloy electrode according to claim 4, wherein the method for pulverizing the hydrogen storage alloy ingot is a mechanical pulverization method and / or a hydrogenation pulverization method.
JP31234695A 1995-11-30 1995-11-30 Hydrogen storage alloy electrode and method for producing the same Expired - Fee Related JP3553708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31234695A JP3553708B2 (en) 1995-11-30 1995-11-30 Hydrogen storage alloy electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31234695A JP3553708B2 (en) 1995-11-30 1995-11-30 Hydrogen storage alloy electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09153356A true JPH09153356A (en) 1997-06-10
JP3553708B2 JP3553708B2 (en) 2004-08-11

Family

ID=18028145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31234695A Expired - Fee Related JP3553708B2 (en) 1995-11-30 1995-11-30 Hydrogen storage alloy electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3553708B2 (en)

Also Published As

Publication number Publication date
JP3553708B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP3054477B2 (en) Hydrogen storage alloy electrode
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP2005093297A (en) Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP3301792B2 (en) Hydrogen storage alloy electrode
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3198896B2 (en) Nickel-metal hydride battery
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JPH10237569A (en) Hydrogen storate alloy for battery, its production and nickel-hydrogen secondary battery
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH09161788A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2983564B2 (en) Hydrogen storage alloy electrode
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP3351227B2 (en) Hydrogen storage alloy powder for battery and its manufacturing method
JPH07296810A (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH0997608A (en) Hydrogen storage alloy for battery, manufacture thereof, and nickel hydrogen secondary battery
JPH09270255A (en) Hydrogen storage alloy for battery and nickel hydrogen secondary battery
JPH1060565A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees