JPH09150323A - Electric discharge machining electrode wire and manufacture thereof - Google Patents

Electric discharge machining electrode wire and manufacture thereof

Info

Publication number
JPH09150323A
JPH09150323A JP31262395A JP31262395A JPH09150323A JP H09150323 A JPH09150323 A JP H09150323A JP 31262395 A JP31262395 A JP 31262395A JP 31262395 A JP31262395 A JP 31262395A JP H09150323 A JPH09150323 A JP H09150323A
Authority
JP
Japan
Prior art keywords
alloy
electrode wire
electric discharge
discharge machining
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31262395A
Other languages
Japanese (ja)
Other versions
JP3092497B2 (en
Inventor
Genzo Iwaki
源三 岩城
Kazuhiko Nakagawa
和彦 中川
Shuji Sakai
修二 酒井
Kazutaka Sasaki
一隆 佐々木
Kenichi Kikuchi
賢一 菊地
Takamitsu Kimura
孝光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP07312623A priority Critical patent/JP3092497B2/en
Publication of JPH09150323A publication Critical patent/JPH09150323A/en
Application granted granted Critical
Publication of JP3092497B2 publication Critical patent/JP3092497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both characteristics of high tensile strength as well as high conductivity which cap attain the higher accuracy and higher speediness of electric discharge machining. SOLUTION: A core material 2 is enveloped by an Nb/Cu two-phase dispersion strengthening compound unit 3 comprising an Nb/Cu layered compound unit 3a superposing a sheet material 6 of Nb alloy or a sheet material 7 of Cu or Cu alloy closely wound, this Nb/Cu two-phase dispersion strengthening compound unit 3 is enveloped by a Cu layer 14 consisting of Cu or Cu alloy, the Cu layer 4 is enveloped by a Cu-Zn alloy layer 5. Ordinary temperature tensile strength of the core material in an annealed condition is set to 10kgf/ mm<2> or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ワイヤ放電加工に
用いられる放電加工用電極線およびその製造方法に係
り、特に引張強度、導電率に優れた放電加工用電極線お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining electrode wire used in wire electric discharge machining and a manufacturing method thereof, and more particularly to an electric discharge machining electrode wire excellent in tensile strength and conductivity and a manufacturing method thereof. is there.

【0002】[0002]

【従来の技術】ワイヤ放電加工は、走行するワイヤ電極
線と被加工物間の放電現象により被加工物を所定の寸法
に溶断する加工法であり、機械的な切削、切断加工が困
難な金型等の加工に広く用いられている。最近の金型加
工分野においては、より一層の高精度化、かつ、高速度
化の要求が高く、直径0.1mm以下で、150kgf
/mm2 (約1,500MPa)以上の高引張強度、2
0%IACS以上の高導電率特性を有する極細電極線の
出現が待たれている。
2. Description of the Related Art Wire electric discharge machining is a machining method for fusing a work piece to a predetermined size by an electric discharge phenomenon between a traveling wire electrode wire and the work piece, which is difficult to mechanically cut or cut. Widely used in the processing of molds and the like. In the recent field of die processing, there is a strong demand for higher precision and higher speed. With a diameter of 0.1 mm or less, 150 kgf
/ Mm 2 (about 1,500 MPa) or higher high tensile strength, 2
The appearance of ultrafine electrode wires having high conductivity characteristics of 0% IACS or higher is awaited.

【0003】この種の電極線としては、引張強度の高い
W単体電極線が従来から用いられてきた。W電極線は、
引張強度が約400kgf/mm2 (約4,000MP
a)と汎用黄銅電極線の約4倍の強度を有している。こ
のため、W電極線は、高精度化のために線径を0.1m
m以下に極細化しても、加工精度低下の原因となる電極
線の振動が生じるおそれのない十分な張力を負荷するこ
とができる。しかし、W自体がレアメタルの一種である
と共に難加工材であり、かつ、電極線が消耗品であるこ
とを考慮に入れると、Wを電極線として用いた極細W電
極線は、非常に高価のものとなってしまう。さらに、W
電極線を用いた場合、強度が高すぎるために、電極線に
電圧を印加する送り出しリール、および、巻取りリール
の摩耗が激しく、接触抵抗の変化等により不安定な放電
現象が生じやすかった。
As this type of electrode wire, a W single electrode wire having a high tensile strength has been conventionally used. The W electrode wire is
Tensile strength is about 400kgf / mm 2 (about 4,000MP
It has about 4 times the strength of a) and general-purpose brass electrode wire. For this reason, the W electrode wire has a wire diameter of 0.1 m for higher accuracy.
Even if the thickness is extremely thinned to m or less, it is possible to apply a sufficient tension that does not cause vibration of the electrode wire, which causes a reduction in processing accuracy. However, considering that W itself is a kind of rare metal, is a difficult-to-machine material, and the electrode wire is a consumable item, an ultrafine W electrode wire using W as an electrode wire is very expensive. It becomes a thing. Furthermore, W
When the electrode wire is used, the strength is too high, so that the delivery reel for applying a voltage to the electrode wire and the take-up reel are heavily worn, and an unstable discharge phenomenon is likely to occur due to a change in contact resistance or the like.

【0004】[0004]

【発明が解決しようとする課題】これらのW電極線の欠
点を改善すべく、汎用電極線である黄銅(Cu−35%
Zn)電極線とW電極線の中間の引張強さを有すると共
に、高張力鋼線周囲にCu−Zn合金層を被覆した複合
電極線が高精度加工用電極線として開発されている(例
えば、特開昭56−126528号公報)。
In order to improve the drawbacks of these W electrode wires, brass (Cu-35%) which is a general-purpose electrode wire is used.
A composite electrode wire having a tensile strength intermediate between that of the (Zn) electrode wire and the W electrode wire and having a Cu—Zn alloy layer coated around the high-strength steel wire has been developed as an electrode wire for high-precision machining (for example, JP-A-56-126528).

【0005】図3に示すように、この複合電極線11
は、テンションメンバーである高抗張力鋼12をコア部
とし、それを囲繞してCu−Zn合金層13を配してい
る。これによって、複合電極線11は引張強度が約15
0〜200kgf/mm2 (約1,500〜2,000
MPa)に達し、高精度加工に十分な張力を負荷するこ
とができると共に、送り出しリール、および、巻取りリ
ールとの摩耗が少なくて済む。すなわち、この複合電極
線11は、適度の引張強度を有すると共に、比較的安価
に供給することができる。
As shown in FIG. 3, this composite electrode wire 11
Uses a high tensile strength steel 12 which is a tension member as a core portion, and surrounds the core portion, and a Cu—Zn alloy layer 13 is arranged. As a result, the composite electrode wire 11 has a tensile strength of about 15
0 to 200 kgf / mm 2 (about 1,500 to 2,000
(MPa), a sufficient tension can be applied for high-precision machining, and wear on the feed reel and the take-up reel can be reduced. That is, the composite electrode wire 11 has an appropriate tensile strength and can be supplied at a relatively low cost.

【0006】しかしながら、この複合電極線11は、引
張強度の低いCu−Zn合金層13を外層に配している
ため、複合電極線11として十分な引張強度を確保する
には、複合電極線11のコア部の高抗張力鋼12の割合
を大きくしなければならない。しかし、この場合、高抗
張力鋼12の導電率が10%IACS程度しかないた
め、複合電極線11としての導電率が低下してしまい、
放電加工の高速度化に不可欠な放電加工電流を高くする
ことが困難であるという大きな問題点を有していた。
However, since the composite electrode wire 11 has the Cu-Zn alloy layer 13 having a low tensile strength as the outer layer, the composite electrode wire 11 must have sufficient tensile strength to be secured. The proportion of the high tensile strength steel 12 in the core part of 1 must be increased. However, in this case, since the electrical conductivity of the high tensile strength steel 12 is only about 10% IACS, the electrical conductivity of the composite electrode wire 11 is lowered,
There is a big problem that it is difficult to increase the electric discharge current which is indispensable for increasing the speed of electric discharge machining.

【0007】そこで、本発明は、上記課題を解決し、放
電加工のより一層の高精度化、かつ、高速度化を可能に
する高引張強度、高導電率の両特性を具備した放電加工
用電極線およびその製造方法を提供することにある。
Therefore, the present invention solves the above-mentioned problems and further improves the precision and speed of electric discharge machining, and has the characteristics of high tensile strength and high conductivity for electric discharge machining. An object is to provide an electrode wire and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、芯材を、NbまたはNb合金のシ
ート材とCuまたはCu合金のシート材を重ねて密巻き
にしたNb/Cu積層複合体からなるNb/Cu2相分
散強化型複合体で囲繞し、該Nb/Cu2相分散強化型
複合体をCuまたはCu合金からなるCu層で囲繞し、
該Cu層をCu−Zn合金層で囲繞した放電加工用電極
線である。
In order to solve the above-mentioned problems, the invention of claim 1 is such that the core material is Nb in which a sheet material of Nb or Nb alloy and a sheet material of Cu or Cu alloy are superposed and tightly wound. Surrounded by a Nb / Cu2 phase dispersion strengthened composite consisting of a Cu / Cu laminated composite, and the Nb / Cu2 phase dispersion strengthened composite surrounded by a Cu layer composed of Cu or a Cu alloy,
It is an electrode wire for electric discharge machining in which the Cu layer is surrounded by a Cu-Zn alloy layer.

【0009】請求項2の発明は、上記芯材が、焼鈍状態
で10kgf/mm2 以上の常温引張強さを有する金属
からなる請求項1記載の放電加工用電極線である。
The invention of claim 2 is the electrode wire for electrical discharge machining according to claim 1, wherein the core material is made of a metal having a tensile strength at room temperature of 10 kgf / mm 2 or more in an annealed state.

【0010】請求項3の発明は、芯材を、NbまたはN
b合金のシート材とCuまたはCu合金のシート材を重
ねて密巻きにしたNb/Cu積層複合体からなるNb/
Cu2相分散強化型複合体で囲繞し、該Nb/Cu2相
分散強化型複合体をCuまたはCu合金からなるCu層
で囲繞し、該Cu層をCu−Zn合金層で囲繞した放電
加工用電極線を押出、引抜等の減面加工により作製する
放電加工用電極線の製造方法である。
In the invention of claim 3, the core material is Nb or N
Nb / Cu comprising a Nb / Cu laminated composite in which a sheet material of b alloy and a sheet material of Cu or Cu alloy are superposed and tightly wound.
A discharge machining electrode surrounded by a Cu2 phase dispersion strengthened composite, the Nb / Cu2 phase dispersion strengthened composite surrounded by a Cu layer made of Cu or a Cu alloy, and the Cu layer surrounded by a Cu-Zn alloy layer. This is a method for manufacturing an electrode wire for electric discharge machining, which is manufactured by subjecting a wire to surface-reduction processing such as extrusion and drawing.

【0011】請求項4の発明は、上記NbまたはNb合
金のシート材とCuまたはCu合金のシート材との板厚
比を1:9〜9:1とする請求項3記載の放電加工用電
極線の製造方法である。
According to a fourth aspect of the invention, the electrode for electric discharge machining according to the third aspect is characterized in that the plate thickness ratio between the sheet material of Nb or Nb alloy and the sheet material of Cu or Cu alloy is 1: 9 to 9: 1. It is a method of manufacturing a wire.

【0012】請求項5の発明は、上記押出の方法とし
て、静水圧押出法または潤滑油押出法を用いる請求項3
記載の放電加工用電極線の製造方法である。
The invention of claim 5 uses a hydrostatic extrusion method or a lubricating oil extrusion method as the extrusion method.
It is a manufacturing method of the electrode wire for electric discharge machining described.

【0013】請求項6の発明は、上記放電加工用電極線
の線径を0.1mm以下とする請求項3記載の放電加工
用電極線の製造方法である。
The invention of claim 6 is the method of manufacturing an electrode wire for electric discharge machining according to claim 3, wherein the diameter of the electrode wire for electric discharge machining is 0.1 mm or less.

【0014】請求項7の発明は、上記芯材が、焼鈍状態
で10kgf/mm2 以上の常温引張強さを有する金属
からなる請求項3記載の放電加工用電極線の製造方法で
ある。
The invention according to claim 7 is the method for producing an electrode wire for electric discharge machining according to claim 3, wherein the core material is made of a metal having a tensile strength at room temperature of 10 kgf / mm 2 or more in an annealed state.

【0015】上記組成範囲の限定理由を以下に説明す
る。
The reasons for limiting the above composition range will be described below.

【0016】NbまたはNb合金のシート材とCuまた
はCu合金のシート材との板厚比を1:9〜9:1の範
囲に限定した理由は、NbまたはNb合金のシート材の
板厚がCuまたはCu合金のシート材の板厚の1/9未
満では十分な引張強度が得られないためである。逆に、
NbまたはNb合金のシート材の板厚がCuまたはCu
合金のシート材の板厚の9倍を超えると導電率が大きく
低下してしまうためである。
The reason for limiting the plate thickness ratio between the sheet material of Nb or Nb alloy and the sheet material of Cu or Cu alloy to the range of 1: 9 to 9: 1 is that the sheet thickness of the sheet material of Nb or Nb alloy is This is because if the thickness is less than 1/9 of the sheet thickness of the Cu or Cu alloy sheet material, sufficient tensile strength cannot be obtained. vice versa,
The sheet thickness of Nb or Nb alloy sheet material is Cu or Cu
This is because if it exceeds 9 times the plate thickness of the alloy sheet material, the electrical conductivity will drop significantly.

【0017】本発明によれば、芯材を中心として、その
周囲にNbまたはNb合金のシート材とCuまたはCu
合金のシート材とを重ねて密巻きにしたNb/Cu積層
複合体からなるNb/Cu2相分散強化型複合体を配
し、その周囲にCuまたはCu合金からなるCu層を、
さらに、その周囲にCu−Zn合金層を配したため、放
電加工性に優れていると共に、高引張強度、高導電率特
性を兼ね備えた放電加工用電極線を得ることができる。
According to the present invention, a sheet material of Nb or Nb alloy and Cu or Cu are provided around the core material.
An Nb / Cu two-phase dispersion-strengthened composite body composed of an Nb / Cu laminated composite body in which an alloy sheet material is overlapped and tightly wound is arranged, and a Cu layer composed of Cu or a Cu alloy is provided around the composite body.
Further, since the Cu-Zn alloy layer is arranged around the electrode layer, it is possible to obtain an electrode wire for electric discharge machining which has excellent electric discharge machinability as well as high tensile strength and high conductivity characteristics.

【0018】また、複合材の塑性加工では、各構成材間
の変形抵抗の差が大きすぎると、ネッキング現象と称さ
れる塑性不安定現象が発生し、断線などのトラブルが起
こり易くなる。本発明では、Nb/Cu2相分散強化型
複合体の強度、即ち、変形抵抗が高くなるため、塑性不
安定現象の発生を防止するには、変形抵抗の高い材料を
芯材として用いる必要がある。焼鈍状態で、10kgf
/mm2 以上の常温引張強さを有する金属を用いること
により、常温での減面加工によって歪硬化し、その結
果、塑性不安定現象の発生を防止できると共に、良好な
減面加工性を維持できる。
In the plastic working of the composite material, if the difference in deformation resistance between the constituent materials is too large, a plastic instability phenomenon called a necking phenomenon occurs, and troubles such as wire breakage easily occur. In the present invention, since the strength of the Nb / Cu2 phase dispersion strengthened composite, that is, the deformation resistance is high, it is necessary to use a material having a high deformation resistance as the core material in order to prevent the occurrence of the plastic instability phenomenon. . 10 kgf in the annealed state
By using a metal having / mm 2 or more at room temperature tensile strength, and strain hardening by reduction process at ambient temperature, as a result, it is possible to prevent occurrence of plastic instability phenomenon, maintaining good reduction process of it can.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0020】図1に示すように、本発明の放電加工用電
極線1は、芯材2、Nb/Cu2相分散強化型複合体
3、Cu層4およびCu−Zn合金層5の4つの層から
構成されている。
As shown in FIG. 1, the electric discharge machining electrode wire 1 of the present invention comprises four layers of a core material 2, a Nb / Cu2 phase dispersion strengthened composite body 3, a Cu layer 4 and a Cu—Zn alloy layer 5. It consists of

【0021】芯材2は、NbまたはNb合金シート材
(以下、Nbシートという)6とCuまたはCu合金シ
ート材(以下、Cuシートという)7の巻芯とすべく配
されており、放電加工用電極線1の中心にNbまたはN
b合金からなる所定の長さ・直径を有した円柱状に形成
される。
The core material 2 is arranged to be a core of Nb or Nb alloy sheet material (hereinafter referred to as Nb sheet) 6 and Cu or Cu alloy sheet material (hereinafter referred to as Cu sheet) 7, and is subjected to electric discharge machining. Nb or N at the center of the electrode wire 1 for
It is formed of a b-alloy in a cylindrical shape having a predetermined length and diameter.

【0022】Nb/Cu2相分散強化型複合体3は、高
引張強度および高導電率特性を良好にすべく配されてお
り、Nbシート6とCuシート7を重ねると共に、該N
bシート6を内側にして密巻きにしたNb/Cu積層複
合体3aからなり、芯材2を囲繞して設けられる。
The Nb / Cu2 phase dispersion reinforced composite body 3 is arranged so as to have good high tensile strength and high conductivity characteristics, and the Nb sheet 6 and the Cu sheet 7 are stacked and
It is composed of a Nb / Cu laminated composite body 3a which is closely wound with the b-sheet 6 inside, and is provided so as to surround the core material 2.

【0023】Cu層4は、最外層に設けられるCu−Z
n合金層5の中のZnとNb/Cu2相分散強化型複合
体3との2相間に、延性のないNb−Zn系金属間化合
物が生成しないための反応防止層として配されている。
Cu以外では、Nb/Cu2相分散強化型複合体3の構
成元素と最外層のCu−Zn合金層5の元素と延性のな
い金属間化合物を生成しない、あるいは生成しにくい材
質であると共に、冷間で断面減少率50%以上の減面加
工が可能な金属材料と置き換えてもよい。尚、製造条件
によってはNb−Zn系金属間化合物の生成を少なくで
きるので、その場合はCu層を省略してもよい。
The Cu layer 4 is the Cu-Z provided on the outermost layer.
Between the two phases of Zn in the n alloy layer 5 and the Nb / Cu2 phase dispersion strengthening type composite body 3, it is arranged as a reaction preventing layer for preventing generation of Nb-Zn based intermetallic compound having no ductility.
Other than Cu, it is a material that does not or does not easily form an intermetallic compound having no ductility with the constituent elements of the Nb / Cu2 phase dispersion strengthened composite 3 and the element of the Cu-Zn alloy layer 5 of the outermost layer, and is cold. It may be replaced with a metal material capable of surface reduction with a cross-section reduction rate of 50% or more. The production of Nb-Zn-based intermetallic compounds can be reduced depending on the production conditions, and in that case, the Cu layer may be omitted.

【0024】Cu−Zn合金層5は、放電加工性を良好
にすべく配されており、Cu層4を囲繞して設けられ
る。Cu−Zn合金層5として放電加工特性の良好なZ
nが10〜50wt%添加されたCu−Zn合金以外で
は、冷間で断面減少率50%以上の減面加工が可能な金
属材料の周囲に、ZnまたはZn基合金を被覆した複合
体で置き換えてもよい。
The Cu—Zn alloy layer 5 is arranged to improve the electric discharge machinability, and is provided so as to surround the Cu layer 4. As the Cu-Zn alloy layer 5, Z having good electric discharge machining characteristics
Except for Cu-Zn alloys with n added in the range of 10 to 50 wt%, replace with a composite material in which Zn or a Zn-based alloy is coated around a metal material that can be cold-worked with a surface reduction of 50% or more. May be.

【0025】次に本発明の方法を説明する。Next, the method of the present invention will be described.

【0026】Nbシート6に、Nbシート6よりも長さ
の長いCuシート7を重ねる。この重なりあったシート
のうち、Nbシート6を内側にして、NbまたはNb合
金からなる所定の長さ・直径を有した円柱状の芯材2に
密巻きにする。Cuシート7の長さは、Nbシート6の
長さよりも長いため、Cuシート7の余長部7aが生じ
る。このCuシート7の余長部7aを、さらに密巻きに
してCu層4を形成する。尚、Cu層4はCuパイプを
用いて形成してもよい。
A Cu sheet 7 having a length longer than that of the Nb sheet 6 is superposed on the Nb sheet 6. Among the overlapped sheets, the Nb sheet 6 is placed inside, and the Nb sheet 6 is tightly wound around a cylindrical core material 2 made of Nb or an Nb alloy and having a predetermined length and diameter. Since the length of the Cu sheet 7 is longer than the length of the Nb sheet 6, the extra length portion 7a of the Cu sheet 7 is generated. The extra length portion 7a of the Cu sheet 7 is further tightly wound to form the Cu layer 4. The Cu layer 4 may be formed by using a Cu pipe.

【0027】この3層からなる複合体を、Cu−Zn管
内部に挿入する。その後、Cu−Zn管の開口部に封止
具を装着して、押出しビレットを形成する。この押出し
ビレットを押出し(静水圧押出法または潤滑押出法な
ど)後、ダイス引抜きなどの減面加工により縮径加工を
加え線材化し、放電加工用電極線1を得る。
The composite consisting of these three layers is inserted into a Cu-Zn tube. Then, a sealing tool is attached to the opening of the Cu—Zn tube to form an extruded billet. After the extruded billet is extruded (hydrostatic extrusion method, lubrication extrusion method, etc.), diameter reduction processing is performed by surface reduction processing such as die drawing to obtain a wire material, and the electric discharge machining electrode wire 1 is obtained.

【0028】次に、NbシートとCuシートを重ねて密
巻きにしたNb/Cu積層複合体が、高引張強度特性を
有するNb/Cu2相分散強化型複合体に変化する機構
について説明する。
Next, the mechanism by which the Nb / Cu laminated composite in which the Nb sheet and the Cu sheet are superposed and tightly wound into the Nb / Cu two-phase dispersion strengthened composite having high tensile strength properties will be described.

【0029】Nb/Cu積層複合体3aは、形成時には
Nb層とCu層とが層状になっているが、その後の押出
や伸線などの減面加工によって、層状組織が崩れてい
き、最終的に片方の層が分散相となった分散組織に変化
する。
In the Nb / Cu laminated composite 3a, the Nb layer and the Cu layer are layered at the time of formation, but the layered structure is destroyed by the subsequent surface-reduction processing such as extrusion and wire drawing, and the final structure is obtained. Then, one of the layers changes into a dispersed structure with a dispersed phase.

【0030】層状組織が崩れない加工領域では、複合則
が成立し、Nb/Cu積層複合体3a自体の引張強度が
低いため、放電加工用電極線1の強度メンバーとして適
用することは困難である。これに対して、層状組織が崩
れて分散組織になる加工領域では、複合則が適用できな
くなる。その結果、Nb/Cu2相分散強化型複合体3
は、最大250kgf/mm2 (約2,500MPa)
に達する引張強度が得られるようになり、放電加工用電
極線1の強度メンバーに要求される特性を満足する複合
体となる。また、CuをNb/Cu2相分散強化型複合
体3の構成材の一つとしていることにより、分散組織と
なった後も、Nb/Cu2相分散強化型複合体3は高い
導電率特性を有する。
In the processing region where the layered structure does not collapse, the composite rule is established and the tensile strength of the Nb / Cu laminated composite 3a itself is low, so it is difficult to apply it as a strength member of the electric discharge machining electrode wire 1. . On the other hand, the composite rule cannot be applied in the processed region where the layered structure collapses to become a dispersed structure. As a result, Nb / Cu2 phase dispersion strengthened composite 3
Is up to 250 kgf / mm 2 (about 2,500 MPa)
It is possible to obtain a tensile strength of up to 10 and a composite body that satisfies the characteristics required for the strength member of the electric discharge machining electrode wire 1 is obtained. Further, by using Cu as one of the constituent materials of the Nb / Cu2 phase dispersion strengthened composite 3, the Nb / Cu2 phase dispersion strengthened composite 3 has high conductivity characteristics even after the dispersion structure is formed. .

【0031】次に本発明の実施例を説明する。Next, examples of the present invention will be described.

【0032】図3は本発明のNb/Cu積層複合体の積
層方法を示す図である。
FIG. 3 is a diagram showing a method for laminating the Nb / Cu laminated composite of the present invention.

【0033】本実施例で作製した複合電極線のNb/C
u積層複合体の諸元を表1に示す。
Nb / C of the composite electrode wire produced in this example
Table 1 shows the specifications of the u laminated composite.

【0034】[0034]

【表1】 [Table 1]

【0035】(実施例1)直径6mmの工業用純Nbを
巻芯として、厚さ0.22mm、長さ1730mm、幅
100mmのNbシート、厚さ0.025mm、長さ2
862mm、幅100mmのCuシートを寿司巻き状に
積層し積層複合体を形成した。この積層複合体を外径2
7.1mm、内径25.1mmのCu−35wt%Zn
合金(JIS C2700)パイプ中に挿入し、そのパ
イプ開口部に封止具を装着させ、静水圧押出用のビレッ
トを形成した。本ビレットにおけるNbの体積率を約5
%、Nb/Cu積層複合体の体積率を約75%、Cu層
の体積率を約5%、Cu−Zn層の体積率を約15%と
した。静水圧押出後、ダイス引抜により縮径加工を加
え、線形0.1mm、0.07mm、0.05mmの極
細複合電極線を作製した。
(Example 1) Nb sheet having a thickness of 0.22 mm, a length of 1730 mm and a width of 100 mm, a thickness of 0.025 mm and a length of 2 was used as a core of industrial pure Nb having a diameter of 6 mm.
Cu sheets having a width of 862 mm and a width of 100 mm were laminated in a sushi roll shape to form a laminated composite. This laminated composite has an outer diameter of 2
Cu-35 wt% Zn with 7.1 mm and inner diameter of 25.1 mm
It was inserted into an alloy (JIS C2700) pipe, and a sealing tool was attached to the opening of the pipe to form a billet for hydrostatic extrusion. The volume ratio of Nb in this billet is about 5
%, The volume ratio of the Nb / Cu laminated composite was about 75%, the volume ratio of the Cu layer was about 5%, and the volume ratio of the Cu—Zn layer was about 15%. After isostatic pressing, a diameter reduction process was performed by drawing a die to prepare linear 0.1 mm, 0.07 mm, and 0.05 mm ultrafine composite electrode wires.

【0036】(実施例2)直径6mmの工業用純Nbを
巻芯として、厚さ0.15mm、長さ2425mm、幅
100mmのNbシート、厚さ0.025mm、長さ3
555mm、幅100mmのCuシートを用いて、実施
例1と同様に極細複合電極線を作製した。
Example 2 Nb sheet having a thickness of 0.15 mm, a length of 2425 mm and a width of 100 mm, a thickness of 0.025 mm and a length of 3 was used as a core of industrial pure Nb having a diameter of 6 mm.
An ultrafine composite electrode wire was produced in the same manner as in Example 1 by using a Cu sheet having a width of 555 mm and a width of 100 mm.

【0037】(実施例3)直径6mmの工業用純Nbを
巻芯として、厚さ0.05mm、長さ5655mm、幅
100mmのNbシート、厚さ0.025mm、長さ6
785mm、幅100mmのCuシートを用いて、実施
例1と同様に極細複合電極線を作製した。
(Embodiment 3) Nb sheet having a thickness of 0.05 mm, a length of 5655 mm, and a width of 100 mm, a thickness of 0.025 mm, and a length of 6 are used with a core of industrial pure Nb having a diameter of 6 mm.
An ultrafine composite electrode wire was produced in the same manner as in Example 1 using a Cu sheet having a width of 785 mm and a width of 100 mm.

【0038】(実施例4)直径6mmの工業用純Nbを
巻芯として、厚さ0.05mm、長さ4240mm、幅
100mmのNbシート、厚さ0.05mm、長さ48
10mm、幅100mmのCuシートを用いて、実施例
1と同様に極細複合電極線を作製した。
(Embodiment 4) Nb sheet having a thickness of 0.05 mm, a length of 4240 mm and a width of 100 mm, a pure Nb for industrial use having a diameter of 6 mm as a winding core, a thickness of 0.05 mm and a length of 48.
An ultrafine composite electrode wire was produced in the same manner as in Example 1 using a Cu sheet having a width of 10 mm and a width of 100 mm.

【0039】(実施例5)直径6mmの工業用純Nbを
巻芯として、厚さ0.05mm、長さ2825mm、幅
100mmのNbシート、厚さ0.1mm、長さ311
0mm、幅100mmのCuシートを用いて、実施例1
と同様に極細複合電極線を作製した。
(Embodiment 5) Nb sheet having a thickness of 0.05 mm, a length of 2825 mm and a width of 100 mm, a thickness of 0.1 mm and a length of 311 is used as a core of industrial pure Nb having a diameter of 6 mm.
Example 1 using a Cu sheet of 0 mm and width of 100 mm
An ultrafine composite electrode wire was prepared in the same manner as in.

【0040】(実施例6)直径6mmの工業用純Nbを
巻芯として、厚さ0.05mm、長さ850mm、幅1
00mmのNbシート、厚さ0.45mm、長さ910
mm、幅100mmのCuシートを用いて、実施例1と
同様に極細複合電極線を作製した。
(Embodiment 6) With a core of industrial pure Nb having a diameter of 6 mm, a thickness of 0.05 mm, a length of 850 mm and a width of 1
00mm Nb sheet, thickness 0.45mm, length 910
An ultrafine composite electrode wire was produced in the same manner as in Example 1 using a Cu sheet having a size of 100 mm and a width of 100 mm.

【0041】ここで、各実施例においてNbシートより
もCuシートの方の長さが長いのは、NbシートとCu
シートの端部を揃えて巻芯に巻き付け、Cuシートの余
長部でCu層を形成するためである。
Here, the length of the Cu sheet is longer than that of the Nb sheet in each of the examples.
This is because the end portions of the sheet are aligned and wound around the core to form the Cu layer in the extra length portion of the Cu sheet.

【0042】各実施例におけるそれぞれの線径において
得られた引張強度、導電率特性を表2に示す。
Table 2 shows the tensile strength and conductivity characteristics obtained for each wire diameter in each example.

【0043】[0043]

【表2】 [Table 2]

【0044】表2に示すように、実施例3(Nb:Cu
=2:1)において引張強度は最高の値を示し、Nb/
Cu2相分散強化型複合体中におけるNbとCuの構成
がNbリッチ側、Cuリッチ側になるにつれて引張強度
は低下している。それでも、各実施例において150k
gf/mm2 (約1,500MPa)以上の引張強度が
得られた。
As shown in Table 2, Example 3 (Nb: Cu)
= 2: 1), the tensile strength shows the highest value, and Nb /
The tensile strength is reduced as the composition of Nb and Cu in the Cu2 phase dispersion strengthened composite becomes closer to the Nb rich side and the Cu rich side. Nevertheless, 150k in each example
A tensile strength of gf / mm 2 (about 1,500 MPa) or more was obtained.

【0045】また、φ0.1mm、φ0.07mm、φ
0.05mmの各電極線について検討してみると、線径
が細くなるにつれて引張強度は向上している。これは、
線径が細い電極線ほど、組織がよく分散しているという
ことを示している。
Φ0.1 mm, φ0.07 mm, φ
When each electrode wire of 0.05 mm is examined, the tensile strength is improved as the wire diameter becomes smaller. this is,
It is shown that the finer the wire diameter is, the better the tissue is dispersed.

【0046】導電率特性は、Nb/Cu2相分散強化型
複合体中におけるNbとCuの構成がCuリッチ側にな
るほど向上し、実施例6において最高の値を示した。そ
れでも、最低の導電率を示した実施例1(Nb:Cu=
9:1)の線径0.05mmの場合においても13.5
%IACSの導電率を有しており、従来技術の複合電極
線における導電率特性(10%IACS程度)よりは、
優れた特性を示していることがわかる。
The conductivity characteristics were improved as the composition of Nb and Cu in the Nb / Cu two-phase dispersion strengthened composite became closer to the Cu-rich side, and showed the highest value in Example 6. Nevertheless, Example 1 (Nb: Cu =
13.5 even when the wire diameter of 9: 1) is 0.05 mm
It has a conductivity of% IACS, and is more than the conductivity characteristic (about 10% IACS) in the composite electrode wire of the prior art.
It can be seen that it shows excellent characteristics.

【0047】また、φ0.1mm、φ0.07mm、φ
0.05mmの各電極線について検討してみると、線径
が細くなるにつれて導電率は低下している。これは、線
径が細い電極線ほど、組織がよく分散しているため、高
導電率であるCu単体組織の領域が少ないということを
示している。
Φ0.1 mm, φ0.07 mm, φ
When examining each electrode wire of 0.05 mm, the conductivity decreases as the wire diameter becomes smaller. This indicates that the finer the electrode diameter, the finer the distribution of the structure, and the smaller the area of the Cu simple structure having high conductivity.

【0048】[0048]

【発明の効果】以上要するに本発明によれば、電極線の
強度メンバーとして、NbまたはNb合金シート材とC
uまたはCu合金シート材とを重ねて密巻きにしたNb
/Cu積層複合体を母材とするNb/Cu2相分散強化
型複合体を配しているため、高引張強度、高導電率を有
する放電加工用電極線を得ることができるという優れた
効果を発揮する。
In summary, according to the present invention, Nb or Nb alloy sheet material and C are used as the strength members of the electrode wire.
Nb that is tightly wound by stacking u or Cu alloy sheet material
Since the Nb / Cu2 phase dispersion strengthened composite having the / Cu laminated composite as a base material is arranged, it is possible to obtain an excellent effect that an electrode wire for electric discharge machining having high tensile strength and high conductivity can be obtained. Demonstrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放電加工用電極線の断面を示す図であ
る。
FIG. 1 is a view showing a cross section of an electric discharge machining electrode wire of the present invention.

【図2】本発明のNb/Cu2相分散強化型複合体の積
層方法を示す図である。
FIG. 2 is a diagram showing a method for laminating a Nb / Cu2 phase dispersion strengthened composite of the present invention.

【図3】従来の放電加工用電極線の断面を示す図であ
る。
FIG. 3 is a view showing a cross section of a conventional electric discharge machining electrode wire.

【符号の説明】[Explanation of symbols]

1 放電加工用電極線 2 芯材 3 Nb/Cu2相分散強化型複合体 3a Nb/Cu積層複合体 4 Cu層 5 Cu−Zn合金層 6 Nbシート(NbまたはNb合金のシート材) 7 Cuシート(CuまたはCu合金のシート材) DESCRIPTION OF SYMBOLS 1 Electrode wire for electrical discharge machining 2 Core material 3 Nb / Cu2 phase dispersion strengthening type composite body 3a Nb / Cu laminated composite body 4 Cu layer 5 Cu-Zn alloy layer 6 Nb sheet (sheet material of Nb or Nb alloy) 7 Cu sheet (Cu or Cu alloy sheet material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 一隆 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 (72)発明者 菊地 賢一 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 (72)発明者 木村 孝光 茨城県日立市川尻町4丁目10番1号 日立 電線株式会社豊浦工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutaka Sasaki 3550 Kidayomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Tsuchiura Plant (72) Inventor Kenichi Kikuchi 3550 Kidayomachi, Tsuchiura City, Ibaraki Hitachi Cable Shares (72) Inventor Takamitsu Kimura 4-10-1 Kawajiri-cho, Hitachi-shi, Ibaraki Hitachi Cable Ltd. Toyoura factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 芯材を、NbまたはNb合金のシート材
とCuまたはCu合金のシート材を重ねて密巻きにした
Nb/Cu積層複合体からなるNb/Cu2相分散強化
型複合体で囲繞し、該Nb/Cu2相分散強化型複合体
をCuまたはCu合金からなるCu層で囲繞し、該Cu
層をCu−Zn合金層で囲繞したことを特徴とする放電
加工用電極線。
1. A core material is surrounded by a Nb / Cu two-phase dispersion strengthening type composite body composed of an Nb / Cu laminated composite body in which a sheet material of Nb or Nb alloy and a sheet material of Cu or Cu alloy are superposed and tightly wound. Then, the Nb / Cu2 phase dispersion strengthened composite is surrounded by a Cu layer made of Cu or a Cu alloy.
An electrode wire for electric discharge machining, characterized in that the layer is surrounded by a Cu-Zn alloy layer.
【請求項2】 上記芯材が、焼鈍状態で10kgf/m
2 以上の常温引張強さを有する金属からなる請求項1
記載の放電加工用電極線。
2. The core material is 10 kgf / m in an annealed state.
A metal having a tensile strength at room temperature of m 2 or more.
The electrode wire for electric discharge machining described.
【請求項3】 芯材を、NbまたはNb合金のシート材
とCuまたはCu合金のシート材を重ねて密巻きにした
Nb/Cu積層複合体からなるNb/Cu2相分散強化
型複合体で囲繞し、該Nb/Cu2相分散強化型複合体
をCuまたはCu合金からなるCu層で囲繞し、該Cu
層をCu−Zn合金層で囲繞した放電加工用電極線を押
出、引抜等の減面加工により作製することを特徴とする
放電加工用電極線の製造方法。
3. A Nb / Cu two-phase dispersion-strengthened composite body composed of a Nb / Cu laminated composite body in which a sheet material of Nb or Nb alloy and a sheet material of Cu or Cu alloy are superposed and densely wound on a core material. Then, the Nb / Cu2 phase dispersion strengthened composite is surrounded by a Cu layer made of Cu or a Cu alloy.
A method for producing an electrode wire for electric discharge machining, characterized in that an electrode wire for electric discharge machining, the layer of which is surrounded by a Cu-Zn alloy layer, is produced by surface-reduction processing such as extrusion and drawing.
【請求項4】 上記NbまたはNb合金のシート材とC
uまたはCu合金のシート材との板厚比を1:9〜9:
1とする請求項3記載の放電加工用電極線の製造方法。
4. The Nb or Nb alloy sheet material and C
The plate thickness ratio of the u or Cu alloy sheet material is 1: 9 to 9:
The method for producing an electrode wire for electric discharge machining according to claim 3, wherein
【請求項5】 上記押出の方法として、静水圧押出法ま
たは潤滑油押出法を用いる請求項3記載の放電加工用電
極線の製造方法。
5. The method for producing an electrode wire for electric discharge machining according to claim 3, wherein a hydrostatic extrusion method or a lubricating oil extrusion method is used as the extrusion method.
【請求項6】 上記放電加工用電極線の線径を0.1m
m以下とする請求項3記載の放電加工用電極線の製造方
法。
6. The wire diameter of the electric discharge machining electrode wire is 0.1 m.
The method for producing an electrode wire for electric discharge machining according to claim 3, wherein the length is m or less.
【請求項7】 上記芯材が、焼鈍状態で10kgf/m
2 以上の常温引張強さを有する金属からなる請求項3
記載の放電加工用電極線の製造方法。
7. The core material is 10 kgf / m in an annealed state.
A metal having a normal temperature tensile strength of m 2 or more.
A method for producing the electrode wire for electric discharge machining as described above.
JP07312623A 1995-11-30 1995-11-30 Electrode wire for electric discharge machining and method of manufacturing the same Expired - Fee Related JP3092497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07312623A JP3092497B2 (en) 1995-11-30 1995-11-30 Electrode wire for electric discharge machining and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07312623A JP3092497B2 (en) 1995-11-30 1995-11-30 Electrode wire for electric discharge machining and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09150323A true JPH09150323A (en) 1997-06-10
JP3092497B2 JP3092497B2 (en) 2000-09-25

Family

ID=18031434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07312623A Expired - Fee Related JP3092497B2 (en) 1995-11-30 1995-11-30 Electrode wire for electric discharge machining and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3092497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239624A (en) * 1996-03-05 1997-09-16 Hitachi Cable Ltd Electrode wire for electric discharge machining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239624A (en) * 1996-03-05 1997-09-16 Hitachi Cable Ltd Electrode wire for electric discharge machining

Also Published As

Publication number Publication date
JP3092497B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US5772105A (en) Clad shape memory alloy composite structure and method
EP2041810B1 (en) Wire-in-channel superconductor
GB1561751A (en) Superconductor composite and method of making the same
JP4390581B2 (en) Electrode wire for wire electrical discharge machining
JP3389612B2 (en) Electrode wire for wire cut electric discharge machining
KR20010079810A (en) Composite wire with noble metal cladding
JPH09150323A (en) Electric discharge machining electrode wire and manufacture thereof
JPS5941462A (en) Preparation of composite electrode wire for discharge machining
CN111819639B (en) Diffusion barrier for metal superconducting wires
EP1080815B1 (en) Wire electrode for electric-discharge machining
JP3319271B2 (en) Electrode wire for electric discharge machining
JP3090009B2 (en) Electrode wire for electric discharge machining
US4734827A (en) Tantalum capacitor lead wire
JP3852565B2 (en) Electrode wire for electric discharge machining
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
WO2006099506A2 (en) Method of producing superconducting wire and articles produced thereby
JPH09150320A (en) Electrode wire for electric discharge machining and manufacture thereof
JP3358294B2 (en) Electrode wire for electric discharge machining
JPH09150321A (en) Electrode wire for electric discharge machining and manufacture thereof
JPH09150322A (en) Electrode wire for electric discharge machining and manufacture thereof
JP2993986B2 (en) Manufacturing method of aluminum stabilized superconducting wire
US20020108684A1 (en) Process of making alloy fibers
JP7042645B2 (en) Copper-coated magnesium wire, its insulated wire and composite wire
JP2004009207A (en) Electrode wire for wire electric discharge machining
JP3428771B2 (en) Nb3Sn compound superconducting wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees