JPS5941462A - Preparation of composite electrode wire for discharge machining - Google Patents

Preparation of composite electrode wire for discharge machining

Info

Publication number
JPS5941462A
JPS5941462A JP15104182A JP15104182A JPS5941462A JP S5941462 A JPS5941462 A JP S5941462A JP 15104182 A JP15104182 A JP 15104182A JP 15104182 A JP15104182 A JP 15104182A JP S5941462 A JPS5941462 A JP S5941462A
Authority
JP
Japan
Prior art keywords
wire
zinc
copper alloy
layer
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15104182A
Other languages
Japanese (ja)
Inventor
Sadahiko Sanki
参木 貞彦
Mitsuaki Onuki
大貫 光明
Koichi Tamura
幸一 田村
Masahiro Nagai
雅大 永井
Osamu Nakamura
修 中村
Katsuo Sekida
関田 克男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15104182A priority Critical patent/JPS5941462A/en
Publication of JPS5941462A publication Critical patent/JPS5941462A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain an extremely fine composite electrode wire used in discharge machining in good efficiency, by drawing an alloy matrix material prepared by forming a diffusion layer to the interface between the copper alloy of a core material and the coating zinc layer thereon into a wire in a high machining degree to prevent wire breakage. CONSTITUTION:A diffusion layer of zinc and copper with a thickness of 0.3mum is formed to the interface between a core material comprising a copper alloy such as brass or the like and a coated zinc or a zinc alloy layer. This zinc coated copper alloy matrix wire is drawn into a wire in a high machining degree of 90% or more to obtain a fine composite electrode wire with a diameter of 0.3mm. or less used in discharge machining. By this method, the danger of wire breakage is reduced and wire drawing workability and wire drawing yield are enhanced as well as production cost is reduced.

Description

【発明の詳細な説明】 本発明は放電加工用複合電極線、特に黄銅線上に亜鉛又
は亜鉛合金を被覆したワイヤカットの放電加工用複合電
極線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite electrode wire for electrical discharge machining, and particularly to a method for manufacturing a wire-cut composite electrode wire for electrical discharge machining, in which a brass wire is coated with zinc or a zinc alloy.

近年プレス金型の形状の複雑化、微細化あるいは寸法の
高精度化に伴い金型加工へのワイヤカット放電加工の利
用が急増している。それに伴い放電加工性能および放電
加工の生産性向上に対する志向が強まっている。
In recent years, the use of wire-cut electric discharge machining for mold machining has rapidly increased as the shape of press molds has become more complex, finer, and dimensional precision has increased. Along with this, there is an increasing desire to improve electrical discharge machining performance and productivity of electrical discharge machining.

ところでワイヤカット放電加工に要求される項目は、(
1)工作物の仕上り表面状態及び寸法精度が良いこと、
(11)放電加工速度が早いこと、であるが、これらは
放電加工機の特性もさることながら電極線自体によって
も大きく影響される。即ち電極線に対する要求特性とし
ては(1)寸法精度を良好にする為の極細化、(11)
放電特性の良いこと、(1の振動を防止する為の張力に
耐える高強度、θV)良導電性、(V)真直性、(vf
lコスト等があるが通常の単一構造の線材では、(ii
)、 (iiDが相反する要求となる。
By the way, the items required for wire cut electric discharge machining are (
1) The finished surface condition and dimensional accuracy of the workpiece are good;
(11) The speed of electrical discharge machining is high, but these are greatly influenced not only by the characteristics of the electrical discharge machine but also by the electrode wire itself. In other words, the required characteristics for electrode wires are (1) ultra-thinness to improve dimensional accuracy; (11)
Good discharge characteristics, (high strength that can withstand tension to prevent vibration in 1, θV) good conductivity, (V) straightness, (vf
Although there are costs such as
), (iiD are contradictory requirements.

従来Cu系電極線とタングステン線が多用されているが
共に前述の要求特性の一部しか満足していない。そこで
最近では前記諸特性を具備した複合線が開発されつつあ
り、例えば持分57−5648号、特開56−1265
28号、特開5〇−102999号の各公報に見られる
ようなものがある。これらはいずれも表面に放電特性の
良好な材料を用い心線に強度を持たせる構造である。
Conventionally, Cu-based electrode wires and tungsten wires have been widely used, but both satisfy only part of the above-mentioned required characteristics. Therefore, recently, composite wires having the above-mentioned characteristics are being developed, for example, equity line No. 57-5648, Japanese Patent Application Laid-Open No. 56-1265.
28 and Japanese Patent Laid-Open No. 50-102999. All of these have a structure in which a material with good discharge characteristics is used on the surface to give strength to the core wire.

このうち鋼合金を心線としたものは、高導電性、高強度
を賦与でき、又加工性が良好である事、経済性に富む事
から実用性は犬なるものがあり、更にZn又はZn合金
はcdと異り公害、衛生問題がなく、蒸発温度が低いこ
とと相まって放電特性が良いことから被覆材として好適
である。かような事由により銅合金を心材とし、その表
面にZnを被覆した複合電極線は、極めて工業有用性に
富むものである。
Of these, those with steel alloy cores have high conductivity, high strength, good workability, and are highly economical, so they are very practical. Unlike CD, alloys do not cause pollution or hygiene problems, and combined with their low evaporation temperature, they have good discharge characteristics, making them suitable as coating materials. For these reasons, a composite electrode wire having a core made of copper alloy and coated with Zn on its surface is extremely useful in industry.

さてこの種複合線の製造法すなわち心線へのZn層の被
覆方法としては種々の方法が考えられ、例えばめっき法
、押出し法、引抜法、圧延法等があるが、被覆厚さが厚
い場合には、生産速度ひいては、コスト面から後3者の
方式が好適である。
Various methods can be considered to manufacture this type of composite wire, that is, to coat the core wire with a Zn layer, such as plating, extrusion, drawing, rolling, etc. However, when the coating thickness is thick, The latter three methods are preferable in terms of production speed and cost.

すなわち押出し法の場合は、押出し装置のコンテナ内に
装填した加熱したZnビレットをステムにより加圧し、
予めグイボックスに配置した銅合金心線の周囲にZnを
流動せしめて被覆し、押出しすることにより、複合母線
を得るものであり、引抜法の、場合は予め用意したZn
管に銅合金心線を挿入し、これを引抜により密着嵌合せ
しめて複合母線を得るものであり、又圧延法は銅合金心
線の周囲に孔型ロールを使用してZn粉末を圧着せしめ
て複合母線を得るものである。このようにして得だ複合
母線(例えば8〜5胴ダ)を通常伸線により細線化する
(例えば0,25〜o、207rrrno)ものである
が、加工度が90係を越えるといずれの方式で製作した
母線でも断線が多発し、伸線作業性が著しく低下する。
In other words, in the case of the extrusion method, a heated Zn billet loaded in a container of an extrusion device is pressurized by a stem,
A composite busbar is obtained by flowing and coating Zn around a copper alloy core wire placed in advance in a Goo box, and then extruding it.
A composite bus bar is obtained by inserting a copper alloy core wire into a tube and drawing it into a tight fit.The rolling method uses a slotted roll to compress Zn powder around the copper alloy core wire. This is to obtain a composite bus bar. In this way, the composite busbar (e.g. 8 to 5 cylinders) is usually thinned by wire drawing (e.g. 0, 25 to o, 207 rrrno), but if the degree of processing exceeds 90, any method Even with busbars manufactured using this method, wire breakage occurs frequently, and wire drawing workability is significantly reduced.

断線多発の原因としては、心線の強加工による脆化およ
び被覆Zn層と心線の接着性不十分が考えられる。その
対策として強加工による脆化については熱処理による延
性向上が考えられるが一般にこの種電極線は高強度を必
要とするため伸線途中での熱処理は強度の低下を招くた
め実際上実施不可能″′cある・     心一方接着
性については母線製造の段階で銅合金線△ の前処理、被覆加工条件(工具形状、寸法等)を選択す
ることによシある程度まで向上可能であるが高さが95
係が限界であり、目標とする製品サイズ、性能番得るの
に要する99係以上の加工を達成するのは、極めて困難
である。かように金属水的見地より一見Znは黄銅に対
して押出し、引抜、圧延加工時の圧接により容易に接着
するやに考えられるが、本例が示すように高加工度伸線
に1111−1えうる強固な接着を得ることは予想以上
に困難であることが分る。
The causes of frequent disconnections are thought to be embrittlement of the core wire due to severe processing and insufficient adhesion between the Zn coating layer and the core wire. As a countermeasure against embrittlement caused by strong working, improving ductility through heat treatment is considered, but since this type of electrode wire generally requires high strength, heat treatment during wire drawing is practically impractical as it would result in a decrease in strength. 'c Yes - The adhesion on one side of the core can be improved to a certain extent by selecting the pre-treatment of the copper alloy wire △ and coating processing conditions (tool shape, dimensions, etc.) at the bus bar manufacturing stage, but the height 95
It is extremely difficult to achieve the 99 or higher processing required to obtain the target product size and performance number. At first glance, it seems that Zn easily adheres to brass by pressure welding during extrusion, drawing, and rolling from a metal perspective, but as this example shows, 1111-1 is suitable for high-workability wire drawing. It turns out that it is more difficult than expected to obtain a bond as strong as possible.

本発明の目的は複合電極線を母線方式で製造する際、断
線を防止し、効率よく製造する方法を提供することにあ
る。
An object of the present invention is to provide a method for efficiently manufacturing a composite electrode wire by preventing wire breakage when manufacturing the composite electrode wire using a busbar method.

本発明の要旨は、被覆亜鉛又は亜鉛合金層と心材の銅合
金との界面に0.6μ以上の厚さの亜鉛と銅の拡散層を
形成してなる亜鉛被覆鋼合金母線を90係以上の加工度
をもって伸線し、直径0.6叫メ以下の極細線とするに
ある。
The gist of the present invention is to provide a zinc-coated steel alloy bus bar with a zinc-coated steel alloy busbar having a zinc-coated steel alloy busbar with a thickness of 90 or more, which is formed by forming a zinc and copper diffusion layer with a thickness of 0.6μ or more at the interface between the coating zinc or zinc alloy layer and the copper alloy core material. The purpose is to draw the wire with a high degree of processing and make it into an ultra-fine wire with a diameter of 0.6 mm or less.

母線に拡散層を形成せしめる方法としては、予め使用す
る銅合金心線表面に溶融めっきを施すか、或いは電気め
っきし、しかるのち熱処理し、これに押出し、引抜き、
圧延等により厚くZn層を被覆する方法がある。
The method of forming a diffusion layer on the bus bar is to apply hot-dip plating or electroplating on the surface of the copper alloy core wire to be used in advance, then heat treat it, extrude it, pull it out,
There is a method of coating the Zn layer thickly by rolling or the like.

又、直接厚いZn層を被覆する際成形圧力、加熱条件を
調整し、心材との間に相互拡散を行わしめる方法がある
Another method is to adjust the molding pressure and heating conditions when directly coating a thick Zn layer to cause mutual diffusion with the core material.

又、銅合金心線にZn層を被覆後、90係以下の加工度
で伸線後拡散加熱する方法がある。
Further, there is a method in which a copper alloy core wire is coated with a Zn layer and then drawn at a processing degree of 90 or less and then diffusion heated.

層 拡散厚さが0.3μ以下の場合は、断線なしに伸線△ 可能な加工度すなわち伸線限界加工度は高々90係であ
る。
When the layer diffusion thickness is 0.3μ or less, the workability that can be drawn without wire breakage, that is, the limit workability for wiredrawing, is at most 90.

拡散層とは、(、u、 Znの相互固溶状態の他、特定
の合金組成を形成する場合も含むものとする。
The term "diffusion layer" includes not only a mutual solid solution state of (, u, and Zn) but also a case where a specific alloy composition is formed.

0.3m96以上の線径では放電加工時の精密加工が困
難、工作物の寸法精度、表面品質確保が困難である。
With a wire diameter of 0.3m96 or more, precision machining during electrical discharge machining is difficult, and it is difficult to ensure the dimensional accuracy and surface quality of the workpiece.

以下、本発明を図面に示す実施例にしたがって説明する
Hereinafter, the present invention will be explained according to embodiments shown in the drawings.

実施例1 外径5咽の65/35黄銅線(65%Cu−35%Zn
 )の周囲表面にZnを600°Cで0.8晒厚さ被覆
押出し後、拡散加熱す、ることにより第1図に示すよう
に被覆Zn層1と心材の黄銅2との界面に各橿原さの拡
散層3を形成せしめたZn被覆黄銅線をそれぞれ伸線し
たところ第2図のような結果を得た。すなわち被覆押出
し上りでは実質的に拡散層が認められず、この場合の伸
線限界は約1.9 ++Il+I y、加工度で92係
であったが第2図に示すように、拡散層の形成につれて
伸線限界は上昇し特に0.3μ付近で飛躍的に増大し、
0.20間り以下の極細伸線が可能になることが分る。
Example 1 65/35 brass wire (65% Cu-35% Zn
) is coated with Zn to a thickness of 0.8 cm at 600°C, and then diffused and heated to form a layer of Zn at the interface between the coated Zn layer 1 and the brass core 2, as shown in Figure 1. When the Zn-coated brass wires on which the diffusion layer 3 was formed were drawn, the results shown in FIG. 2 were obtained. In other words, substantially no diffusion layer was observed when the coating was extruded, and the wire drawing limit in this case was approximately 1.9 ++ Il + I y, and the working degree was 92, but as shown in Figure 2, the formation of the diffusion layer was difficult. As the wire drawing limit increases, it increases dramatically especially around 0.3μ,
It can be seen that ultra-fine wire drawing of 0.20 mm or less is possible.

実施例2 中 せしめて得だ外径6.6 mm uのZn被覆黄銅線(
Zn厚さ0.8 tax )を実施例1と同様に拡散加
熱することによりZn層と黄銅の界面に各積厚さの拡散
層を形成せしめて伸線を行った結果拡散加熱前の伸線限
界は90%であったが拡散層の形成につれて伸線限界は
上昇し、やはり0.6μ付近で飛躍的に増大し、0.2
0111m、m以下の極細伸線が可能であった。
Example 2 A Zn-coated brass wire with an outer diameter of 6.6 mm (
Zn (thickness: 0.8 tax) was diffusion heated in the same manner as in Example 1 to form a diffusion layer of each lamination thickness at the interface between the Zn layer and the brass, and wire drawing was performed. As a result, wire drawing before diffusion heating was performed. The limit was 90%, but as the diffusion layer was formed, the wire drawing limit increased, and also increased dramatically around 0.6μ, and then 0.2μ.
0111m, it was possible to draw an ultra-fine wire of 0.0111m or less.

実施例6 予め溶融Znめつきを施した外径5mmの65755黄
銅線(溶融めっきの際めっき層のZnと心材の間に0.
5μの拡散層を形成)を使用して実施例1と同様にその
表面にZrr層を0,8謹厚さ被覆押出し後伸線したと
ころ、0.09m0fで伸線可能であり、伸線加工限界
は9998%に達した、一方比較のために溶融Znめつ
きなしの黄銅線の場合についても実験したが、実施例1
の拡散加熱なしの場合と同様1.9fiOまでしか伸線
できなかった。
Example 6 65755 brass wire with an outer diameter of 5 mm that has been pre-plated with hot-dip Zn (during the hot-dip plating, 0.0 mm was added between the Zn of the plating layer and the core material).
When the Zrr layer was coated on the surface with a thickness of 0.8 μm in the same manner as in Example 1 and the wire was drawn after extrusion, it was possible to draw the wire at 0.09 m0f. The limit reached 9998%.On the other hand, for comparison, experiments were also carried out using brass wire without molten Zn plating, but Example 1
As with the case without diffusion heating, wire drawing could only be done up to 1.9 fiO.

なおこの際の伸線限界は92多の低水準に止まった。The wire drawing limit at this time remained at a low level of 92 points.

なお、めっき及び被覆層としては、Znの他、Zn合金
が挙げられるが、その添加元素としては例えばLl、N
h、になどのアルカリ金属、Cu、Sr、Rh%Be%
Mgなどのアルカリ土金属があり、これらは放電加工性
に好ましい影響を及ぼす、又AL、T1、Cu、Ni、
Sn、Siなどは放電加工性を損うことなしにZnの伸
線加工性を向上させる作用をなし好適である。
In addition to Zn, examples of the plating and coating layer include Zn alloy, and additive elements include, for example, Ll, N,
h, alkali metals such as Ni, Cu, Sr, Rh%Be%
There are alkaline earth metals such as Mg, which have a favorable effect on electrical discharge machinability, and AL, T1, Cu, Ni,
Sn, Si, and the like are suitable because they have the effect of improving the wire drawability of Zn without impairing the electrical discharge machinability.

心線としての銅合金としては、例えば7091?u−6
0%Zn、65%Cu−65%Inなどの黄銅及びこれ
に第6.第4の元素(例えばNi、、Co、Bes Z
r%Cr%Sns A/、、Ag希土類元素)を加えた
合金或いはCu−Ni、Cu−8n、 Cu−T i、
 Cu−CrlCu−E e。
As a copper alloy for the core wire, for example, 7091? u-6
Brass such as 0% Zn, 65% Cu-65% In, and No. 6. A fourth element (e.g. Ni, Co, Bes Z
r%Cr%Sns A/, Ag rare earth elements) or Cu-Ni, Cu-8n, Cu-Ti,
Cu-CrlCu-E e.

Cu−A1.に’u−Co、Cu−Afn%Cu−8μ
系合金等があげられる。
Cu-A1. ni'u-Co, Cu-Afn%Cu-8μ
Examples include alloys.

以上説明したように、本発明によれば、減面率で99係
以上の高加工度伸線が可能となり、極細高強度複合電極
線が得られると共に、断線の危険が著しく低下し、伸線
作業性が大幅に向上し、伸線歩留及び生産性が向上する
。その結果製品線の製造コストが大幅に減少する効果が
あり、その工業的価値は極めて大なるものがある。
As explained above, according to the present invention, it is possible to draw a wire with a high degree of workability with an area reduction ratio of 99 or more, to obtain an ultra-fine, high-strength composite electrode wire, and to significantly reduce the risk of wire breakage. Work efficiency is greatly improved, and wire drawing yield and productivity are improved. As a result, the manufacturing cost of the product line can be significantly reduced, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる亜鉛被覆銅量 合金母線の横断面図、第2図は前記母線に対する△ 加工特性図である。 1:被覆Zn層、2:黄銅、6:拡散層。 Figure 1 shows the amount of zinc-coated copper according to an embodiment of the present invention. A cross-sectional view of the alloy generatrix, Figure 2 is △ with respect to the generatrix. It is a processing characteristic diagram. 1: Covering Zn layer, 2: Brass, 6: Diffusion layer.

Claims (1)

【特許請求の範囲】 1、 被覆亜鉛又は亜鉛合金層と心材の銅合金との界面
に0.6μ以上の厚さの亜鉛と銅の拡散層を形成してな
る亜鉛被覆銅合金母線を90係以上の加工度をもって伸
線し、直径0.3mm96以下の極細線とすることを特
徴とする放電加工用複合電極線の製造方法。 2、前記銅合金が黄銅であることを特徴とする特許請求
の範囲第1項記載の放電加工用複合電極線の製造方法。
[Claims] 1. A zinc-coated copper alloy bus bar with a zinc-coated copper alloy busbar formed by forming a diffusion layer of zinc and copper with a thickness of 0.6 μ or more at the interface between the coated zinc or zinc alloy layer and the copper alloy core material. A method for manufacturing a composite electrode wire for electrical discharge machining, which comprises drawing the wire with a working degree of above to obtain an ultra-fine wire with a diameter of 0.3 mm or less. 2. The method of manufacturing a composite electrode wire for electric discharge machining according to claim 1, wherein the copper alloy is brass.
JP15104182A 1982-08-31 1982-08-31 Preparation of composite electrode wire for discharge machining Pending JPS5941462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15104182A JPS5941462A (en) 1982-08-31 1982-08-31 Preparation of composite electrode wire for discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15104182A JPS5941462A (en) 1982-08-31 1982-08-31 Preparation of composite electrode wire for discharge machining

Publications (1)

Publication Number Publication Date
JPS5941462A true JPS5941462A (en) 1984-03-07

Family

ID=15510001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15104182A Pending JPS5941462A (en) 1982-08-31 1982-08-31 Preparation of composite electrode wire for discharge machining

Country Status (1)

Country Link
JP (1) JPS5941462A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134624A (en) * 1983-01-19 1984-08-02 Sumitomo Electric Ind Ltd Composite electrode wire for electric discharge machining and preparation thereof
JPS61109623A (en) * 1984-10-29 1986-05-28 Fujikura Ltd Electrode wire for wire electric spark spark machining and its manufacturing method
JPS61117021A (en) * 1984-11-09 1986-06-04 Fujikura Ltd Electrode wire for wire-cut electric discharge machining and manufacturing method thereof
JPS61136734A (en) * 1984-12-08 1986-06-24 Fujikura Ltd Electrode wire for wire-cut spark erosion work and preparation thereof
JPS61136733A (en) * 1984-12-08 1986-06-24 Fujikura Ltd Electrode wire for wire-cut spark erosion work and preparation thereof
JPS61252025A (en) * 1985-05-01 1986-11-10 Fujikura Ltd Electrode wire for wire electric discharge machining and manufacture thereof
JPS61270028A (en) * 1985-05-27 1986-11-29 Fujikura Ltd Electrode wire for wire electric discharge machining
JPS63117052A (en) * 1986-11-05 1988-05-21 Sankyo Yuki Gosei Kk Method of stabilizing styrene resin composition
JPH05337742A (en) * 1992-12-18 1993-12-21 Fujikura Ltd Manufacture of electrode wire for wire electrodischarge machining
EP2067560A1 (en) * 2007-12-10 2009-06-10 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134624A (en) * 1983-01-19 1984-08-02 Sumitomo Electric Ind Ltd Composite electrode wire for electric discharge machining and preparation thereof
JPS61109623A (en) * 1984-10-29 1986-05-28 Fujikura Ltd Electrode wire for wire electric spark spark machining and its manufacturing method
JPS61117021A (en) * 1984-11-09 1986-06-04 Fujikura Ltd Electrode wire for wire-cut electric discharge machining and manufacturing method thereof
JPS61136734A (en) * 1984-12-08 1986-06-24 Fujikura Ltd Electrode wire for wire-cut spark erosion work and preparation thereof
JPS61136733A (en) * 1984-12-08 1986-06-24 Fujikura Ltd Electrode wire for wire-cut spark erosion work and preparation thereof
JPH0471646B2 (en) * 1984-12-08 1992-11-16 Fujikura Ltd
JPH0249848B2 (en) * 1985-05-01 1990-10-31 Fujikura Ltd
JPS61252025A (en) * 1985-05-01 1986-11-10 Fujikura Ltd Electrode wire for wire electric discharge machining and manufacture thereof
JPS61270028A (en) * 1985-05-27 1986-11-29 Fujikura Ltd Electrode wire for wire electric discharge machining
JPH0249849B2 (en) * 1985-05-27 1990-10-31 Fujikura Ltd
JPS63117052A (en) * 1986-11-05 1988-05-21 Sankyo Yuki Gosei Kk Method of stabilizing styrene resin composition
JPH0627233B2 (en) * 1986-11-05 1994-04-13 三共有機合成株式会社 Method for stabilizing styrene resin composition
JPH05337742A (en) * 1992-12-18 1993-12-21 Fujikura Ltd Manufacture of electrode wire for wire electrodischarge machining
EP2067560A1 (en) * 2007-12-10 2009-06-10 Oki Electric Cable Co., Ltd. Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of
EP2067560A4 (en) * 2007-12-10 2009-11-11 Oki Electric Cable Electrode wire for wire electric discharging, method for manufacturing the electrode wire, and apparatus for manufacturing bus line there of

Similar Documents

Publication Publication Date Title
KR100837350B1 (en) Electrode Wire for Wire Electric Discharge Machining
JPS5941462A (en) Preparation of composite electrode wire for discharge machining
EP3597339B1 (en) Electrode wire for electro-discharge machining and method for manufacturing the same
EP0573780B1 (en) Wire electrode for wire cutting electro-discharge machining
CN107073615B (en) Electrode wire for wire electric discharge machining and method for manufacturing electrode wire for electric discharge machining
US4787228A (en) Making molds with rectangular or square-shaped cross section
US6291790B1 (en) Wire electrode for electro-discharge machining
US3630429A (en) Apparatus for producing composite metallic wire
JP3405069B2 (en) Electrode wire for electric discharge machining
JP3087552B2 (en) Electrode wire for electric discharge machining
DE19911095B4 (en) Electrode wire for an electric discharge machining device
JPS59134624A (en) Composite electrode wire for electric discharge machining and preparation thereof
JPS5942117A (en) Manufacture of composite electrode wire for electric discharge machining
JPS6246620B2 (en)
JPS5942116A (en) Manufacture of composite electrode wire for electric discharge machining
JP2000107943A (en) Wire electronic discharge machining electrode line
JPS5931857A (en) Manufacture of electrode wire for electric spark machining for wire cutting
US2396616A (en) Manufacture of tin-plated lead collapsible tubes
JPS60249529A (en) Composite electrode wire for wire-cut electrical-discharge machining
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JP3136460B2 (en) Linear orbital shaft excellent in fatigue strength and surface properties and method for producing the same
JPS6099526A (en) Electrode wire for wire-cut electric spark machine
JPS5916214A (en) Method of producing electrode wire for wire cut discharge machining
JPH11320270A (en) Electrode wire with high strength and high conductivity for wire electric discharge machining
DE818287C (en) Composite cast plain bearings