JPS61252025A - Electrode wire for wire electric discharge machining and manufacture thereof - Google Patents

Electrode wire for wire electric discharge machining and manufacture thereof

Info

Publication number
JPS61252025A
JPS61252025A JP9424885A JP9424885A JPS61252025A JP S61252025 A JPS61252025 A JP S61252025A JP 9424885 A JP9424885 A JP 9424885A JP 9424885 A JP9424885 A JP 9424885A JP S61252025 A JPS61252025 A JP S61252025A
Authority
JP
Japan
Prior art keywords
copper
wire
zinc
sulfide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9424885A
Other languages
Japanese (ja)
Other versions
JPH0249848B2 (en
Inventor
Haruo Tominaga
晴夫 冨永
Teruyuki Takayama
高山 輝之
Yoshio Ogura
小椋 善夫
Tetsuo Yamaguchi
哲夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9424885A priority Critical patent/JPS61252025A/en
Publication of JPS61252025A publication Critical patent/JPS61252025A/en
Publication of JPH0249848B2 publication Critical patent/JPH0249848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes

Abstract

PURPOSE:To improve the efficiency of electric discharge machining by providing a copper-zinc alloy layer having higher zinc concentration in the surface layer on the outer peripheral surface of a copper coated steel wire and zinc sulfide, copper sulfide and carbon grains dispersed, and further black coating said alloy layer. CONSTITUTION:A copper-zinc alloy layer 12 is provided in which zinc sulfide, copper sulfide and carbon grains with 0.1-15mum of thickness are dispersed on the outer peripheral surface of a copper coated steel wire 11 of core material and concentration gradient of zinc becomes higher toward the surface layer from copper foundation. Further, a black coating 13 consisting of zinc sulfide, copper sulfide and carbon grains and having 0.1-5mum of thickness is provided on the outermost layer to form total about 0.2mm of diameter. Further copper is coated on the steel wire 11 such that the rate of sectional area of a the copper to the total sectional area, i.e. coating rate is 10-70%. Thus, high temperature strength is obtained, disconnection is prevented and the operational efficiency of electric discharge machining can be improved.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、放電による溶融作用により、被加工物(加工
対象物)を加工するワイヤ放電加工に用いられるワイヤ
放電加工用電極線およびその製造方法に関づるものであ
る。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to an electrode wire for wire electrical discharge machining used in wire electrical discharge machining to machine a workpiece (workpiece) by the melting action of electric discharge, and its manufacture. It is related to the method.

「従来の技術」 第2図は、一般的なワイヤ放電加工法の概略を説明する
ものである。この加工法は、被加工物1に予め開けたス
タート穴2に電極線3を挿通し、この電極線3を挿通方
向(第2図では矢印の方向)に走行させながら、電極線
3とスタート穴2の内壁面との間で放電させ、かつ、被
加工物1を挿通方向と直交する方向に移動させることに
より、移動軌跡に沿って被加工物1を溶融させて所定の
形状に加工する方法である。この図において、電極線3
は例えば供給リール4から連続的に送り出され、被加工
物1の両側のコロ5を通って巻き取りリール6に巻き取
られるとともに、この巻き取りリール6とコロ5との間
に配されるテンションローラ7によって張力を調整され
るようになっている。また、図示しないが、放電加工部
分には加工液が供されて、電極線3の冷却および加工屑
の除去等を行なうようになっている。
"Prior Art" FIG. 2 schematically explains a general wire electrical discharge machining method. This processing method involves inserting the electrode wire 3 into a start hole 2 previously drilled in the workpiece 1, and running the electrode wire 3 in the insertion direction (in the direction of the arrow in Fig. 2). By generating an electric discharge between the inner wall surface of the hole 2 and moving the workpiece 1 in a direction perpendicular to the insertion direction, the workpiece 1 is melted and processed into a predetermined shape along the movement trajectory. It's a method. In this figure, electrode wire 3
is continuously fed out from the supply reel 4, passes through the rollers 5 on both sides of the workpiece 1, and is wound onto the take-up reel 6, and the tension placed between the take-up reel 6 and the rollers 5 The tension is adjusted by rollers 7. Although not shown, machining fluid is supplied to the electrical discharge machining portion to cool the electrode wire 3 and remove machining debris.

従来、このようなワイヤ放電加工に使用される電極線3
としては、直径0.05〜0.3IIli程度の銅線、
黄銅線(Cu65%、Zn35%合金)、亜鉛メッキ黄
銅線、あるいは特殊用途としてタングステン線、モリブ
デン線等が用いられている。
Conventionally, the electrode wire 3 used in such wire electric discharge machining
For example, copper wire with a diameter of about 0.05 to 0.3 IIli,
Brass wire (65% Cu, 35% Zn alloy), galvanized brass wire, or for special purposes, tungsten wire, molybdenum wire, etc. are used.

[発明が解決しようとする問題点」 ところで、これらの電極線3は、放電加工中、約300
℃の高温に熱せられ、電極素材自体に大きな熱的負担が
加わる一方、安定放電に維持して加工精度、加工速度を
上げるために行われるテンションローラ7の張力調整時
の張力も加わることから高温強度(高温時における引張
強度)が高いことが要求されている。しかしながら、銅
線は電極線としての細線への伸線加工性は良いものの、
引張強度が小さく、使用中に新線して放電加工作業の効
率を著しく低下させるおそれがある。また、黄銅線は、
室温での引張強度が銅線の2倍程度の強さであるが、3
00℃前後の高温強度は銅よりわずかに高い程度であり
、加工速度を上げようとすると、やはり断線する傾向が
ある。
[Problems to be Solved by the Invention] By the way, these electrode wires 3 are exposed to about 300
℃, which places a large thermal burden on the electrode material itself, while also applying tension when adjusting the tension of the tension roller 7, which is performed to maintain stable discharge and increase machining accuracy and machining speed. High strength (tensile strength at high temperatures) is required. However, although copper wire has good wire drawability into fine wire as electrode wire,
The tensile strength is low, and there is a risk that new wire will form during use, significantly reducing the efficiency of electrical discharge machining work. In addition, brass wire
The tensile strength at room temperature is about twice that of copper wire, but 3
The high temperature strength of around 00°C is only slightly higher than that of copper, and if you try to increase the processing speed, there is a tendency for the wire to break.

ざらに、亜鉛メッキ黄銅線の場合、亜鉛による放電安全
性は、増加されるものの、亜鉛メッキ皮膜が存在する分
だけ高温強度が、低下し、加工速度を上げようとすると
、やはり、断線する傾向がある。ざらにまた、タングス
テン線、モリブデン線は高温強度は高いが、伸線加工性
が悪く、かつ、消耗品として使用される電極線としては
高価である等の問題点があった。
In general, in the case of galvanized brass wire, although the electrical discharge safety due to zinc is increased, the high-temperature strength decreases due to the presence of the galvanized film, and if you try to increase the processing speed, there is still a tendency for the wire to break. There is. Furthermore, although tungsten wire and molybdenum wire have high high-temperature strength, they have problems such as poor wire drawability and high cost as electrode wires used as consumables.

「問題点を解決するための手段」 本発明のワイヤ放電加工電極線は、従来のワイヤ電極線
における前述の問題点を解決するためになされたもので
、10〜70%の被覆率r銅を被覆した銅被覆鋼線の外
周面に0.1〜15μmの厚さにわたって、銅地から表
層に向かって亜鉛濃度が高くなるような濃度勾配がつけ
られ、かつ硫化亜鉛、硫化銅および炭素粒子が分散した
銅一亜鉛合金層を設け、さらにこの上に硫化亜鉛、硫化
銅および炭素粒子からなる黒色被膜で被覆したものであ
る。
"Means for Solving the Problems" The wire electrical discharge machining electrode wire of the present invention was made to solve the above-mentioned problems in conventional wire electrode wires, and has a copper coverage of 10 to 70%. The outer peripheral surface of the coated copper-coated steel wire is coated with a concentration gradient such that the zinc concentration increases from the copper base to the surface layer over a thickness of 0.1 to 15 μm, and zinc sulfide, copper sulfide and carbon particles are added. A dispersed copper-zinc alloy layer is provided, and this is further coated with a black coating consisting of zinc sulfide, copper sulfide, and carbon particles.

また、本発明のワイヤ放電加工電極線の製造方法は、銅
被覆鋼線の外周面に、含イオウ有礪化合物を含有する添
加剤を加えた亜鉛メッキ浴で、電気亜鉛メッキによって
亜鉛層を形成した後、伸線加工を施し、さらに熱処理を
施して、銅一亜鉛合金層を形成させ、この合金層中に硫
化亜鉛、硫化鋼および炭素粒子が分散し、かつ銅地から
表層にわたって亜鉛濃度が高くなるような濃度勾配がつ
けられ、吐鉛層を完全に銅一亜鉛合金層に変化せしめる
とともに最外層に硫化亜鉛、硫化銅および炭素粒子から
なる黒色被膜を生成せしめる方法である。
In addition, the method for manufacturing a wire electrical discharge machining electrode wire of the present invention includes forming a zinc layer on the outer circumferential surface of a copper-coated steel wire by electrolytic galvanizing in a galvanizing bath containing an additive containing a sulfur-containing compound. After that, wire drawing processing and further heat treatment are performed to form a copper-zinc alloy layer, in which zinc sulfide, sulfide steel, and carbon particles are dispersed, and the zinc concentration is increased from the copper base to the surface layer. In this method, a concentration gradient is applied to increase the concentration, completely converting the lead discharge layer into a copper-zinc alloy layer, and forming a black film consisting of zinc sulfide, copper sulfide, and carbon particles in the outermost layer.

前記ワイヤ放電加工用電極線(以下、ワイヤ電極線と言
う。)において銅被黄銅線の銅の被覆率が10%未満で
あると、導電率が低くなるため、放電性能が低下して加
工速度が上がらず、70%より大きいと高温強度が低く
なるため、張ツノを上げた場合に断線しやすくなる。ま
た、銅一亜鉛合金層が存在しないと銅地が露出している
ため放電性能、すなわち、加工速度が奢るしく低下する
In the electrode wire for wire electrical discharge machining (hereinafter referred to as wire electrode wire), if the copper coverage of the copper-coated brass wire is less than 10%, the electrical conductivity will be low, resulting in a decrease in discharge performance and a decrease in machining speed. If it does not increase and is greater than 70%, the high temperature strength will be low, making it easy to break when the tension is increased. In addition, if the copper-zinc alloy layer does not exist, the copper base is exposed, so the discharge performance, that is, the machining speed, decreases significantly.

さらに、その銅一亜鉛合金層も、銅地から表層に向かっ
て亜鉛濃度が高くなるような濃度勾配を有する銅一亜鉛
合金層でない場合は、十分な加工速度増加が得られない
Further, unless the copper-zinc alloy layer has a concentration gradient such that the zinc concentration increases from the copper base toward the surface layer, a sufficient increase in processing speed cannot be obtained.

さらに、その濃度勾配を有するとともに硫化亜鉛、硫化
銅および炭素粒子が分散した銅一亜鉛合金層の厚さが、
0.1μI未満であると、十分な放電性能が得られず、
加工速度の増大効果が得られないかもしくは、被加工物
(主として、鋼鉄材料の場合)の鉄分と電極線の銅分と
が溶融反応を起こして、加工面に付着する傾向が大とな
り、加工精度が悪くなる。濃度勾配を有する銅一亜鉛合
金層の厚さが15μmより厚いと強度低下が生じて断線
しやすくなり、また熱処理時間が長くなったり設備費が
高くつくなど経済的に不利になる。
Furthermore, the thickness of the copper-zinc alloy layer, which has a concentration gradient and in which zinc sulfide, copper sulfide and carbon particles are dispersed, is
If it is less than 0.1μI, sufficient discharge performance cannot be obtained,
Either the effect of increasing the machining speed cannot be obtained, or the iron content of the workpiece (mainly in the case of steel materials) and the copper content of the electrode wire cause a melting reaction and have a strong tendency to adhere to the machined surface. Accuracy deteriorates. If the thickness of the copper-zinc alloy layer having a concentration gradient is thicker than 15 μm, the strength will be lowered and the wire will be more likely to break, and the heat treatment time will be longer and the equipment cost will be higher, which is economically disadvantageous.

さらに、最外層に生成された厚み0.1〜5μmの硫化
亜鉛、硫化銅および炭素粒子からなる黒色皮膜が存在し
ない場合、初期放電(ワイヤ電極線が被加工物との間で
放電を開始する時)においておだやかな万遍なく分散さ
れた放電とならず、局部的集中放電が生じることがあり
、断線しやすくなる。この黒色皮膜の厚さが0.1μ−
未満では上記効果が得られず、5μ個を越えると強度低
下が大きくなって不都合を来す。
Furthermore, if there is no black film made of zinc sulfide, copper sulfide, and carbon particles with a thickness of 0.1 to 5 μm formed on the outermost layer, initial discharge (discharge occurs between the wire electrode wire and the workpiece) (time), the discharge is not gentle and evenly distributed, but locally concentrated discharge may occur, making the wire more likely to break. The thickness of this black film is 0.1 μ-
If the number is less than 5 μm, the above effect cannot be obtained, and if the number exceeds 5 μm, the strength will be significantly lowered, causing problems.

「実施例」 以下、本発明の好適な実施例を説明すると、第1図に示
すように、このワイヤ電極線は、銅被覆鋼線11が芯材
とされ、その外周面に0.1〜15μlの絶間の厚さで
、硫化亜鉛、硫化銅および炭素粒子が分散されかつ銅地
から表層に向かって亜鉛濃度が高くなるような濃度勾配
がつけられた銅一亜鉛合金層12が設けられ、さらに最
外層に硫化亜鉛、硫化銅および炭素粒子からなる厚み0
゜1〜5μ鴎の黒色皮wA13が設けられ、全体の直径
が約0.2111に形成されたものである。前記銅被覆
鋼線11はいわゆる鋼線あるいは鉄線、合金鋼線等の鋼
線に10〜70%の被覆率で銅を被覆してなるものであ
る。ただし、ここでの被覆率とは、全体の断面積に対す
る胴部分の断面積の割合を意味している。
``Example'' Hereinafter, a preferred embodiment of the present invention will be described. As shown in FIG. A copper-zinc alloy layer 12 is provided with a constant thickness of 15 μl, in which zinc sulfide, copper sulfide and carbon particles are dispersed, and the concentration gradient is such that the zinc concentration increases from the copper base toward the surface layer, Furthermore, the outermost layer consists of zinc sulfide, copper sulfide and carbon particles with a thickness of 0.
A black skin wA13 of 1 to 5 μm is provided, and the overall diameter is approximately 0.2111 mm. The copper-coated steel wire 11 is a so-called steel wire, iron wire, alloy steel wire, or other steel wire coated with copper at a coverage rate of 10 to 70%. However, the coverage here means the ratio of the cross-sectional area of the body portion to the cross-sectional area of the entire body.

このようなワイヤ電極線は例えば次のような方法で製造
される。例え−ば、0.491rAの直径を有する銅被
覆鋼線を、含イオウ有機化合物を含有する添加剤を加え
た塩化亜鉛浴(IJ中に塩化亜鉛42g、塩化アンモニ
ウム210(Jを含有する水浴液)中に浸漬し、電気亜
鉛メッキ処理°を施す。
Such a wire electrode line is manufactured, for example, by the following method. For example, a copper-coated steel wire with a diameter of 0.491 rA was placed in a zinc chloride bath (IJ) containing 42 g of zinc chloride and 210 g of ammonium chloride (J) with additives containing sulfur-containing organic compounds. ) and electrogalvanized.

上記含イオウ有機化合物を含有する添加剤としては、ア
ルキル硫酸エステルナトリウム、アルキルベンゼンスル
フオン酸ナトリウム、オレフィン硫酸エステルナトリウ
ムなどの陰イオン界面活性剤やアルキルピリジニウム硫
酸塩などの陽イオン界面活性剤などの分子内にイオウを
含む界面活性剤が、メッキ浴に対する悪影響がなく主に
使用されるが、この他に芳香族カルボン酸塩、水溶性カ
チオンポリマー、芳香族アルデヒド、高級アルコールな
ども使用できる。これにより、銅被覆鋼線の外周面に、
上記添加剤が含有2分散された所定厚さの亜鉛層が形成
される。この際、この亜鉛層の表層にも上記添加剤を所
定量付着させておく。
Examples of additives containing the above-mentioned sulfur-containing organic compounds include molecules such as anionic surfactants such as sodium alkyl sulfates, sodium alkylbenzenesulfonates, sodium olefin sulfates, and cationic surfactants such as alkylpyridinium sulfates. Surfactants containing sulfur are mainly used because they do not have a negative effect on the plating bath, but aromatic carboxylates, water-soluble cationic polymers, aromatic aldehydes, higher alcohols, etc. can also be used. As a result, on the outer peripheral surface of the copper-coated steel wire,
A zinc layer of a predetermined thickness containing and dispersing the above additives is formed. At this time, a predetermined amount of the above additive is also deposited on the surface layer of this zinc layer.

ついで、この亜鉛メッキ層が形成された銅被覆鋼線に伸
線加工を施して全体の直径が0.211としたのち、オ
ーブン等を用いて大気中で加熱して熱処理を施す。この
熱処理により、亜鉛層は銅地から表層に向けて亜鉛濃度
が高くなるような濃度勾配がつけられた銅一亜鉛合金層
に変化するとともに添加剤中のイオウが亜鉛および銅と
反応し、有機物が炭化して上記合金中に硫化亜鉛、硫化
銅および炭素粒子が分散し、かつ同時に上記合金層上に
合金層から析出した硫化亜鉛、硫化鋼および炭素粒子か
らなる黒色皮膜が生成される。
Next, the copper-coated steel wire with the galvanized layer formed thereon is drawn to have an overall diameter of 0.211, and then heat-treated by heating in the atmosphere using an oven or the like. Through this heat treatment, the zinc layer changes to a copper-zinc alloy layer with a concentration gradient such that the zinc concentration increases from the copper base to the surface layer, and the sulfur in the additive reacts with the zinc and copper, causing organic matter to form. is carbonized, zinc sulfide, copper sulfide and carbon particles are dispersed in the alloy, and at the same time a black film consisting of zinc sulfide, sulfide steel and carbon particles precipitated from the alloy layer is formed on the alloy layer.

このようにして、形成されたワイヤ電極線は、銅被覆鋼
線11を芯材としているため、優れた高温強度および導
電率を備え、また銅地から表層に向って亜鉛濃度が高く
なるようなWJ度勾配がつけられ、かつ硫化亜鉛、硫化
銅および炭素粒子を分散した銅一亜鉛合金層12の存在
により優れた放電性能を発揮する。さらに銅−亜鉛合金
IIJ12によって放電時における被加工物への銅の付
着が防止される。さらに最外層に硫化亜鉛および硫化銅
および炭素粒子からなる黒色皮膜13を有するため、初
期放電にJ5いて集中放電とならず、おだやかな万遍な
く分散された放電となり、以後の放電が全周に渡って比
較的均一な放電となり断線しにくくなる。
The wire electrode wire formed in this way has excellent high-temperature strength and conductivity because it uses the copper-coated steel wire 11 as the core material, and has a zinc concentration that increases from the copper base toward the surface layer. Excellent discharge performance is exhibited due to the presence of the copper-zinc alloy layer 12 which has a WJ gradient and has zinc sulfide, copper sulfide and carbon particles dispersed therein. Furthermore, the copper-zinc alloy IIJ12 prevents copper from adhering to the workpiece during discharge. Furthermore, since the outermost layer has a black coating 13 made of zinc sulfide, copper sulfide, and carbon particles, the initial discharge does not become a concentrated discharge at J5, but instead becomes a gentle and evenly dispersed discharge, and subsequent discharges occur all around the circumference. The discharge is relatively uniform across the line, making it difficult to break the wire.

次いで、実験例を示して、これらワイヤ電極線の作用効
果を明確にする。
Next, experimental examples will be shown to clarify the effects of these wire electrode lines.

本実験例では、銅被覆鋼線11の銅の被覆率、銅地から
表層に向かって亜鉛濃度が高くなるような濃度勾配がつ
けられ、かつ硫化曲鉛、硫化銅および炭素粒子を分散し
た銅一亜鉛合金層12の厚さおよび硫化亜鉛、硫化銅お
よび炭素粒子よりなる黒色皮g!13の厚さを種々の値
に設定した直径0.2mmのライ1フ電極と、同じく直
径0.21118の通常の銅線、黄銅線(Cu65%、
Zn35%)、亜鉛めっぎ黄銅線、および濃度勾配のつ
いていない銅一亜鉛合金層の銅被覆鋼線について加工中
における加工速度、加工精度、断線頻度(高温強度、放
電安定性)および経済性を評価する比較試験を行なった
In this experimental example, the copper coating rate of the copper-coated steel wire 11 is such that the concentration gradient increases from the copper base to the surface layer, and the copper coated steel wire 11 has a concentration gradient such that the zinc concentration increases from the copper base to the surface layer, and the copper coated steel wire 11 has copper sulfide curved lead, copper sulfide, and carbon particles dispersed therein. The thickness of the zinc alloy layer 12 and the black skin made of zinc sulfide, copper sulfide and carbon particles g! Life electrodes with a diameter of 0.2 mm with various thicknesses of 13 and ordinary copper wires and brass wires (Cu65%,
Machining speed, machining accuracy, wire breakage frequency (high temperature strength, discharge stability), and economical efficiency of Zn35%), galvanized brass wire, and copper-coated steel wire with copper-zinc alloy layer without concentration gradient. A comparative test was conducted to evaluate the

この比較試験の結果を第1表に示す。ただし、放電加工
としては、厚さ201IIlの被加工物(SKD−11
)から3011II11角の板材を切り取る加工を行な
った。このときの加工条件は次のとうりである。
The results of this comparative test are shown in Table 1. However, for electric discharge machining, a workpiece with a thickness of 201IIl (SKD-11
) was processed by cutting out a 3011II11 square board. The processing conditions at this time are as follows.

印加電圧   :110V パルス時間  二〇N→5μ5 OFF→5μs ピーク電流  :10A コンデンサ言伝:0.8μF 加工液    :KA水 電極線張力  ニア50Qf また、加工速度は、銅線の加工速度(0,8mmZ分)
を基準として、これを1としたときの比率で表わした。
Applied voltage: 110V Pulse time 20N→5μ5 OFF→5μs Peak current: 10A Capacitor transmission: 0.8μF Processing fluid: KA water Electrode wire tension Near 50Qf In addition, the processing speed is the copper wire processing speed (0.8mmZ minute )
It is expressed as a ratio when this is taken as a standard.

加工精度は、切り取った板材の寸法誤差の範囲の広さく
最大値と最小値の差)を狭い順に、A(0,01mm未
満)、B(0,01〜0゜03n+m) 、 C(0,
03mnより大)で表ワシタ。
The machining accuracy is as follows: A (less than 0.01mm), B (0.01~0°03n+m), C (0.01mm), C (0.01mm), B (0.01~0°03n+m),
Larger than 03mm) and it was on the front.

断線頻度は、断線回数の少ない順にA(断線なく安定)
、B(1)(加工速度を上げると断線あり、)、B(2
)(張力を750ofより大きくすると断線あり)、B
(3)(放電初期−ワイヤ電極が被加工物との間で放電
を開始する時に断線することがある。)C(断線頻発)
で表わした。さらに、経済性は黄銅線の製造コストを基
準としてそれより安価にできる場合を○、高価になる場
合を×で表わした。
The frequency of wire breaks is A (stable without wire breakage) in descending order of the number of wire breaks.
, B(1) (If the machining speed is increased, there will be a disconnection.), B(2
) (If the tension is greater than 750of, there will be a disconnection), B
(3) (Early stage of discharge - disconnection may occur when the wire electrode starts discharging between it and the workpiece.) C (Frequent disconnection)
It was expressed as Furthermore, for economical efficiency, cases where the production cost of the brass wire can be made cheaper are shown as ○, and cases where it becomes more expensive are shown as x.

第1表から明らかなように、ワイヤ電極線のうち、銅被
覆率が10〜70%、かつ上記銅一亜鉛合金層の厚さが
0.1〜15μmおよび上記黒色皮膜の厚さが0.1〜
5μlという本発明の条件を満たすものは、銅線、黄銅
線、亜鉛めっき黄銅線および濃度勾配を6だない亜鉛−
銅合金層層で被覆された銅被覆鋼線を含む他の電極線に
比べて、加工速度、加工精度、耐断線性および経済性と
もに優れていることがわかる。
As is clear from Table 1, the wire electrode wire has a copper coverage of 10 to 70%, a thickness of the copper-zinc alloy layer of 0.1 to 15 μm, and a thickness of the black film of 0.1 to 15 μm. 1~
Those satisfying the present invention condition of 5 μl include copper wire, brass wire, galvanized brass wire, and zinc-
It can be seen that this electrode wire is superior in processing speed, processing accuracy, disconnection resistance, and economical efficiency compared to other electrode wires containing copper-coated steel wires coated with a copper alloy layer.

なお、直径0.196u被覆率60%の銅被覆鋼線を芯
材とし上記添加剤を含む硫酸亜鉛浴(1)中に硫酸0.
14モル、FfA酸曲鉛0.23モルを含む水溶液)中
に浸漬し電気亜鉛メッキを施して厚さ2μ■の添加剤が
分散し、かつ表層に添加剤が付着した亜鉛層を形成し、
しかる後に、オーブンを用いて大気中で1時間熱処理す
ることにより得られたワイヤ電極線と同じくオーブンの
代わりに500℃に設定した管状炉中を通過させる熱処
理を行うことにより得られたワイヤ電極線も上記実験例
における本発明の条件を満たすワイヤ電極線の試験結果
と同様に優れた結果を得ることができた。また、前記0
.49mのものから0.2履のものを得る工程において
伸線加工を熱処理の後に行った場合も同様の結果が得ら
れた。
A copper coated steel wire with a diameter of 0.196u and a coverage rate of 60% is used as a core material, and a zinc sulfate bath (1) containing the above additives contains sulfuric acid.
14 mol of FfA acid bent lead (aqueous solution containing 0.23 mol of FfA acid bent lead) and electrolytic galvanized to form a zinc layer with a thickness of 2 μm in which the additive is dispersed and the additive is attached to the surface layer.
Thereafter, a wire electrode wire obtained by heat treatment in the atmosphere for 1 hour using an oven and a wire electrode wire obtained by heat treatment by passing through a tube furnace set at 500 ° C. instead of an oven. Also, excellent results were obtained similar to the test results of the wire electrode line satisfying the conditions of the present invention in the above experimental example. In addition, the above 0
.. Similar results were obtained when wire drawing was performed after heat treatment in the process of obtaining 0.2 shoes from 49 m.

なお、大気中で熱処理するため当然亜鉛および銅の一部
が酸化し、酸化亜鉛および酸化銅が生成され、これらが
黒色被膜に共存しているものと思われる。
Note that since the heat treatment is performed in the atmosphere, naturally some of the zinc and copper are oxidized, producing zinc oxide and copper oxide, which are thought to coexist in the black film.

このことから明らかなように、本発明の製造方法におい
ては、添加剤を内部に分散し、かつ表R1にも付着させ
た亜鉛層を外周面に設番ノた銅被覆鋼線に熱処理を施し
て亜鉛層を、硫化亜鉛、硫化銅および炭素粒子が分散し
、かつ銅塊から表層に向って亜鉛濃度が高くなるような
濃度勾配がつけられた銅一亜鉛合金層に変化させ、かつ
硫化亜鉛。
As is clear from this, in the manufacturing method of the present invention, heat treatment is performed on a copper-coated steel wire having additives dispersed therein and a zinc layer, which is also adhered to Table R1, on the outer peripheral surface. The zinc layer is transformed into a copper-zinc alloy layer in which zinc sulfide, copper sulfide, and carbon particles are dispersed, and the concentration gradient is such that the zinc concentration increases from the copper lump toward the surface layer. .

硫化銅および炭素粒子よりなる黒色皮膜を生成させる工
程が優れた品質のワイヤ電極線を得るための重要な工程
であることがわかる。
It can be seen that the step of producing a black film consisting of copper sulfide and carbon particles is an important step to obtain a wire electrode wire of excellent quality.

「発明の効果」 以上説明したように、本発明によれば次のような優れた
効果を得ることができる。
"Effects of the Invention" As explained above, according to the present invention, the following excellent effects can be obtained.

■ 10〜70%の被覆率で銅を被覆した銅被覆鋼線を
芯材としたので、高い導電率を維持しながら、かつ高温
強度を高めることができる。づなわち、高電流が流れて
も、ジュール熱によるワイヤ電極線の昇温が少ないので
、さらに加工速度を早めるために、高電流を流してワイ
ヤ電極線が昇温しても、高温強度が高いので断線を防止
し、放電加工作業の効率を高めることができる。
(2) Since the core material is a copper-coated steel wire coated with copper at a coverage rate of 10 to 70%, high temperature strength can be increased while maintaining high electrical conductivity. In other words, even when a high current flows, the temperature of the wire electrode wire does not rise due to Joule heat, so in order to further increase the processing speed, even when a high current flows and the wire electrode wire heats up, the high temperature strength is reduced. Since it is high, wire breakage can be prevented and the efficiency of electrical discharge machining work can be increased.

■ 導電率の良好な銅被覆鋼線の外周面に0.1〜15
μlの厚さにわたって、硫化亜鉛、硫化銅および炭素粒
子を分散し、かつ銅塊から表層に向かって亜鉛濃度が高
くなるような濃度勾配がつ番ブられた銅一亜鉛合金層を
設【プたのr放電性能が向上し、かつ銅層の表面露出に
よる被加工物への銅の付着が防止されて、加工精度が高
められるとともに、加工速度の低下を防止することがで
きる。
■ 0.1 to 15 on the outer peripheral surface of copper-coated steel wire with good electrical conductivity.
A copper-zinc alloy layer was created in which zinc sulfide, copper sulfide, and carbon particles were dispersed over a thickness of 1 μl, and a concentration gradient was created so that the zinc concentration increased from the copper mass toward the surface layer. Furthermore, the discharge performance is improved, copper is prevented from adhering to the workpiece due to surface exposure of the copper layer, and machining accuracy is increased, and a decrease in machining speed can be prevented.

■ 最外層に0.1〜5μmの厚さにわたって、硫化亜
鉛、硫化銅および炭素粒子よりなる黒色皮膜を設けたの
で、初期放電において集中放電とならず、おだやかな万
遍なく分散された放電となり断線を防止することができ
る。
■ Since the outermost layer is coated with a black film made of zinc sulfide, copper sulfide and carbon particles over a thickness of 0.1 to 5 μm, the initial discharge does not become concentrated, but instead becomes a gentle, evenly dispersed discharge. Wire breakage can be prevented.

■ 素材的に伸線加工性が良好でかつ安価にwl造する
ことができる。つまり、本発明のワイヤ電極線は鋼、銅
、銅一亜鉛合金層、黒色被膜の特性が極めて良好に利用
、調整され、これらの相乗作用によって前記■■O■の
効果をも得るものである。
■ The material has good wire drawability and can be manufactured at low cost. In other words, in the wire electrode wire of the present invention, the characteristics of the steel, copper, copper-zinc alloy layer, and black coating are extremely well utilized and adjusted, and the synergistic effect of these allows the above-mentioned effects of ■■O■ to be obtained. .

■ 銅被覆鋼線の外周面に含イオウ有機化合物を含有す
る添加剤を内部に分散し、かつ表層に付着せしめた亜鉛
層を電気メッキで設け、ついで熱処理を施すことによっ
て、硫化亜銅、硫化銅および炭素粒子が分散し、かつ銅
塊から表層に向(プて亜鉛濃度が高くなるような銅一亜
鉛合金層と、これの外層に硫化亜銅、硫化銅および炭素
粒子からなる黒色皮膜が得られ、放電性能の安定したワ
イヤ電極線を得ることができる。
■ Additives containing sulfur-containing organic compounds are dispersed inside the outer circumferential surface of copper-coated steel wire, and a zinc layer is attached to the surface layer by electroplating, followed by heat treatment. A copper-zinc alloy layer in which copper and carbon particles are dispersed and the zinc concentration increases from the copper lump to the surface layer, and the outer layer of this is a black film consisting of copper sulfide, copper sulfide, and carbon particles. Thus, a wire electrode line with stable discharge performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のワイヤ放電加工用電極線の実施例を示
す横断面図、第2図は一般的なワイヤ放電加工法の概略
を説明する概略斜視図である。 11・・・・・・銅被覆鋼線、12・・・・・・銅一亜
鉛合金層、13・・・・・・Lに邑皮膜。 第1図 第2図
FIG. 1 is a cross-sectional view showing an embodiment of the electrode wire for wire electric discharge machining of the present invention, and FIG. 2 is a schematic perspective view illustrating the outline of a general wire electric discharge machining method. 11...Copper coated steel wire, 12...Copper-zinc alloy layer, 13...L has a coating. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)鋼線に10〜70%の被覆率で銅を被覆してなる
銅被覆鋼線が芯材とされ、この銅被覆鋼線には厚さ0.
1〜15μmの、硫化亜鉛、硫化銅および炭素粒子が分
散しかつ銅地から表層に向かって亜鉛濃度が高くなるよ
うな濃度勾配がつけられた銅一亜鉛合金層が設けられ、
さらにこの上に硫化亜鉛、硫化銅および炭素粒子からな
る0.1〜5μmの黒色被膜が設けられたことを特徴と
する放電加工用ワイヤ電極線。
(1) A copper-coated steel wire made by coating a steel wire with copper at a coverage rate of 10 to 70% is used as the core material, and this copper-coated steel wire has a thickness of 0.
A copper-zinc alloy layer in which zinc sulfide, copper sulfide and carbon particles of 1 to 15 μm are dispersed and has a concentration gradient such that the zinc concentration increases from the copper base to the surface layer is provided,
A wire electrode wire for electrical discharge machining, further comprising a black coating of 0.1 to 5 μm consisting of zinc sulfide, copper sulfide and carbon particles.
(2)鋼線に銅を被覆してなる銅被覆鋼線の外周面に、
含イオウ有機化合物を含有する添加剤を加えた亜鉛メッ
キ浴で電気亜鉛メッキ処理を施して、添加剤を内部に介
在させかつ表層に付着させた状態で亜鉛層を形成したの
ち、熱処理を施して硫化亜鉛、硫化銅および炭素粒子が
分散し、かつ銅地から表層に向かって亜鉛濃度が高くな
るような濃度勾配がつけられた銅一亜鉛合金層を生成せ
しめるとともに最外層に硫化亜鉛、硫化銅および炭素粒
子からなる黒色被膜を生成せしめることを特徴とする放
電加工用ワイヤ電極線の製造方法。
(2) On the outer peripheral surface of a copper-coated steel wire made by coating a steel wire with copper,
Electrogalvanizing is performed in a galvanizing bath containing an additive containing a sulfur-containing organic compound to form a zinc layer with the additive interposed inside and attached to the surface layer, and then heat treatment is performed. A copper-zinc alloy layer is formed in which zinc sulfide, copper sulfide and carbon particles are dispersed, and the concentration gradient increases from the copper base to the surface layer, and zinc sulfide and copper sulfide are formed in the outermost layer. and a method for producing a wire electrode wire for electrical discharge machining, the method comprising producing a black film consisting of carbon particles.
(3)前記熱処理の前工程あるいは後工程として伸線加
工を施すことを特徴とする特許請求の範囲第2項記載の
放電加工用ワイヤ電極線の製造方法。
(3) The method for manufacturing a wire electrode wire for electric discharge machining according to claim 2, characterized in that wire drawing is performed as a pre-process or post-process of the heat treatment.
JP9424885A 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof Granted JPS61252025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9424885A JPS61252025A (en) 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9424885A JPS61252025A (en) 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61252025A true JPS61252025A (en) 1986-11-10
JPH0249848B2 JPH0249848B2 (en) 1990-10-31

Family

ID=14105000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9424885A Granted JPS61252025A (en) 1985-05-01 1985-05-01 Electrode wire for wire electric discharge machining and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61252025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012523A1 (en) * 1988-06-17 1989-12-28 Tomalin Dandridge S Electrical discharge machining electrode
CN106738393A (en) * 2016-12-08 2017-05-31 中国电子科技集团公司第四十六研究所 A kind of method of use spark cutting technology fly-cutting CdS monocrystal
WO2020229046A1 (en) * 2019-05-14 2020-11-19 Berkenhoff Gmbh Wire electrode for wirecut electrical discharge machining with carbonaceous surface layer and the preparation methods thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114678A (en) * 1981-01-07 1982-07-16 Toyo Soda Mfg Co Ltd Cathode for electrolysis
JPS5941462A (en) * 1982-08-31 1984-03-07 Hitachi Cable Ltd Preparation of composite electrode wire for discharge machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114678A (en) * 1981-01-07 1982-07-16 Toyo Soda Mfg Co Ltd Cathode for electrolysis
JPS5941462A (en) * 1982-08-31 1984-03-07 Hitachi Cable Ltd Preparation of composite electrode wire for discharge machining

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012523A1 (en) * 1988-06-17 1989-12-28 Tomalin Dandridge S Electrical discharge machining electrode
US4988552A (en) * 1988-06-17 1991-01-29 Composite Concepts Company Electrical discharge machining electrode
CN106738393A (en) * 2016-12-08 2017-05-31 中国电子科技集团公司第四十六研究所 A kind of method of use spark cutting technology fly-cutting CdS monocrystal
WO2020229046A1 (en) * 2019-05-14 2020-11-19 Berkenhoff Gmbh Wire electrode for wirecut electrical discharge machining with carbonaceous surface layer and the preparation methods thereof
CN114786857A (en) * 2019-05-14 2022-07-22 贝肯霍夫公司 Electrode wire with carbon-containing surface layer for wire-electrode cutting discharge machining and preparation method thereof

Also Published As

Publication number Publication date
JPH0249848B2 (en) 1990-10-31

Similar Documents

Publication Publication Date Title
JP3718529B2 (en) Method for producing porous electrode wire for electric discharge machining
KR19990022736A (en) Wire manufacturing method
JPS61136733A (en) Electrode wire for wire-cut spark erosion work and preparation thereof
JPS61252025A (en) Electrode wire for wire electric discharge machining and manufacture thereof
JPH0755407B2 (en) Method for manufacturing electrode wire for wire electric discharge machining
JP2644911B2 (en) Wire-type electrode for electric discharge machining and method of manufacturing the same
JPH0471646B2 (en)
JPS61117021A (en) Electrode wire for wire-cut electric discharge machining and manufacturing method thereof
JPS62246425A (en) Electrode wire for wire cut electric discharge machining and manufacture method therefor
JPS61109623A (en) Electrode wire for wire electric spark spark machining and its manufacturing method
JPS61270028A (en) Electrode wire for wire electric discharge machining
JPS61241027A (en) Wire electric discharge machining electrode wire and its manufacture
JPH07108488B2 (en) Method for manufacturing electrode wire for wire electric discharge machining
JPS62255015A (en) Electrode wire for wire electric discharge and method for manufacturing thereof
JP2006159304A (en) Electrode wire for wire electric discharge machining and its manufacturing method
JPS61284322A (en) Electrode wire for wire electric discharge machining
KR100485645B1 (en) The electrode wire for electrical discharge machining, and manufacturing method of it
JPS61284321A (en) Electrode wire for wire electric discharge machining
JPH01140922A (en) Electrode wire for wire electric discharging machining
JPS5921946B2 (en) Manufacturing method of tin or solder-plated wire
JPS61197126A (en) Electrode wire for wire electric discharge machining
JPH0261076A (en) Production of electrode wire for electric discharge machining
JPS59156625A (en) Electrode wire for wire cut electric discharge machining
JPH0257688A (en) Electrode wire for electric discharge machining and production thereof
JP2001328028A (en) Electrode wire for wire cut electronic discharge machining