JPH09149737A - Judgment of optimal amount of irrigation, apparatus for informing optimal amount of irrigation and irrigation controller - Google Patents

Judgment of optimal amount of irrigation, apparatus for informing optimal amount of irrigation and irrigation controller

Info

Publication number
JPH09149737A
JPH09149737A JP7309526A JP30952695A JPH09149737A JP H09149737 A JPH09149737 A JP H09149737A JP 7309526 A JP7309526 A JP 7309526A JP 30952695 A JP30952695 A JP 30952695A JP H09149737 A JPH09149737 A JP H09149737A
Authority
JP
Japan
Prior art keywords
irrigation
temperature
soil
ground
ground temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7309526A
Other languages
Japanese (ja)
Other versions
JP3003923B2 (en
Inventor
Yasushi Kono
靖司 河野
Yugo Nishiyama
雄悟 西山
Shinji Fujioka
信治 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP7309526A priority Critical patent/JP3003923B2/en
Publication of JPH09149737A publication Critical patent/JPH09149737A/en
Application granted granted Critical
Publication of JP3003923B2 publication Critical patent/JP3003923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Greenhouses (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge that the amount of irrigation attains the optimal one so as not to deteriorate the growth of the germination ratio after seeding or growth of a plant when irrigating a field in a structure or the plant during the cultivation thereof. SOLUTION: When an operating means 103 is operated, the ground temperature just before irrigation is sensed on a signal from temperature sensors 31 to 3n installed in soil of a field in a structure with a sensing means 100a-1. The ground temperature after starting the irrigation is sensed on a signal from the temperature sensors with a sensing means 100a-2. When a sensing means 100a-3 for lowering of temperature senses that the ground temperature after starting the irrigation is lowered from that just before the irrigation by a prescribed value or above, an informing means 105 informs that the optimal amount of irrigation attains. Water supply is started for irrigation with a water supply controlling means 100a-4 by operating the operating means 103 and stopped by lowering the ground temperature by the prescribed value or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、植物を栽培するた
めの雨除けハウスやガラス温室などの施設内圃場に播種
後或いは植物の栽培途中に灌水した際に最適灌水量とな
ったと判定する最適灌水量判定方法、最適灌水量となっ
たことを報知する最適灌水量報知装置、及び最適灌水量
となるように灌水を制御する灌水制御装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is optimum for determining that the optimum watering amount is obtained when watering is carried out after sowing in a field in a facility such as a rain shelter house for growing plants or a glass greenhouse or during planting. The present invention relates to an irrigation amount determination method, an optimum irrigation amount notification device that notifies that the irrigation amount has reached an optimum value, and an irrigation control device that controls irrigation so that the optimum irrigation amount is achieved.

【0002】[0002]

【従来の技術】一般に、圃場などで植物を栽培すると
き、灌水量が適切でないと播種後の発芽率や植物の生育
が悪くなる。
2. Description of the Related Art Generally, when a plant is cultivated in a field or the like, if the amount of watering is not appropriate, the germination rate after planting and the growth of the plant are deteriorated.

【0003】従来、圃場への灌水は、農業従事者の経験
と勘によるところが大きかった。灌水量は農家の勘や経
験により、栽培環境の状態を観察して適当と思われる灌
水量を灌水するか、或いは、それぞれ個別に灌水量が決
定されて、その一定分量を灌水しているに過ぎなかっ
た。前者のような灌水量の決定方法では誤差が大きく、
またたとえ最適な灌水量が常に得られるようになったと
しても、その域に到達するにはかなりの熟練が必要とな
る。また、後者のような方法では、栽培環境の変化に応
じて植物や培土にとって最適な灌水量は当然変化してゆ
くのであるから、灌水時の気温や湿度、圃場に残留して
いる水分の量、圃場の耕耘状況、圃場土壌の種類、肥料
の量、日照時間が異なっている場合、最適な灌水量が得
られないことになる。
Conventionally, irrigation of a farm field has largely depended on the experience and intuition of farmers. Depending on the intuition and experience of the farmer, the irrigation amount can be determined by observing the condition of the cultivation environment and irrigating the appropriate irrigation amount, or the irrigation amount can be determined individually and irrigated a fixed amount. It didn't pass. There is a large error in the former method of determining irrigation volume,
Even if the optimum amount of irrigation can always be obtained, considerable skill is required to reach the area. Also, in the latter method, the optimal watering amount for plants and soil will naturally change according to changes in the cultivation environment, so the temperature and humidity during watering, and the amount of water remaining in the field. If the tillage condition of the field, the type of soil in the field, the amount of fertilizer, and the sunshine duration are different, the optimum watering amount cannot be obtained.

【0004】しかし近年では、勘や経験によらずに最適
な灌水量を得る方法として、水分計を利用する方法があ
る。また、この方法により土壌水分を直接測定し灌水制
御を実施しようとするシステムが出現し始めている。土
壌水分測定には水分計を用いるが、水分計には赤外線
を利用した赤外線式、熱センサプローブによる比熱
式、土壌電気抵抗を測定する電気伝導式、浸透圧を
応用したテンションメータ式の4種類の測定原理があ
る。
However, in recent years, there is a method using a moisture meter as a method for obtaining an optimum amount of irrigation regardless of intuition or experience. In addition, a system that directly measures soil moisture by this method to implement irrigation control has begun to appear. Although a moisture meter is used to measure soil moisture, there are four types of moisture meters: an infrared type that uses infrared rays, a specific heat type that uses a thermal sensor probe, an electrical conduction type that measures soil electrical resistance, and a tension meter type that applies osmotic pressure. There is a measurement principle of.

【0005】[0005]

【発明が解決しようとする課題】一見、土壌水分による
制御は最適のようであるが、土壌水分測定の面からの問
題も少なくない。は土壌表面の水分状態しか把握する
ことができない。は測定に時間を要すると共にリアル
タイムの出力が得られないため制御には不適である。
は土壌中の肥料分の濃度の影響を受けやすい。は地表
面よりかなり深い位置の水分しか測定できない。これら
を総合すると、何らかの土壌水分は測定して灌水制御を
行っているが、測定した土壌水分自体植物に有効なもの
であるかが疑問である。また土壌水分は、圃場内でばら
つきの大きい物理量であるため、正確な測定を行うには
多点計測が必要となるが、水分センサ自身非常に高価で
あり、経済面から実際的でない。
At first glance, control by soil moisture seems optimal, but there are many problems in terms of soil moisture measurement. Can only understand the water condition on the soil surface. Is not suitable for control because it takes time for measurement and real-time output cannot be obtained.
Is susceptible to the concentration of fertilizer in soil. Can only measure water at a position considerably deeper than the ground surface. In summary, although some soil moisture is measured to control irrigation, it is doubtful whether the measured soil moisture itself is effective for plants. In addition, since soil moisture is a physical quantity that varies widely in the field, it is necessary to perform multipoint measurement for accurate measurement, but the moisture sensor itself is very expensive, and it is not economically practical.

【0006】これらのうち植物にとって最適な土壌の水
分状態が一目で見れる水分計はのテンションメータ式
のみであり、他の水分計はただ単位土壌中の含水率を求
めるだけで、環境が異なるとその環境における最適な植
物栽培の灌水量が把握できなくなる。テンションメータ
式は植物が利用できる水分量を測定する水分計なので環
境の変化に関わらず、常にその環境における植物にとっ
て最適な灌水量を知ることができる。しかし、センサ部
をかなり深く埋める(浅くて15cm)必要があるため、
播種時や根域が浅い植物の栽培には向かない。また、周
囲の土壌と馴染んで正確な測定値を指し示すには最低1
週間は必要であるため、栽培期間の短い植物の栽培にも
不向きである。
Among these, the only moisture meter that can see the optimum soil moisture condition for plants at a glance is the tension meter type, and other moisture meters simply find the water content in a unit soil and the environment is different. It becomes impossible to grasp the optimal water supply for plant cultivation in that environment. Since the tension meter method is a moisture meter that measures the amount of water that can be used by plants, regardless of changes in the environment, it is possible to always know the optimal watering amount for plants in that environment. However, since it is necessary to bury the sensor part quite deeply (shallow, 15 cm),
Not suitable for sowing or cultivation of plants with shallow root areas. In addition, it is at least 1 to indicate an accurate measurement value by blending with the surrounding soil.
Since it requires weeks, it is not suitable for cultivating plants with a short cultivation period.

【0007】よって本発明は、上述した従来の問題に鑑
み、植物を栽培するための雨除けハウスやガラス温室な
どの施設内圃場に播種後或いは植物の栽培途中に灌水し
た際に、播種後の発芽率や植物の生育が悪くならないよ
う最適灌水量となったことを判定する最適灌水量判定方
法を提供することを課題としている。
Therefore, in view of the above-mentioned conventional problems, the present invention provides a method for sowing after seeding in a field in a facility such as a rain shelter house for cultivating a plant or a glass greenhouse, or after watering during cultivating a plant. It is an object of the present invention to provide an optimal watering amount determination method for determining that the optimal watering amount has been achieved so that the germination rate and the growth of plants are not deteriorated.

【0008】本発明はまた、上述した従来の問題に鑑
み、植物を栽培するための雨除けハウスやガラス温室な
どの施設内圃場に播種後或いは植物の栽培途中に灌水し
た際に、播種後の発芽率や植物の生育が悪くならないよ
う最適灌水量となったことを報知する最適灌水量報知装
置を提供することを課題としている。
In view of the above-mentioned conventional problems, the present invention also provides a method for sowing after seeding in a field in a facility such as a rain shelter house for cultivating plants or a glass greenhouse, or when irrigating during cultivating plants. An object of the present invention is to provide an optimum watering amount notification device that notifies that the optimum watering amount has been reached so that the germination rate and the growth of plants are not deteriorated.

【0009】本発明は更に、上述した従来の問題に鑑
み、植物を栽培するための雨除けハウスやガラス温室な
どの施設内圃場に播種後或いは植物の栽培途中に灌水し
た際に、播種後の発芽率や植物の生育が悪くならないよ
う最適灌水量となるように灌水を制御する灌水制御装置
を提供することを課題としている。
In view of the above-mentioned conventional problems, the present invention further provides a method for sowing after sowing in a field in a facility such as a rain shelter house for cultivating a plant or a glass greenhouse, or when irrigating during cultivating a plant. An object of the present invention is to provide an irrigation control device that controls irrigation so that the germination rate and the growth of plants are not deteriorated so that the optimal irrigation amount is achieved.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
本発明により成された請求項1記載の最適灌水量判定方
法は、施設内圃場への灌水の開始からの地温の変化を監
視し、地温が灌水開始時の温度から所定温度低下したと
き最適灌水量となったと判定することを特徴としてい
る。
The optimum irrigation amount determination method according to claim 1, which is made according to the present invention to solve the above problems, monitors a change in soil temperature from the start of irrigation to a field in a facility, The feature is that it is determined that the optimum irrigation amount has been reached when the ground temperature has dropped by a predetermined temperature from the temperature at the start of irrigation.

【0011】上記構成において、施設内圃場への灌水を
開始してからの地温の変化を監視し、地温が灌水開始時
の温度から所定温度低下したとき最適灌水量となったと
判定しているので、この判定した最適灌水量となった時
点で灌水を止めることにより、最適の灌水を行うことが
できる。
In the above structure, the change in the soil temperature after the start of irrigation to the field in the facility is monitored, and it is determined that the optimum irrigation amount has been reached when the soil temperature drops from the temperature at the start of irrigation by a predetermined temperature. By stopping the irrigation when the determined optimum irrigation amount is reached, the optimum irrigation can be performed.

【0012】上記課題を解決するため本発明により成さ
れた請求項2記載の最適灌水量報知装置は、図1(a)
の基本構成図に示すように、施設内圃場の土壌の所定の
深度に設置され地温を検知して地温検知信号を出力する
温度センサ31〜3nと、灌水を開始させるに当たって操
作される操作手段103と、該操作手段の操作に応じて
前記温度センサからの地温検知信号により灌水直前の地
温を検出する灌水開始時地温検出手段100a−1と、
前記温度センサからの地温検知信号により灌水開始後の
地温を検出する灌水開始後地温検出手段100a−2
と、該灌水開始後地温検出手段により検出した灌水開始
後の地温が前記灌水直前の地温より所定値以上低下した
ことを検出する温度低下検出手段100a−3と、該温
度低下検出手段による検出に応じて最適灌水量となった
ことを報知する報知手段105とを備えることを特徴と
している。
In order to solve the above-mentioned problems, the optimum irrigation amount informing device according to the present invention, which is made according to the present invention, is shown in FIG. 1 (a).
As shown in the basic configuration diagram of 1., temperature sensors 3 1 to 3 n that are installed at a predetermined depth of soil in the field in the facility and that detect the ground temperature and output a ground temperature detection signal, and the operation that is performed when starting the irrigation Means 103, and irrigation start time ground temperature detecting means 100a-1 for detecting the ground temperature immediately before irrigation by the ground temperature detection signal from the temperature sensor in response to the operation of the operating means,
Post-irrigation ground temperature detecting means 100a-2 for detecting the ground temperature after the start of irrigation based on the ground temperature detection signal from the temperature sensor.
And a temperature drop detecting means 100a-3 for detecting that the ground temperature after the start of irrigation detected by the ground temperature detecting means after the start of irrigation is lower than the ground temperature immediately before the irrigation by a predetermined value or more, and the detection by the temperature decrease detecting means. It is characterized by including an informing means 105 for informing that the optimum irrigation amount has been reached.

【0013】上記構成において、灌水を開始させるに当
たって操作手段103を操作すると、この操作に応じて
灌水開始時地温検出手段100a−1が、施設内圃場の
土壌の所定の深度に設置された温度センサ31〜3nから
の地温検知信号により灌水直前の地温を検出する。灌水
開始後地温検出手段100a−2が、温度センサからの
地温検知信号により灌水開始後の地温を検出し、この灌
水開始後の地温が灌水直前の地温より所定値以上低下し
たことを温度低下検出手段100a−3が検出すると、
報知手段105が最適灌水量となったことを報知するの
で、この報知により最適灌水量となったと知った時点で
灌水を止めることにより、最適の灌水を行うことができ
る。
In the above structure, when the operation means 103 is operated to start irrigation, the irrigation start time ground temperature detecting means 100a-1 is responsive to the operation and the temperature sensor is installed at a predetermined depth of soil in the field in the facility. The ground temperature immediately before irrigation is detected by the ground temperature detection signals from 3 1 to 3 n . The post-irrigation ground temperature detecting means 100a-2 detects the ground temperature after the start of irrigation by the ground temperature detection signal from the temperature sensor, and detects that the ground temperature after the start of irrigation is lower than the ground temperature immediately before irrigation by a predetermined value or more. When the means 100a-3 detects,
Since the notification means 105 notifies that the optimal irrigation amount has been reached, optimal irrigation can be performed by stopping the irrigation at the time when it is known that the optimal irrigation amount has been reached by this notification.

【0014】上記課題を解決するため本発明により成さ
れた請求項3記載の灌水制御装置は、図1(b)の基本
構成図に示すように、施設内圃場の土壌の所定の深度に
設置され地温を検知して地温検知信号を出力する温度セ
ンサ31〜3nと、灌水を開始させるに当たって操作され
る操作手段103と、該操作手段の操作に応じて前記温
度センサからの地温検知信号により灌水直前の地温を検
出する灌水開始時地温検出手段100a−1と、前記温
度センサからの地温検知信号により灌水開始後の地温を
検出する灌水開始後地温検出手段100a−2と、該灌
水開始後地温検出手段により検出した灌水開始後の地温
が前記灌水直前の地温より所定値以上低下したことを検
出する温度低下検出手段100a−3と、前記操作手段
の操作に応じて灌水のための給水を開始させ、前記温度
低下検出手段による検出に応じて給水を停止させて灌水
を終了させる給水制御手段100a−4とを備えること
を特徴としている。
In order to solve the above-mentioned problems, the irrigation control device according to the third aspect of the present invention is installed at a predetermined depth of soil in a field in a facility, as shown in the basic configuration diagram of FIG. 1 (b). Temperature sensors 3 1 to 3 n that detect the ground temperature and output a ground temperature detection signal, operation means 103 that is operated when starting watering, and a ground temperature detection signal from the temperature sensor according to the operation of the operation means. Irrigation start time ground temperature detecting means 100a-1 for detecting the ground temperature immediately before irrigation, the post irrigation start temperature detection means 100a-2 for detecting the ground temperature after irrigation start by the ground temperature detection signal from the temperature sensor, and the irrigation start Depending on the operation of the temperature drop detecting means 100a-3 for detecting that the ground temperature after the start of irrigation detected by the rear ground temperature detecting means is lower than the ground temperature immediately before the irrigation by a predetermined value or more, and the operation means. Water was started for water, is characterized in that it comprises a water supply control means 100a-4 to terminate irrigation is stopped the water supply in response to detection by the temperature decrease detector.

【0015】上記構成において、灌水を開始させるに当
たって操作手段103を操作すると、給水制御手段10
0a−4が灌水のための給水を開始させる。また、この
操作手段の操作に応じて灌水開始時地温検出手段100
a−1が、施設内圃場の土壌の所定の深度に設置された
温度センサ31〜3nからの地温検知信号により灌水直前
の地温を検出する。給水の開始による灌水が開始された
後、灌水開始後地温検出手段100a−2が、温度セン
サからの地温検知信号により灌水開始後の地温を検出
し、この灌水開始後の地温が灌水直前の地温より所定値
以上低下したことを温度低下検出手段100a−3が検
出すると、給水制御手段100a−4が給水を停止させ
て灌水を終了させるので、最適灌水量となった時点で給
水が自動的に止められることにより、最適の灌水を自動
的に行うことができる。
In the above structure, when the operation means 103 is operated to start watering, the water supply control means 10
0a-4 starts watering for irrigation. Further, according to the operation of this operation means, the water temperature detection means 100 at the start of irrigation
a-1 detects the ground temperature immediately before irrigation by the ground temperature detection signals from the temperature sensors 3 1 to 3 n installed at a predetermined depth of soil in the field in the facility. After irrigation is started by the start of water supply, the post-irrigation ground temperature detecting means 100a-2 detects the ground temperature after irrigation start by the ground temperature detection signal from the temperature sensor, and the ground temperature after irrigation start is the ground temperature immediately before irrigation. When the temperature drop detecting means 100a-3 detects that the temperature has dropped by a predetermined value or more, the water supply control means 100a-4 stops the water supply and terminates the irrigation, so that the water supply is automatically performed when the optimum irrigation amount is reached. By being stopped, optimal watering can be automatically performed.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図2は本発明の最適灌水量判定方
法により判定された最適灌水量の灌水が行われる雨除け
ハウスやガラス温室などの施設内部の灌水設備の一例を
示し、ハウス1の天井にハウスの長手方向に配した配管
2a,2bに多数の灌水ノズル21〜2nが設けられてい
る。なお、施設内部の灌水設備は、灌水ノズル、灌水ホ
ース、灌水チューブなどによりハウス天井方向から土壌
表面に対してほぼ均一に灌水できるものであれば制限は
なく、図示以外のものであってもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an example of irrigation equipment inside a facility such as a rain shelter house or a glass greenhouse where irrigation of the optimum irrigation amount determined by the optimum irrigation amount determination method of the present invention is performed. numerous irrigation nozzles 2 1 to 2 n are provided in the pipe 2a, 2b which arranged to. The irrigation equipment inside the facility is not limited as long as it can irrigate the soil surface substantially uniformly from the house ceiling direction with a irrigation nozzle, an irrigation hose, an irrigation tube, etc. .

【0017】上述の灌水設備をしたハウス1内の土壌中
には、ハウスの中央及び両側の少なくとも3カ所に地温
測定用のサーミスタ、測温抵抗体などの温度センサ3
が、深さを播種の深さ10mm〜20mmに略等しくなるよ
うに設置されている。この温度センサ3によって灌水直
前の地温を測定してから灌水を行い、地温が所定温度低
下したら灌水を止める。
In the soil in the house 1 equipped with the above-mentioned irrigation equipment, temperature sensors 3 such as a thermistor for temperature measurement and a resistance temperature detector are provided at at least three places on the center and both sides of the house.
Are installed so that the depth is approximately equal to the seeding depth of 10 mm to 20 mm. The temperature sensor 3 measures the soil temperature immediately before the irrigation, and then the irrigation is performed. When the soil temperature drops by a predetermined temperature, the irrigation is stopped.

【0018】上記所定温度は、土壌の種類が変化しても
変化しにくい値である土壌水分を示すpF値で2前後に
対応する温度2°C±0.5°Cに設定される。植物に
好適な水分状態は、植物の種類によって若干異なるが、
一般にpF値で1.8〜2.2の範囲内にある。しか
し、所定温度は、植物に悪影響を与えるpF1以下又は
pF2.8以上に対応する温度でなければ、上記範囲
1.8〜2.2に対応する温度でなくてもよい。因み
に、灌水を開始してから止めるまでの地温低下温度は、
ホウレンソウでは2°Cで、2°C前後低下したら灌水
を止める。
The above-mentioned predetermined temperature is set to a temperature of 2 ° C. ± 0.5 ° C., which is a pF value indicating soil moisture which is a value that hardly changes even if the type of soil changes, and which corresponds to around 2. The suitable water condition for plants varies slightly depending on the type of plant,
Generally, the pF value is in the range of 1.8 to 2.2. However, the predetermined temperature does not have to be a temperature corresponding to the above range 1.8 to 2.2 unless it is a temperature corresponding to pF1 or less or pF2.8 or more that adversely affects plants. By the way, the soil temperature decrease temperature from the start of irrigation to the stop is
For spinach, stop irrigation at 2 ° C and drop around 2 ° C.

【0019】灌水により地温が2°C低下した場合、土
壌水分はテンションメータの測定値でpF2前後になっ
ている。この値は植物が生育するのに最適な値であり、
高い発芽率を一定して得られるようになると共に、構成
もきわめて簡単である。
When the soil temperature is lowered by 2 ° C. by irrigation, the soil water content is around pF2 as measured by the tension meter. This value is the optimum value for plants to grow,
A high germination rate can be obtained constantly, and the configuration is extremely simple.

【0020】(実施例1)約1アールの面積を有するビ
ニールハウス(開口5.4m、奥行き18m)の砂質土
壌の圃場に、噴霧径1.5mの灌水ノズルを48本(4
本×12本)配列し、ハウス天井方向から土壌表面に対
してほぼ均一に灌水できるように灌水設備を設置した。
また、土壌中には地温測定用に温度センサとして熱電対
を10本任意の位置に深さ10mm〜20mmになるよ
うに設置すると共に、その近傍に土壌水分測定用テンシ
ョンメータを設置した。テンションメータによる土壌水
分測定位置は、地表面より20cm前後の深さにある。
(Embodiment 1) Forty-eight irrigation nozzles having a spray diameter of 1.5 m (4) are used in a sandy soil field of a vinyl house (opening 5.4 m, depth 18 m) having an area of about 1 are.
(12 × 12) are arranged, and irrigation equipment is installed so that water can be almost uniformly irrigated from the ceiling direction of the house to the soil surface.
In addition, ten thermocouples as temperature sensors for soil temperature measurement were installed in the soil at arbitrary positions to a depth of 10 mm to 20 mm, and a tension meter for soil moisture measurement was installed in the vicinity thereof. The soil moisture measurement position by the tension meter is about 20 cm deep from the ground surface.

【0021】この系を用いて灌水ノズルから灌水を行っ
た際の地温及び土壌水分の測定を行った結果を表1に示
す。なお、地温及び土壌水分は、計測地点10点のデー
タの平均を用いた。表中、圃場地温は測定開始時の地温
22°Cからの減少分で示した。また、土壌水分を示す
pF値は、土壌の種類が変化しても変化しにくい値であ
り、植物体にとっては、pF2前後(1.8〜2.2)
が好適水分状態である。
Table 1 shows the results of measurement of soil temperature and soil moisture when irrigation was carried out from the irrigation nozzle using this system. The ground temperature and soil moisture used were averages of data at 10 measurement points. In the table, the field soil temperature is shown by the decrease from the soil temperature 22 ° C at the start of measurement. In addition, the pF value indicating soil moisture is a value that does not easily change even when the type of soil changes, and for plants, it is around pF2 (1.8 to 2.2).
Is a suitable moisture state.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例2)土壌が火山灰土系土壌である
ことを除いて実施例1と同一の系において、地温及び土
壌水分の測定を行 った結果を表2に示す。なお、表
中、圃場地温は測定開始時の地温19°Cからの減少分
で示した。
Example 2 Table 2 shows the results of soil temperature and soil moisture measurements in the same system as in Example 1 except that the soil was volcanic ash soil. In the table, the field soil temperature is indicated by the decrease from the soil temperature 19 ° C at the start of measurement.

【0024】[0024]

【表2】 [Table 2]

【0025】(実施例3)土壌が粘土系土壌であること
を除いて実施例1と同一の系において、地温及び土壌水
分の測定を行 った結果を表3に示す。なお、表中、圃
場地温は測定開始時の地温24°Cからの減少分で示し
た。
(Example 3) Table 3 shows the results of soil temperature and soil moisture measurements in the same system as in Example 1 except that the soil was clay-based soil. In the table, the field soil temperature is indicated by the decrease from the soil temperature 24 ° C at the start of measurement.

【0026】[0026]

【表3】 [Table 3]

【0027】土壌の種類、外気温、天候に関係なく地温
の減少が、2°C程度であれば植物体に対して好適水分
環境が整っていることが分かる。しかし、水分測定用テ
ンションメータは深い位置に入っているため、根圏近傍
ではもう少し好適水分状態に達していると予想される。
よって、圃場地温減少分2°Cとなる実施例1の75
分、実施例2の90〜105分、そして実施例3の12
0分で最適灌水状態が得られる。
It can be seen that a suitable water environment for the plant is established if the decrease in soil temperature is about 2 ° C. regardless of the type of soil, the outside temperature, and the weather. However, since the tension meter for measuring water content is located at a deep position, it is expected that the water content in the vicinity of the rhizosphere has reached a more suitable condition.
Therefore, the field soil temperature decrease of 2 ° C. is 75 in Example 1.
Minutes, 90-105 minutes of Example 2, and 12 of Example 3.
Optimal watering is obtained at 0 minutes.

【0028】(実施例4)実施例2のビニールハウスを
2棟用意し、株間5cm、条間15cmになるように人
参コート種子を12000粒播種機により各ビニールハ
ウスに播種した。なお、コート種子を使用したのは、土
壌が低水分状態では発芽しにくく、その性質を利用する
ためである。播種の際の深度は1.5cmになるように
し、播種後の鎮圧は播種機の鎮圧輪のみで行った。播種
後の一方のハウスには、地温が2°C減少するまで灌水
ノズルによる灌水を実施し、試験区1とした。地温測定
は実施例2と同様に10点で行った。他方のハウスに
は、実施例2で好適水分に到達した灌水時間の90分だ
け灌水ノズルによる灌水を実施し、試験区2とした。灌
水処理後両ビニールハウスとも一切灌水を行わず、各試
験区について試験開始後同一時刻に発芽率をそれぞれ調
査した結果を表4に示す。なお、灌水時のハウス外気温
は31°Cで、ハウス内気温は36°Cであった。ビニ
ールハウスの側窓の開閉などの管理は両試験区とも同一
の条件で行った。
(Example 4) Two vinyl greenhouses of Example 2 were prepared, and ginseng-coated seeds were sown in each vinyl greenhouse with a 12000 seeder so that the distance between the plants was 5 cm and the distance between the plants was 15 cm. In addition, the reason why the coated seeds are used is that the soil is difficult to germinate in a low water state and the property is utilized. The depth at the time of sowing was set to 1.5 cm, and the squeezing after sowing was performed only by the squeezing wheel of the sowing machine. One of the houses after sowing was subjected to irrigation with a irrigation nozzle until the soil temperature decreased by 2 ° C, and this was designated as test section 1. The soil temperature was measured at 10 points as in Example 2. The other house was subjected to irrigation with the irrigation nozzle for 90 minutes, which is the irrigation time when the suitable water content was reached in Example 2, and was designated as test section 2. Table 4 shows the results of investigating the germination rate of each test plot at the same time after the start of the test, without performing any irrigation on both vinyl houses after the irrigation treatment. The outside air temperature of the house during irrigation was 31 ° C, and the inside temperature of the house was 36 ° C. Control such as opening and closing the side windows of the vinyl house was performed under the same conditions in both test sections.

【0029】[0029]

【表4】 [Table 4]

【0030】なお、出芽試験時の温度が高かったため、
試験区2では土壌水分不足により出芽不良が生じたと予
想される。この表4からは、他の条件下で最適灌水時間
とされた場合であっても条件が異なると最適灌水時間と
はならないが、地温の所定温度の低下によって灌水量を
決定すると良好な出芽率が得られることが分かる。
Since the temperature during the germination test was high,
In test area 2, it is expected that poor emergence occurred due to lack of soil water content. From this Table 4, even if the optimum irrigation time is set under other conditions, the optimum irrigation time will not be achieved if the conditions are different, but if the irrigation amount is determined by lowering the predetermined temperature of the soil temperature, a good emergence rate is obtained. It turns out that

【0031】(実施例5)地温測定用に温度センサを3
本使用している以外、実施例1と同様のハウス内圃場を
用いて地温が2°C減少するまで灌水ノズルによる灌水
を実施した際の各種土壌における土壌水分の測定を行っ
た結果を示すと表5のようになる。灌水中止タイミング
を与えられる地温は、3点の計測値の平均を用い、土壌
水分も3点のデータの平均を用いた。なお、試験開始時
のハウス外気温は27°C、ハウス内気温は33°Cで
試験終了後まで、ほぼ変化はなかった。また、各ビニー
ルハウス内の土壌初期水分は、pF2.8であった。
(Embodiment 5) Three temperature sensors are used for ground temperature measurement.
Except for using this, using the same in-house field as in Example 1 shows the results of measuring soil water content in various soils when irrigation was performed with a irrigation nozzle until the soil temperature decreased by 2 ° C. It becomes like Table 5. For the soil temperature to which the timing of stopping the irrigation was applied, the average of the measured values of 3 points was used, and for the soil moisture, the average of the data of 3 points was used. The outside temperature of the house at the start of the test was 27 ° C and the inside temperature of the house was 33 ° C, and there was almost no change until the end of the test. The initial moisture content of soil in each greenhouse was pF2.8.

【0032】[0032]

【表5】 [Table 5]

【0033】(実施例6)実施例5に示した圃場土壌
が、火山灰土壌のビニールハウスを2棟用意し、株間5
cm、条間15cmになるようにホウレンソウコート種
子(コート種子の発芽は、土壌水分の影響を受けやすい
性質を利用した。)を12000粒播種機によりそれぞ
れのビニールハウスに播種した。播種の際の深度は1.
5cmになるように設定し、播種後の鎮圧は播種後の鎮
圧輪のみで行った。
(Example 6) The field soil shown in Example 5 was prepared with two greenhouses of volcanic ash soil, and the inter-strain ratio was 5
spinach-coated seeds (the germination of the coated seeds was apt to be affected by soil moisture) were sowed in each vinyl house with a 12000 seeding machine so that the length of the spinach was 15 cm and the distance between them was 15 cm. The depth of sowing is 1.
The pressure was set to 5 cm, and the squeezing after seeding was performed only by the squeeze wheel after seeding.

【0034】播種後一方のハウスには、地温が2°C減
少すると灌水を停止する制御機構を付加した灌水装置で
灌水した。地温の測定値は、3本の温度センサにより行
った(試験区1)。他方のハウスには、実施例5で好適
水分に到達した灌水時間(100分)だけ灌水ノズルに
よる灌水を実施した(試験区2)。この灌水処理後両ビ
ニールハウスとも一切灌水は行わなかった。因みに、灌
水時のハウス外気温は23°Cで、ハウス内気温は28
°Cであった。ビニールハウスの側窓の開閉などの管理
は、2棟とも同様の条件で行った。また、試験開始後同
一時刻にそれぞれの出芽数の調査を行った結果を表6に
示す。
After seeding, one of the houses was irrigated with a irrigation system equipped with a control mechanism for stopping irrigation when the soil temperature decreased by 2 ° C. The ground temperature was measured with three temperature sensors (Test Section 1). The other house was subjected to irrigation with the irrigation nozzle for the irrigation time (100 minutes) when the water content reached the suitable level in Example 5 (Test Group 2). After this irrigation treatment, neither vinyl house was irrigated at all. By the way, the outside temperature of the house during irrigation is 23 ° C and the inside temperature of the house is 28 ° C.
° C. The opening and closing of the side windows of the vinyl house were managed under the same conditions for both buildings. In addition, Table 6 shows the results of investigating the number of germinated seeds at the same time after the start of the test.

【0035】[0035]

【表6】 [Table 6]

【0036】試験区2では、実施例5の場合より温度が
低かったため、加湿状態では発芽不良を起こすホウレン
ソウに不適な土壌水分環境となった。また、出芽率の減
少は、出芽後過水分により立ち枯れ状態になったからで
ある。
Since the temperature in Test Group 2 was lower than that in Example 5, the soil moisture environment was unsuitable for spinach which causes poor germination in the humidified state. Further, the decrease in the emergence rate is because the seeds became dead due to excessive water content after emergence.

【0037】次に、上述した最適灌水量判定方法により
判定した最適灌水量となったことを報知する本発明によ
る最適灌水量報知装置の一実施形態を図3を参照して説
明する。同図において、装置は予め定めたプログラムに
従って動作するCPU100a、プログラムを格納した
ROM100b及び各種のデータを格納するエリアの他
作業エリアを有するRAM100cを内蔵したμCOM
100を有する。
Next, an embodiment of the optimum irrigation amount notification device according to the present invention for notifying that the optimum irrigation amount has been determined by the above-described optimum irrigation amount determination method will be described with reference to FIG. In the figure, the apparatus has a μCOM having a CPU 100a that operates according to a predetermined program, a ROM 100b that stores the program, and a RAM 100c that has a work area other than the area for storing various data.
Has 100.

【0038】μCOM100の入力には、ハウス内の圃
場の土壌中に種子の播種深度と同程度の10mm〜20
mmの間に設置した温度センサ31〜3nからの温度信号
をAD変換して出力するAD変換器101の出力が接続
されている。なお、AD変換器101と温度センサ31
〜3nとの間にはCPU100aの制御のもとで温度セ
ンサからの1つの温度信号を選択してAD変換器101
に対して入力するセレクタ102が介在されている。
The input of μCOM100 is 10 mm to 20 which is about the same as the seed sowing depth in the soil of the field in the house.
The output of an AD converter 101 that AD-converts and outputs the temperature signals from the temperature sensors 3 1 to 3 n installed between mm is connected. The AD converter 101 and the temperature sensor 3 1
AD converter 101 selects one of the temperature signal from the temperature sensor under the control of the CPU100a between the to 3 n
There is an intervening selector 102 for inputting.

【0039】また、μCOM100の他の入力には、灌
水を開始させる際にオン操作される操作手段としてのス
タートスイッチ103が接続されている。上記温度セン
サ3 1〜3nには、CPU100aの制御のもとで基準電
圧源104から一定の電圧が供給されるようになってい
る。各温度センサは、例えば図4に示すように、基準電
圧源104とアース間に直列に接続されたサーミスタの
ような感温素子3aと抵抗3bとからなり、感温素子3
a及び抵抗3b間の接続点の電圧がセレクタ102を介
してAD変換器101に入力されるようになっている。
μCOM100の出力には、最適灌水量となったときそ
の旨を報知する報知手段としてのブザー105が接続さ
れている。なお、報知手段としてはブザー以外のサイレ
ンなどの放音装置や点滅手段のような発光装置であって
もよい。
The other inputs of the μCOM100 are irrigation
A switch as an operation means that is turned on when starting water.
The start switch 103 is connected. Above temperature sensor
Sa3 1~ 3nThe reference voltage under the control of the CPU 100a.
A constant voltage is supplied from the pressure source 104.
You. Each temperature sensor has a reference voltage as shown in FIG.
Of the thermistor connected in series between the pressure source 104 and ground
Such a temperature sensitive element 3a and a resistor 3b.
The voltage at the connection point between a and the resistor 3b passes through the selector 102.
Then, it is input to the AD converter 101.
The output of μCOM100 is when the optimal irrigation volume is reached.
The buzzer 105 is connected as a notification means to notify that
Have been. As a notification means, a sile other than a buzzer
Sound-emitting device such as a microphone or a light-emitting device such as a flashing device.
Is also good.

【0040】以上の構成において、灌水に当たってハウ
ス1内の配管2a及び2bに給水する給水管2の途中に
設けた図示しない給水栓を開放するに先だって、灌水作
業者がスタートスイッチ103がオン操作すると、CP
U100aはこのオン操作に応じて温度センサ31〜3n
からの温度信号をAD変換器101を介して入力し、各
温度センサが設置されているハウス1内の各部の所定深
度の地温を測定し、その平均をとって灌水開始直前のハ
ウス内地温を検出する。
In the above structure, when the irrigation operator turns on the start switch 103 before opening the water tap (not shown) provided in the middle of the water supply pipe 2 for supplying water to the pipes 2a and 2b in the house 1 for watering. , CP
The U100a responds to this ON operation with the temperature sensors 3 1 to 3 n.
The temperature signal from is input through the AD converter 101, the soil temperature of each part in the house 1 in which each temperature sensor is installed is measured at a predetermined depth, and the average is taken to obtain the in-house soil temperature immediately before the start of watering. To detect.

【0041】CPU100aはその後も温度センサ31
〜3nからの温度信号を入力して灌水によるハウス内の
地温の変化を監視し、地温が灌水開始時の地温から予め
定めた所定温度低下したかどうかを検出し、この検出に
応じてブザー105を動作させて鳴動させ、最適灌水量
となったことを報知する。このブザー105の鳴動によ
って、灌水作業者最適灌水量の灌水が行われたと判断し
て給水栓を閉じ、ハウス1内の配管2a及び2bに対し
て行っていた給水を停止させて、ハウス1内での灌水を
終了させることができる。
The CPU 100a continues to use the temperature sensor 3 1
The temperature signal from ~ 3 n is input to monitor the change of soil temperature in the house due to irrigation, and it is detected whether the soil temperature is lower than the predetermined temperature from the soil temperature at the start of irrigation. 105 is operated and made to ring, and it is notified that the optimal watering amount has been reached. By the sounding of the buzzer 105, it is determined that the irrigation operator has performed the irrigation at the optimum irrigation amount, the water tap is closed, the water supply to the pipes 2a and 2b in the house 1 is stopped, and the inside of the house 1 is stopped. Irrigation in can be completed.

【0042】以上概略説明した最適灌水量報知装置の動
作の詳細を、CPU100aが予め定めたプログラムに
従って行う処理を示す図5のフローチャートを参照して
以下説明する。
The details of the operation of the optimum irrigation amount notification device outlined above will be described below with reference to the flowchart of FIG. 5 showing the processing performed by the CPU 100a in accordance with a predetermined program.

【0043】CPU100aは電源の投入によって動作
を開始し、その最初のステップS1においてスタートス
イッチ103のオン操作を待つ。スタートスイッチ10
3がオン操作され、ステップS1の判定がYESになる
とステップS2に進んで出力ポートO1を例えばLから
Hレベルにして基準電圧源104をオンさせ、温度セン
サ31〜3nに動作電源を供給させてからステップS3に
進む。ステップS3においては温度センサ31〜3nから
の出力電圧のAD値を順次読み込んでRAM100cの
所定の記憶エリアに一時的に格納する。
The CPU 100a starts its operation when the power is turned on, and waits for the ON operation of the start switch 103 in the first step S1. Start switch 10
3 is turned on, and when the determination in step S1 is YES, the process proceeds to step S2, the output port O 1 is changed from L level to H level, for example, and the reference voltage source 104 is turned on, and the temperature sensors 3 1 to 3 n are supplied with operating power. After being supplied, the process proceeds to step S3. In step S3, the AD values of the output voltages from the temperature sensors 3 1 to 3 n are sequentially read and temporarily stored in a predetermined storage area of the RAM 100c.

【0044】このためにCPU100aは、出力ポート
2からセレクタ102に対して例えば複数ビットの選
択信号を順次出力すると共に出力ポートO3からAD変
換器101に対して選択信号に同期したサンプリング信
号を順次出力し、セレクタ102を介してAD変換器1
01に入力する温度センサ31〜3nからの出力電圧の1
つを順次選択させると共にこの選択した出力電圧をAD
変換させ、この結果得られるAD値を入力ポートIから
順次読み込む。
For this purpose, the CPU 100a sequentially outputs a selection signal of, for example, a plurality of bits from the output port O 2 to the selector 102, and outputs a sampling signal synchronized with the selection signal from the output port O 3 to the AD converter 101. A / D converter 1 that sequentially outputs and outputs through selector 102
1 of the output voltage from the temperature sensors 3 1 to 3 n input to 01
One by one, and the selected output voltage is AD
Conversion is performed, and the AD value obtained as a result is sequentially read from the input port I.

【0045】その後ステップS4に進んで出力ポートO
1を例えばHからLレベルにしてそれまでオンしていた
基準電圧源104をオフさせ、温度センサ31〜3nに対
する動作電源の供給を停止させる。
After that, the process proceeds to step S4 and the output port O
For example, 1 is changed from H level to L level to turn off the reference voltage source 104 which has been turned on until then, and supply of operating power to the temperature sensors 3 1 to 3 n is stopped.

【0046】続いてステップS5に進み、ここで上記ス
テップS3において読み込んだ温度センサ31〜3nの出
力電圧のAD値についての平均値を演算して求め、この
平均値により、ROM100a中の予め格納してある電
圧ー温度テーブルを参照して地温を検出し、この検出値
を灌水開始時地温T1としてRAM100cの所定エリ
アに格納する。以上のステップS2〜5は、操作手段で
あるスタートスイッチ103のオン操作に応じて温度セ
ンサ31〜3nからの地温検知信号により灌水直前の地温
を検出する灌水開始時地温検出手段を構成している。
Then, in step S5, the average value of the AD values of the output voltages of the temperature sensors 3 1 to 3 n read in step S3 is calculated, and the average value is stored in advance in the ROM 100a. The ground temperature is detected by referring to the stored voltage-temperature table, and the detected value is stored in a predetermined area of the RAM 100c as the water temperature at the start of irrigation T 1 . The above steps S2 to 5 constitute irrigation start time ground temperature detection means for detecting the ground temperature immediately before irrigation by the ground temperature detection signals from the temperature sensors 3 1 to 3 n according to the ON operation of the start switch 103 which is the operation means. ing.

【0047】その後ステップS6に進んで上記ステップ
S2に相当する処理、すなわち、出力ポートO1をLか
らHレベルにして基準電圧源104をオンさせ、温度セ
ンサ31〜3nに動作電源を供給させることを行う。続い
てステップS7に進んで上記ステップS3に相当する処
理、すなわち、温度センサ31〜3nからの出力電圧のA
D値を順次読み込んでRAM100cの所定の記憶エリ
アに一時的に格納することを行う。その後ステップS8
に進んで上記ステップS4に相当する処理、すなわち、
出力ポートO1を例えばHからLレベルにしてそれまで
オンしていた基準電圧源104をオフさせ、温度センサ
1〜3nに対する動作電源の供給を停止させることを行
う。
Thereafter, the process proceeds to step S6, the process corresponding to step S2, that is, the output port O 1 is changed from L level to H level to turn on the reference voltage source 104, and the operating power is supplied to the temperature sensors 3 1 to 3 n. Do what Subsequently processing corresponding to step S3 proceeds to step S7, i.e., the output voltage from the temperature sensor 3 1 to 3 n A
The D value is sequentially read and temporarily stored in a predetermined storage area of the RAM 100c. Then step S8
Proceed to step S4, that is,
For example, the output port O 1 is changed from H level to L level to turn off the reference voltage source 104 which has been turned on until then, and to stop the supply of operating power to the temperature sensors 3 1 to 3 n .

【0048】更にその後ステップS9に進み、ここで上
記ステップS7において読み込んだ温度センサ31〜3n
の出力電圧のAD値についての平均値を演算して求め、
この平均値により、ROM100a中の予め格納してあ
る電圧ー温度テーブルを参照して灌水開始後地温T2
検出する。以上のステップS6〜9は、温度センサ31
〜3nからの地温検知信号により灌水開始後の地温を検
出する灌水開始後地温検出手段を構成している。
After that, the process proceeds to step S9, where the temperature sensors 3 1 to 3 n read in step S7 are read.
Calculate the average value of the AD value of the output voltage of
Based on this average value, the ground temperature T 2 after the start of irrigation is detected by referring to the voltage-temperature table stored in advance in the ROM 100a. Above steps S6~9, the temperature sensor 3 1
It constitutes a watering start after soil temperature detecting means for detecting the soil temperature after the start of irrigation by soil temperature detection signal from to 3 n.

【0049】次にステップS10に進み、ここで上記ス
テップS5において検出しRAM100cに格納した灌
水開始時地温T1と上記ステップS9において検出した
灌水開始後地温T2との差ΔTを演算して求めてからス
テップS11に進んでΔTが予め定めた温度T0以上で
あるか否かを判定する。このステップS11の判定がN
OのときにはステップS12に進んで一定時間が経過す
るのを待って上記ステップS6に戻り、ステップS11
の判定がYESになるまで上記ステップS6〜S11の
処理を繰り返す。上記ステップS10及びS11は、灌
水開始後の地温が灌水直前の地温より所定値以上低下し
たことを検出する温度低下検出手段を構成している。
Next, in step S10, a difference ΔT between the irrigation start soil temperature T 1 detected in step S5 and stored in the RAM 100c and the irrigation start soil temperature T 2 detected in step S9 is calculated. After that, the process proceeds to step S11, and it is determined whether ΔT is equal to or higher than a predetermined temperature T 0 . If the determination in step S11 is N
When it is O, the process proceeds to step S12, waits for a certain period of time to elapse, and then returns to step S6.
The processes of steps S6 to S11 described above are repeated until the determination is YES. The above steps S10 and S11 constitute a temperature drop detecting means for detecting that the ground temperature after the start of irrigation is lower than the ground temperature immediately before the irrigation by a predetermined value or more.

【0050】上記ステップS11の判定がYESになる
と、ステップS13に進んで出力ポートO4をLからH
レベルにして報知手段としてのブザー105をオンさせ
て鳴動させ、最適灌水量となったことを報知してからス
テップS14に進む。ステップS14においてはスター
トスイッチ103の操作を待ち、スタートスイッチ10
3がオン操作されるとステップS14の判定がYESと
なってステップS15に進んで出力ポートO4をHから
Lレベルにしてブザー105をオフさせて鳴動を停止さ
せてから上記ステップS1に戻って、灌水開始の際に操
作されるスタートスイッチ103の操作を待つ。
If the determination in step S11 is YES, the process proceeds to step S13, in which the output port O 4 is changed from L to H.
After setting the level, the buzzer 105 as an informing means is turned on and sounded to notify that the optimal watering amount has been reached, and then the process proceeds to step S14. In step S14, waiting for the operation of the start switch 103, the start switch 10
When 3 is turned on, the determination in step S14 becomes YES, the process proceeds to step S15, the output port O 4 is changed from H level to L level, the buzzer 105 is turned off to stop the ringing, and then the process returns to step S1. Wait for the operation of the start switch 103 that is operated at the start of irrigation.

【0051】次に、上述した最適灌水量判定方法により
判定した最適灌水量の灌水を自動的に行う本発明による
灌水制御装置の一実施の形態を図6を参照して説明す
る。同図において、図3について説明したものと同等の
部分には同一の符号を付してその詳細な説明を省略す
る。同図において、温度センサ31〜3n、AD変換器1
01、セレクタ102、スタートスイッチ103及び基
準電圧源104は、図3の報知装置のものと同一である
が、μCOM100の出力には、ブザーの代わりに、図
2のハウス1内の配管2a及び2bに給水する給水管2
の途中に設けた電磁弁21を開閉駆動するドライバ10
6が接続されている。
Next, an embodiment of the irrigation controller according to the present invention for automatically irrigating the optimum irrigation amount determined by the above-mentioned optimum irrigation amount determination method will be described with reference to FIG. In the figure, the same parts as those described with reference to FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted. In the figure, the temperature sensors 3 1 to 3 n and the AD converter 1
01, the selector 102, the start switch 103, and the reference voltage source 104 are the same as those of the alarm device of FIG. 3, but the output of the μCOM 100 is replaced by a pipe 2a and 2b in the house 1 of FIG. 2 instead of the buzzer. Water pipe 2 to supply water to
Driver 10 for opening and closing a solenoid valve 21 provided in the middle of
6 are connected.

【0052】以上の構成において、灌水に当たって灌水
作業者がスタートスイッチ103がオン操作すると、C
PU100aはこのオン操作に応じてドライバ106を
駆動して閉状態にある電磁弁21を開させ、電磁弁21
を介してハウス1内の配管2a及び2bに給水を行って
ハウス1内での灌水を開始させる。CPU100aはま
た、温度センサ31〜3nからの温度信号をAD変換器1
01を介して入力し、各温度センサが設置されているハ
ウス1内の各部の所定深度の地温を測定し、その平均を
とって灌水開始直前のハウス内地温を検出する。CPU
100aはその後も温度センサ31〜3nからの温度信号
を入力して灌水によるハウス内の地温の変化を監視し、
地温が灌水開始時の地温から予め定めた所定温度低下し
たかどうかを検出し、この検出に応じて開状態にある電
磁弁21を閉させ、ハウス1内の配管2a及び2bに対
して行っていた給水を停止させて、ハウス1内での灌水
を自動的に終了させることができる。
In the above structure, when the irrigation operator turns on the start switch 103 during irrigation, C
In response to this ON operation, the PU 100a drives the driver 106 to open the electromagnetic valve 21 in the closed state, and the electromagnetic valve 21
Water is supplied to the pipes 2a and 2b in the house 1 via the water to start irrigation in the house 1. CPU100a also, AD converter 1 the temperature signals from the temperature sensor 3 1 to 3 n
The temperature is input via 01 to measure the ground temperature of each part in the house 1 in which each temperature sensor is installed at a predetermined depth, and the average is taken to detect the ground temperature in the house immediately before the start of watering. CPU
100a also inputs the temperature signals from the temperature sensors 3 1 to 3 n thereafter to monitor the change in the ground temperature in the house due to the watering,
It is detected whether or not the ground temperature has dropped from the ground temperature at the start of irrigation by a predetermined temperature, and the electromagnetic valve 21 in the open state is closed according to this detection, and the pipes 2a and 2b in the house 1 are checked. It is possible to automatically stop the water supply in the house 1 by stopping the water supply.

【0053】以上概略説明した灌水制御装置の動作の詳
細を、CPU100aが予め定めたプログラムに従って
行う処理を示す図7のフローチャートを参照して以下説
明するが、図5のフローチャートと同一のステップには
同一の符号を付してその詳細な説明は省略する。
The details of the operation of the irrigation control device outlined above will be described below with reference to the flowchart of FIG. 7 showing the processing performed by the CPU 100a in accordance with a predetermined program, but the same steps as those in the flowchart of FIG. The same reference numerals are given and detailed description thereof is omitted.

【0054】CPU100aは電源の投入によって動作
を開始し、その最初のステップS1においてスタートス
イッチ103のオン操作を待つ。スタートスイッチ10
3がオン操作され、ステップS1の判定がYESになる
とステップS21に進んで出力ポートO5をLからHレ
ベルにしてドライバ106により、ハウス1内の配管2
a及び2bに給水する給水管2の途中に設けた電磁弁2
1を開させて給水を行い、このことによって灌水を開始
させる。
The CPU 100a starts its operation when the power is turned on, and waits for the ON operation of the start switch 103 in the first step S1. Start switch 10
3 is turned on, and when the determination in step S1 is YES, the process proceeds to step S21, the output port O 5 is changed from L level to H level, and the driver 106 is used to connect the pipe 2
Solenoid valve 2 provided in the middle of water supply pipe 2 for supplying water to a and 2b
1 is opened to supply water, which starts irrigation.

【0055】灌水を行える状態にした後、図5について
上述したステップS2〜5を実行し、スタートスイッチ
103のオン操作に応じて温度センサ31〜3nからの地
温検知信号により灌水開始時T1を検出する。その後、
図5について上述したステップS6〜12とを実行し、
灌水開始後地温T2を検出すると共に灌水開始時地温T1
と灌水開始後地温T2との差ΔTを演算して求め、ΔT
が予め定めた温度T0例えば2°C±0.5°C以上で
あるかどうかを判断し、灌水開始後の地温が灌水直前の
地温より所定値以上低下したことを検出する。
After the irrigation can be performed, steps S2 to 5 described above with reference to FIG. 5 are executed, and at the start of irrigation by the ground temperature detection signals from the temperature sensors 3 1 to 3 n according to the ON operation of the start switch 103. Detect 1 afterwards,
Perform steps S6-12 described above with respect to FIG.
The soil temperature T 2 is detected after the start of irrigation, and the soil temperature T 1 at the start of irrigation is detected.
The difference ΔT between the water temperature and the soil temperature T 2 after the start of irrigation is calculated to obtain ΔT
Is above a predetermined temperature T 0, for example, 2 ° C ± 0.5 ° C or more, and it is detected that the soil temperature after the start of irrigation is lower than the soil temperature immediately before irrigation by a predetermined value or more.

【0056】そして、灌水開始後の地温が灌水直前の地
温より所定値以上低下したことを検出すると、ステップ
S22に進んで出力ポートO5をHからLレベルにして
ドライバ106により電磁弁21を閉させ給水を停止し
て灌水を終了させてから上記ステップS1に戻って次の
灌水の開始操作を待つ。
When it is detected that the ground temperature after the start of irrigation is lower than the ground temperature immediately before the irrigation by a predetermined value or more, the process proceeds to step S22, the output port O 5 is changed from H level to L level, and the solenoid valve 21 is closed by the driver 106. Then, the water supply is stopped to end the irrigation, and then the process returns to step S1 to wait for the next irrigation start operation.

【0057】なお、上記ステップS21及びS22は、
スタートスイッチ103の操作に応じて灌水のための給
水を開始させ、最適灌水状態の検出に応じて給水を停止
させて灌水を終了させる給水制御手段を構成している。
The steps S21 and S22 are
A water supply control unit that starts water supply for irrigation in response to operation of the start switch 103 and stops water supply and ends irrigation in response to detection of an optimum watering state is configured.

【0058】灌水により地温が2°C低下した場合、土
壌水分はテンションメータの測定値でpF2前後になっ
ている。この値は植物が生育するのに最適な値であり、
高い発芽率を一定して得られるようになると共に、構成
もきわめて簡単である。
When the soil temperature is lowered by 2 ° C. by irrigation, the soil water content is around pF2 as measured by the tension meter. This value is the optimum value for plants to grow,
A high germination rate can be obtained constantly, and the configuration is extremely simple.

【0059】上述の例では、施設内に播種終了後灌水を
開始し、圃場の地温が灌水開始時より2°C±0.5度
C降下すれば灌水を停止するように設定し、温度センサ
は種子の播種深度と同程度の10mm〜20mmの間に
設置したが、植物の栽培途中に灌水する場合には、植物
体の根圏近傍に温度センサを設置することが望ましく、
地温降下の設定値もやや大きめに取る必要がある。しか
し、植物体葉面に水が付着し病害の原因となるため、実
際には灌水が控えられる場合が多い。温度センサの本数
に関しては、多い方が土壌水分把握の精度は向上する
が、最低3本設置すれば制御には十分である。
In the above-mentioned example, irrigation is started after the seeding is finished in the facility, and it is set so that the irrigation is stopped when the soil temperature in the field drops by 2 ° C ± 0.5 ° C from the start of irrigation, and the temperature sensor is set. Was installed between 10 mm and 20 mm, which is about the same as the seeding depth of seeds, but when watering during the cultivation of plants, it is desirable to install a temperature sensor near the rhizosphere of the plant,
It is necessary to take a slightly large set value for the soil temperature drop. However, since water adheres to the leaf surface of the plant and causes a disease, irrigation is often avoided in practice. Regarding the number of temperature sensors, the more the number of temperature sensors is, the more the accuracy of grasping soil moisture is improved, but if at least three temperature sensors are installed, it is sufficient for control.

【0060】[0060]

【発明の効果】以上説明したように請求項1記載の最適
灌水量判定方法によれば、施設内圃場への灌水を開始し
てからの地温の変化を監視し、地温が灌水開始時の温度
から所定温度低下したとき最適灌水量となったと判定し
ているので、この判定した最適灌水量となった時点で灌
水を止めることにより、最適の灌水を行うことができ
る。
As described above, according to the method of determining the optimum amount of irrigation according to the first aspect, the change in the soil temperature after the start of irrigation to the field in the facility is monitored, and the soil temperature is the temperature at the start of irrigation. Since it is determined that the optimum irrigation amount has been reached when the predetermined temperature has decreased, the optimum irrigation can be performed by stopping the irrigation when the determined optimum irrigation amount is reached.

【0061】また、請求項2記載の最適灌水量報知装置
によれば、灌水を開始させるに当たって行われる操作に
応じて施設内圃場の土壌の所定の深度に設置された温度
センサからの地温検知信号により灌水直前の地温を検出
し、また灌水開始後は同じ温度センサからの地温検知信
号により灌水開始後の地温を検出し、この灌水開始後の
地温が灌水直前の地温より所定値以上低下したことを検
出すると、最適灌水量となったことを報知するので、こ
の報知により最適灌水量となったと知った時点で灌水を
止めることにより、最適の灌水を行うことができる。
Further, according to the optimum irrigation amount notification device of the second aspect, a ground temperature detection signal from a temperature sensor installed at a predetermined depth of soil in the field in the facility according to an operation performed at the time of starting the irrigation. The ground temperature immediately before irrigation was detected by the water temperature detection, and the ground temperature after the irrigation was started was detected by the ground temperature detection signal from the same temperature sensor after the irrigation was started. When the notification is made, the fact that the optimal irrigation amount has been reached is notified, so that the optimal irrigation can be performed by stopping the irrigation at the time when it is known that the optimal irrigation amount has been reached by this notification.

【0062】更に、請求項3記載の灌水制御装置によれ
ば、灌水を開始させるに当たって行われる操作に応じて
灌水のための給水を開始させると共にこの灌水開始時の
地温を施設内圃場の土壌の所定の深度に設置された温度
センサからの地温検知信号により検出し、給水の開始に
より灌水が開始された後、同じ温度センサからの地温検
知信号により灌水開始後の地温を検出し、この灌水開始
後の地温が灌水直前の地温より所定値以上低下したこと
を検出すると、給水を停止させて灌水を終了させるの
で、最適灌水量となった時点で給水が自動的に止められ
ることにより、最適の灌水を自動的に行うことができ
る。
Further, according to the irrigation control device of the third aspect, the water supply for irrigation is started in accordance with the operation performed at the time of starting the irrigation, and the soil temperature at the start of this irrigation is set to the soil of the field in the facility. Detected by the ground temperature detection signal from the temperature sensor installed at a predetermined depth, after the irrigation is started by the start of water supply, the ground temperature after the irrigation start is detected by the ground temperature detection signal from the same temperature sensor, and this irrigation start When it detects that the subsequent soil temperature is lower than the soil temperature immediately before irrigation by a predetermined value or more, water supply is stopped and irrigation is terminated, so water supply is automatically stopped at the time when the optimal irrigation volume is reached. Irrigation can be done automatically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による最適灌水量判定方法を適用した最
適灌水量報知装置及び灌水制御装置の基本構成を示すブ
ロック図であるである。
FIG. 1 is a block diagram showing a basic configuration of an optimum irrigation amount notification device and an irrigation control device to which an optimum irrigation amount determination method according to the present invention is applied.

【図2】本発明による最適灌水量判定方法、最適灌水量
報知装置及び灌水制御装置が適用される施設内部の灌水
設備を示す図である。
FIG. 2 is a diagram showing irrigation equipment inside a facility to which the optimum irrigation amount determination method, the optimum irrigation amount notification device, and the irrigation control device according to the present invention are applied.

【図3】本発明による最適灌水量報知装置の実施の形態
を示す図である。
FIG. 3 is a diagram showing an embodiment of an optimum irrigation amount notification device according to the present invention.

【図4】図3中の温度センサの具体例を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a specific example of a temperature sensor in FIG.

【図5】図4中のCPUが行う処理を示すフローチャー
トである。
5 is a flowchart showing a process performed by a CPU in FIG.

【図6】本発明による灌水制御装置の実施の形態を示す
図である。
FIG. 6 is a diagram showing an embodiment of a watering control device according to the present invention.

【図7】図6中のCPUが行う処理を示すフローチャー
トである。
FIG. 7 is a flowchart showing a process performed by a CPU in FIG.

【符号の説明】[Explanation of symbols]

1〜3n 温度センサ 100aー1 灌水開始時地温検出手段(CPU) 100aー2 灌水開始後地温検出手段(CPU) 100a−3 温度低下検出手段(CPU) 100a−4 給水制御手段(CPU) 103 操作手段(スタートスイッチ) 105 報知手段(ブザー)3 1 to 3 n Temperature sensor 100a-1 Ground temperature detection means (CPU) at the start of irrigation 100a-2 Ground temperature detection means (CPU) after irrigation start 100a-3 Temperature drop detection means (CPU) 100a-4 Water supply control means (CPU) 103 Operation Means (Start Switch) 105 Notification Means (Buzzer)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 施設内圃場への灌水の開始からの土壌の
所定の深度での地温の変化を監視し、 地温が灌水開始時の温度から所定温度低下したとき最適
灌水量となったと判定することを特徴とする最適灌水量
判定方法。
1. A change in soil temperature at a predetermined depth of soil from the start of irrigation to a field in the facility is monitored, and when the soil temperature drops from a temperature at the start of irrigation to a predetermined temperature, it is determined that the optimum irrigation amount has been reached. A method for determining an optimum irrigation amount, which is characterized by the following.
【請求項2】 施設内圃場の土壌の所定の深度に設置さ
れ地温を検知して地温検知信号を出力する温度センサ
と、 灌水を開始させるに当たって操作される操作手段と、 該操作手段の操作に応じて前記温度センサからの地温検
知信号により灌水直前の地温を検出する灌水開始時地温
検出手段と、 前記温度センサからの地温検知信号により灌水開始後の
地温を検出する灌水開始後地温検出手段と、 該灌水開始後地温検出手段により検出した灌水開始後の
地温が前記灌水直前の地温より所定値以上低下したこと
を検出する温度低下検出手段と、 該温度低下検出手段による検出に応じて最適灌水量とな
ったことを報知する報知手段とを備えることを特徴とす
る最適灌水量報知装置。
2. A temperature sensor that is installed at a predetermined depth of soil in a field in a facility and that detects a ground temperature and outputs a ground temperature detection signal, an operating unit that is operated when starting watering, and an operating unit that operates the operating unit. Depending on the ground temperature detection means from the temperature sensor to detect the soil temperature immediately before irrigation ground temperature detection means, and the ground temperature detection signal from the temperature sensor to detect the ground temperature after irrigation start soil temperature detection means after irrigation start A temperature drop detecting means for detecting that the ground temperature after the start of irrigation detected by the irrigation start temperature detecting means is lower than the ground temperature immediately before the irrigation by a predetermined value or more, and an optimum irrigation according to the detection by the temperature drop detecting means An optimum irrigation amount informing device, comprising: an informing unit for informing that the water amount has been reached.
【請求項3】 施設内圃場の土壌の所定の深度に設置さ
れ地温を検知して地温検知信号を出力する温度センサ
と、 灌水を開始させるに当たって操作される操作手段と、 該操作手段の操作に応じて前記温度センサからの地温検
知信号により灌水直前の地温を検出する灌水開始時地温
検出手段と、 前記温度センサからの地温検知信号により灌水開始後の
地温を検出する灌水開始後地温検出手段と、 該灌水開始後地温検出手段により検出した灌水開始後の
地温が前記灌水直前の地温より所定値以上低下したこと
を検出する温度低下検出手段と、 前記操作手段の操作に応じて灌水のための給水を開始さ
せ、前記温度低下検出手段による検出に応じて給水を停
止させて灌水を終了させる給水制御手段とを備えること
を特徴とする灌水制御装置。
3. A temperature sensor that is installed at a predetermined depth of soil in a field in a facility and that detects the ground temperature and outputs a ground temperature detection signal, an operating unit that is operated when starting watering, and an operation unit that operates the operating unit. Depending on the ground temperature detection means from the temperature sensor to detect the soil temperature immediately before irrigation ground temperature detection means, and the ground temperature detection signal from the temperature sensor to detect the ground temperature after irrigation start soil temperature detection means after irrigation start A temperature drop detecting means for detecting that the soil temperature after starting the irrigation detected by the soil temperature detecting means after the irrigation is lower than the soil temperature immediately before the irrigation by a predetermined value or more; An irrigation control device comprising: water supply control means for starting water supply and stopping water supply according to detection by the temperature decrease detection means to end irrigation.
JP7309526A 1995-11-28 1995-11-28 Optimal irrigation volume determination method, optimal irrigation volume notification device and irrigation control device Expired - Lifetime JP3003923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7309526A JP3003923B2 (en) 1995-11-28 1995-11-28 Optimal irrigation volume determination method, optimal irrigation volume notification device and irrigation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7309526A JP3003923B2 (en) 1995-11-28 1995-11-28 Optimal irrigation volume determination method, optimal irrigation volume notification device and irrigation control device

Publications (2)

Publication Number Publication Date
JPH09149737A true JPH09149737A (en) 1997-06-10
JP3003923B2 JP3003923B2 (en) 2000-01-31

Family

ID=17994079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7309526A Expired - Lifetime JP3003923B2 (en) 1995-11-28 1995-11-28 Optimal irrigation volume determination method, optimal irrigation volume notification device and irrigation control device

Country Status (1)

Country Link
JP (1) JP3003923B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220998A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Farm work estimation method and computer program
CN106069284A (en) * 2016-07-29 2016-11-09 厦门大学嘉庚学院 A kind of potted plant automatic sprinkling system of novel intelligent and control method thereof
KR20220050630A (en) * 2020-10-16 2022-04-25 농업회사법인(주)유프레시 Method and Apparatus for Controlling Rotational Irrigation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541088B1 (en) * 2015-01-12 2015-08-25 주식회사 네오펙트 Smart tool set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220998A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 Farm work estimation method and computer program
CN106069284A (en) * 2016-07-29 2016-11-09 厦门大学嘉庚学院 A kind of potted plant automatic sprinkling system of novel intelligent and control method thereof
KR20220050630A (en) * 2020-10-16 2022-04-25 농업회사법인(주)유프레시 Method and Apparatus for Controlling Rotational Irrigation

Also Published As

Publication number Publication date
JP3003923B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
AU2007247732B2 (en) Method and system for monitoring growth characteristics
Li et al. Sprinkler water distributions as affected by winter wheat canopy
US10561081B2 (en) Fertigation system, fertigation control server, salts accumulation determination method, and soil EC sensor
KR20190025638A (en) Plant growth control system
US20170020091A1 (en) Method and System for Automated Data Analysis of Soil Moisture
JP4437451B2 (en) Moisture measuring device and soil irrigation control system equipped with the moisture measuring device
Ortuño et al. Comparison of continuously recorded plant-based water stress indicators for young lemon trees
JP2011013025A (en) Soil sensor, and soil monitoring apparatus using the same
CN110896836B (en) Soilless culture nutrient solution control method and system
CN106804414A (en) Closed soilless culture automatic irrigation control method and system
JP3003923B2 (en) Optimal irrigation volume determination method, optimal irrigation volume notification device and irrigation control device
CN109348788B (en) Automatic seeding device and seeding method based on big data
WO2022040756A1 (en) Refill point or target deficit for crop irrigation
CN117044538B (en) Agricultural planting greenhouse and temperature regulation and control method thereof
CN103116016A (en) Simple and quick detection method for residual quinclorac in soil
Kim et al. Design and testing of an autonomous irrigation controller for precision water management of greenhouse crops
CN208676010U (en) A kind of cultivating seedlings device based on wireless communication technique
CN209878016U (en) Temperature and humidity detection device for agricultural greenhouse
PL244341B1 (en) Method of determining the amount of soil irrigation
CN219108360U (en) Crop irrigation device based on agricultural big data
CN210222012U (en) Intelligent greenhouse monitoring device
Rivière et al. Different ways of monitoring the irrigation of container and pot plants
JP2548975Y2 (en) Automatic irrigation system for seeds and seedlings
Ayars et al. 7. Automation
CN221351073U (en) Device for measuring evaporation measurement between ridge culture plants

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019