JPH0914853A - Layer split type fluidized-bet furnace - Google Patents

Layer split type fluidized-bet furnace

Info

Publication number
JPH0914853A
JPH0914853A JP16663495A JP16663495A JPH0914853A JP H0914853 A JPH0914853 A JP H0914853A JP 16663495 A JP16663495 A JP 16663495A JP 16663495 A JP16663495 A JP 16663495A JP H0914853 A JPH0914853 A JP H0914853A
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
gas
divided
division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16663495A
Other languages
Japanese (ja)
Inventor
Hiroki Nomoto
博樹 野本
Kenichi Yajima
健一 矢島
Mitsuharu Kishimoto
充晴 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP16663495A priority Critical patent/JPH0914853A/en
Publication of JPH0914853A publication Critical patent/JPH0914853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE: To realize a low-cost multi-stage fluidized-bed furnace capable of average improving by increasing the in-furnace resident time of ore with a simple structure. CONSTITUTION: The space on a dispersing plate of a prereducing furnace 31 is divided into a plurality of sections by partition walls 12, and a preheating section 32 is provided as one of them. An oxygen inlet 33 is provided at the section 32, the part of reducing gas for fluidizing iron ore is burnt, and the temperature of the gas lowered by the charge of the ore is raised. The temperature of a fluidized bet is raised from 600 deg.C to 750 deg.C by next section by preheating, further raised from 800 to 850 deg.C, and discharged in the state that the prereducing rate is improved. The transfer between the sections is conducted via an opening 13 provided at the wall 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内部を複数個の区割に
分割した層分割型流動層炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a layer-division type fluidized bed furnace whose inside is divided into a plurality of compartments.

【0002】[0002]

【従来の技術】従来から、たとえば特公昭59−199
65号公報、特公平7−5950号公報あるいは特開平
1−152225号公報などに、鉄鉱石の溶融還元プロ
セスにおける予熱装置として流動層炉を使用する先行技
術が開示されている。溶融還元プロセスでは、図13に
示すように、予備還元炉1によって鉄鉱石を予備還元
し、溶融炉2で最終的に還元して溶鉄を得る。溶融炉2
では、固体の予備還元鉱石とともに酸素ガス(O2)と
石炭を導入し、予備還元された酸化鉄(FeOX)を鉄
(Fe)に還元する。この還元反応の際に、一酸化炭素
(CO)などを含む還元ガスが発生し、この還元ガスを
予備還元炉1で利用して鉄鉱石(主成分Fe23)から
FeOXへの予備還元が行われる。
2. Description of the Related Art Conventionally, for example, Japanese Examined Patent Publication No. 59-199.
Japanese Patent Publication No. 65, Japanese Patent Publication No. 7-5950, Japanese Patent Application Laid-Open No. 1-152225 and the like disclose prior arts using a fluidized bed furnace as a preheating device in a smelting reduction process of iron ore. In the smelting reduction process, as shown in FIG. 13, the iron ore is pre-reduced in the preliminary reduction furnace 1 and finally reduced in the melting furnace 2 to obtain molten iron. Melting furnace 2
Then, oxygen gas (O 2 ) and coal are introduced together with the solid pre-reduced ore to reduce the pre-reduced iron oxide (FeO x ) to iron (Fe). During this reduction reaction, a reducing gas containing carbon monoxide (CO) and the like is generated, and this reducing gas is used in the preliminary reduction furnace 1 to reserve iron ore (main component Fe 2 O 3 ) from FeO x to reserve. The reduction is done.

【0003】流動層炉を用いる反応プロセスとしては、
溶融還元プロセスの他に、直接還元製鉄プロセスなども
鋭意研究されており、安価で反応率の高い流動層炉が求
められている。
As a reaction process using a fluidized bed furnace,
In addition to the smelting reduction process, direct reduction iron making processes and the like have been earnestly studied, and a fluidized bed furnace that is inexpensive and has a high reaction rate is required.

【0004】図14は、図13の予備還元炉1を流動化
させるためのガス流量および必要な温度と予備還元率と
の関係を示す。1段式の流量層炉では、予備還元率を上
げるとガス流量が減少するため所定の反応量を得るため
には、温度を上昇させる必要がある。1段式すなわち1
セクション型流動層では、投入直後でまったく反応して
いない鉱石も、炉内で滞留して反応の進んだ鉱石も、完
全に混合された後で一定流量が排出されるので、排出さ
れる鉱石の平均反応率が低くなってしまう。
FIG. 14 shows the relationship between the gas flow rate and the required temperature for fluidizing the preliminary reduction furnace 1 of FIG. 13 and the preliminary reduction rate. In the one-stage flow-rate reactor, the gas flow rate decreases as the preliminary reduction rate is increased, so that the temperature must be raised to obtain a predetermined reaction amount. 1-stage type, 1
In the section type fluidized bed, both the ore that has not reacted at all immediately after being charged and the ore that has stayed in the furnace and has undergone the reaction have been completely mixed and then discharged at a constant flow rate. The average reaction rate becomes low.

【0005】複数区割を設ける流動層炉は、たとえば図
15に示すような直列多段型流動層炉3として提案され
ている。直列多段型流動層炉3では、風箱4の上方に複
数の分散板5が設けられ、分散板5によって形成される
流動層炉3を、鉱石がシュート6に沿って順次下方に移
動しながら反応する。特開昭59−180278号公報
には、分散板上の空間を分散板に対して垂直な仕切壁で
複数の区割に分割した流動層炉が開示されている。
A fluidized bed furnace having a plurality of compartments has been proposed as a series multi-stage fluidized bed furnace 3 as shown in FIG. 15, for example. In the serial multi-stage fluidized bed furnace 3, a plurality of dispersion plates 5 are provided above the wind box 4, and the ore sequentially moves downward along the chute 6 in the fluidized bed furnace 3 formed by the dispersion plates 5. react. Japanese Unexamined Patent Publication No. 59-180278 discloses a fluidized bed furnace in which a space on a dispersion plate is divided into a plurality of partitions by partition walls perpendicular to the dispersion plate.

【0006】[0006]

【発明が解決しようとする課題】前述のように単一の流
動層のみを形成する流動層炉では、排出される鉱石の平
均反応率が低くなるので、複数段の流動層炉を設ける構
成が提案されている。図15に示す構成は、鉛直方向に
複数段の流動層を形成するので、次のような欠点があ
る。
As described above, in a fluidized bed furnace that forms only a single fluidized bed, the average reaction rate of the ore discharged becomes low, so that a structure in which a plurality of fluidized bed furnaces are provided is used. Proposed. The configuration shown in FIG. 15 has the following drawbacks because it forms a plurality of fluidized beds in the vertical direction.

【0007】炉高が大きくなり、炉は勿論、ホッパコ
ンベアなどの原料ハンドリング設備や、ダクトなどの排
ガス処理設備等の設備費が大きくなってしまう。
[0007] The furnace height increases, and not only the furnace but also the raw material handling equipment such as a hopper conveyor and the exhaust gas treatment equipment such as a duct are expensive.

【0008】下段側より上段側へ移る還元ガス中には
粉粒体原料の粉化ダストが多量に含まれるため、上段側
の流動層用分散板にダストが付着しやすい。
Since the reducing gas moving from the lower side to the upper side contains a large amount of powdered dust of the granular material, the dust tends to adhere to the fluidized-bed dispersion plate on the upper side.

【0009】複数段の流動層炉が形成されるので、ガ
スの圧力損失が大きくなる。
Since a plurality of fluidized bed furnaces are formed, the gas pressure loss becomes large.

【0010】大容積の流動層炉は、炉径が大きくな
り、分散板を下方から支持する必要が生じる。多段式の
上方の分散板は、下方から支持することが困難であり、
したがって分散板の径を大きくするために厚さを大きく
する必要があり、分散板のコストが上昇する。またメン
テナンスもしにくくなる。
In a large-volume fluidized bed furnace, the diameter of the furnace becomes large and it becomes necessary to support the dispersion plate from below. It is difficult to support the multi-stage upper dispersion plate from below,
Therefore, it is necessary to increase the thickness in order to increase the diameter of the dispersion plate, which increases the cost of the dispersion plate. It also makes maintenance difficult.

【0011】直列多段型では還元ガスの利用率が大き
くなるけれども、溶融還元製鉄プロセス等では還元ガス
はプロセス内で発生するものを使用するので任意に選ぶ
ことは不可能であり、ガス利用率は単に予備還元率の大
小でしか判断されない。
Although the utilization rate of the reducing gas is large in the series multi-stage type, it is impossible to arbitrarily select the reducing gas in the molten reduction iron-making process or the like because the reducing gas generated in the process is used. It can be judged only by the size of the preliminary return rate.

【0012】また、特公平7−5950号公報などで
は、流動層内温度を上げて鉱石を昇温させるため、還元
ガスに酸素ガスを混合する方法が提案されている。しか
しながらこの方法では、酸素ガスを吹込んで部分燃焼し
た後のガスは充分な還元能力を残存させなければならな
いので、吹込む酸素ガス量に制限があり、充分な昇温を
行うことができない。また、溶融還元プロセスでは、予
備還元炉から溶融還元炉へ送られる予備還元鉱石の予備
還元率が高くなればなるほど、溶融還元炉での最終還元
の負荷が軽くなる。溶融還元炉へ装入する石炭およびそ
れと相関して溶融還元炉で発生するガスの流量は少なく
なる。予備還元炉で還元率を上げれば、負荷は大きくな
り、そのために多くの熱量を必要とする。特に顕熱はほ
とんど還元ガスの顕熱によって賄われる。しかしなが
ら、上述のように、鉱石の予備還元率が高くなると還元
ガス流量は少なくなってしまうことから、予備還元炉入
口で要求されるガス温度は高くなり、このためガス中に
含まれるダストが軟化して分散板等に付着し、正常な操
業を阻害するようになる。特開平1−205014号公
報や特開平1−152225号公報などでは、流動層炉
を出たガスを燃焼させることによって、鉱石を予熱する
方法が開示されているけれども、設備の構成が複雑にな
り、設備費が増大するなどの欠点がある。
Further, Japanese Patent Publication No. 7-5950 proposes a method in which oxygen gas is mixed with reducing gas in order to raise the temperature in the ore by raising the temperature in the fluidized bed. However, in this method, since the gas after the oxygen gas is blown in and partially burned must have a sufficient reducing ability, the amount of the blown oxygen gas is limited, and sufficient temperature rise cannot be performed. Further, in the smelting reduction process, the higher the preliminary reduction rate of the preliminary reduction ore sent from the preliminary reduction furnace to the smelting reduction furnace, the lighter the final reduction load in the smelting reduction furnace becomes. The flow rate of coal charged into the smelting reduction furnace and the gas flow generated in the smelting reduction furnace in correlation therewith is reduced. If the reduction rate is increased in the pre-reduction furnace, the load becomes large, which requires a large amount of heat. Particularly, the sensible heat is mostly covered by the sensible heat of the reducing gas. However, as described above, the reduction gas flow rate decreases as the pre-reduction rate of ore increases, so the gas temperature required at the pre-reduction furnace inlet increases, and the dust contained in the gas softens. Then, it adheres to the dispersion plate or the like and hinders normal operation. JP-A-1-205014, JP-A-1-152225, and the like disclose a method of preheating ore by burning gas discharged from a fluidized bed furnace, but the configuration of equipment becomes complicated. However, there are drawbacks such as increased equipment costs.

【0013】特開昭59−180278号公報の先行技
術では、炉の中心部付近に中子を装入して中子と炉外壁
との間を仕切り、複数の区割に分割し、これによって複
数の区割が直列に接続されて、鉱石の平均反応率が向上
する。しかしながら、中子を設ける必要があるので、炉
内で有効に使用可能な面積が減少し、かつ複数の分割さ
れた区割で一様な反応しか生じさせることができない。
In the prior art of JP-A-59-180278, a core is inserted near the center of the furnace to partition the core and the outer wall of the furnace into a plurality of compartments. Multiple sections are connected in series to improve the average reaction rate of ore. However, since it is necessary to provide the core, the area that can be effectively used in the furnace is reduced, and only a uniform reaction can occur in a plurality of divided sections.

【0014】本発明の目的は、設備費用の増大を招くこ
となく、効率的な反応を生じさせることができる層分割
型流動層炉を提供することである。
It is an object of the present invention to provide a bed-division type fluidized bed furnace capable of causing an efficient reaction without increasing equipment cost.

【0015】[0015]

【課題を解決するための手段】本発明は、高温の還元ガ
スを炉下部の分散板を介して炉内に導入し、炉内に装入
される粉粒体原料の流動層を形成しながら反応させる流
動層炉であって、炉内を複数の区割に分割し、隣接区割
への粉粒体原料移行用の開口が形成される仕切壁と、一
部の区割に、還元ガスを部分的に燃焼させるための酸素
含有ガスを導入する酸素供給装置とを含むことを特徴と
する層分割型流動層炉である。また本発明は、前記分散
板に形成される還元ガス導入用ノズルの配置密度を、分
割される区割に対応して変えることを特徴とする。また
本発明は、前記酸素供給装置からの酸素含有ガスが導入
されて還元ガスが部分的に燃焼される区割には、他の区
割とは別個の排ガス経路を設けることを特徴とする。ま
た本発明は、高温の反応ガスを炉下部の分散板を介して
炉内に導入し、炉内に装入される粉粒体原料の流動層を
形成しながら反応させる流動層炉であって、炉内を複数
の区割に分割し、隣接区割への粉粒体原料移行用の開口
が形成される仕切壁を備え、分散板に形成される反応ガ
ス導入用ノズルの配置密度を、分割される区割に対応し
て変えることを特徴とする層分割型流動層炉である。ま
た本発明は、分割された区割のうちの一部に、酸素含有
ガスと燃料とを吹込むことを特徴とする。また本発明
は、炉中心付近に、炉外壁から離隔した区割を設けるこ
とを特徴とする。また本発明は、分割された複数の区割
の上方空間の容積を、各区割の底面積に対して相対的に
変化させることを特徴とする。
According to the present invention, a high-temperature reducing gas is introduced into a furnace through a dispersion plate in the lower part of the furnace to form a fluidized bed of a granular material to be charged into the furnace. In a fluidized bed furnace for reaction, the inside of the furnace is divided into a plurality of compartments, and a partition wall in which an opening for transferring the granular material to adjacent compartments is formed, and a reducing gas in some compartments And a oxygen supply device for introducing an oxygen-containing gas for partially burning the gas. Further, the present invention is characterized in that the arrangement density of the reducing gas introduction nozzles formed on the dispersion plate is changed in accordance with the divided division. Further, the present invention is characterized in that the section where the oxygen-containing gas from the oxygen supply device is introduced and the reducing gas is partially burned is provided with an exhaust gas passage separate from other sections. Further, the present invention is a fluidized bed furnace in which a high-temperature reaction gas is introduced into the furnace through a dispersion plate in the lower part of the furnace and reacted while forming a fluidized bed of the granular material to be charged into the furnace. , The furnace is divided into a plurality of compartments, the partition wall provided with an opening for the transfer of the granular material to the adjacent compartments, the arrangement density of the reaction gas introduction nozzles formed in the dispersion plate, It is a fluidized bed reactor of the layer-divided type, which is characterized in that it is changed in accordance with the divisions into which it is divided. Further, the present invention is characterized in that the oxygen-containing gas and the fuel are blown into a part of the divided sections. Further, the present invention is characterized in that a section separated from the outer wall of the furnace is provided near the center of the furnace. Further, the present invention is characterized in that the volume of the upper space of the plurality of divided compartments is relatively changed with respect to the bottom area of each compartment.

【0016】[0016]

【作用】本発明に従えば、流動層内を仕切壁によって複
数の区割に分割し、仕切壁には隣接区割への粉粒体原料
移行用の開口が形成されるので、粉粒体原料の炉内滞留
時間が実質的に増大し、炉外へ排出されるまでの平均反
応率が向上する。一部の区割には酸素含有ガスが供給さ
れて還元ガスが部分的に燃焼されるので、細粒原料の温
度を上昇させ、還元率を向上させることができる。炉内
で細粒原料の温度を上昇させることができるので、流動
層炉に導入する還元ガスの温度を下げることができ、還
元ガス中に含まれるダストの分散板等への付着量を低減
することができる。酸素含有ガスによって部分燃焼した
還元ガスは、すでに還元率が高くなっている細粒原料を
再酸化することがなくなるので、還元能力が向上する。
According to the present invention, the fluidized bed is divided into a plurality of compartments by the partition wall, and the partition wall is formed with the openings for transferring the raw material of the granular material to the adjacent compartments. The residence time of the raw material in the furnace is substantially increased, and the average reaction rate until it is discharged to the outside of the furnace is improved. Since the oxygen-containing gas is supplied to some of the sections to partially burn the reducing gas, it is possible to raise the temperature of the fine-grain raw material and improve the reduction rate. Since the temperature of the fine-grain raw material can be raised in the furnace, the temperature of the reducing gas introduced into the fluidized bed furnace can be lowered, and the amount of dust contained in the reducing gas attached to the dispersion plate etc. can be reduced. be able to. The reducing gas partially burned by the oxygen-containing gas does not reoxidize the fine-grained raw material having a high reduction rate, so that the reducing ability is improved.

【0017】また本発明に従えば、分散板に形成される
還元ガス導入用ノズルの配置密度、すなわち、ノズルの
単位面積当りの数やノズル径を変えることによって、各
区割で細粒原料の還元用に必要とする最適な還元ガス流
量を得ることができ、還元ガスの有効利用を図ることが
できる。
Further, according to the present invention, by changing the arrangement density of the reducing gas introducing nozzles formed on the dispersion plate, that is, the number of nozzles per unit area and the nozzle diameter, the fine-grain raw material is reduced in each section. It is possible to obtain an optimum flow rate of reducing gas required for use, and it is possible to effectively utilize the reducing gas.

【0018】また本発明に従えば、酸素含有ガスによっ
て部分燃焼した還元ガスを、他の区割の排ガス経路とは
別個の経路を設けて排出するので、他の区割からの排ガ
スの発熱量を低下させることがなく、その排ガスの利用
価値を維持することができる。
Further, according to the present invention, the reducing gas partially burned by the oxygen-containing gas is discharged by providing a route different from the exhaust gas route of the other zones, so that the calorific value of the exhaust gas from the other zones is discharged. It is possible to maintain the utility value of the exhaust gas without decreasing the exhaust gas.

【0019】さらに本発明に従えば、分散板上で仕切壁
によって複数の分割された区割毎に、反応ガス導入用ノ
ズルの配置密度を変えて、各区割毎の反応に最適な反応
ガス流量を改善することができ、反応ガスの有効利用を
図ることができる。
Further, according to the present invention, the arrangement density of the reaction gas introduction nozzles is changed for each of a plurality of divisions divided by the partition wall on the dispersion plate, and the reaction gas flow rate optimum for the reaction in each division is obtained. Can be improved, and the reaction gas can be effectively used.

【0020】また本発明に従えば、分割された複数の区
割のうちの一部を反応段階に応じて加熱することができ
るので、全体として効率的な反応を生じさせることがで
きる。
Further, according to the present invention, a part of the plurality of divided sections can be heated according to the reaction stage, so that an efficient reaction can be caused as a whole.

【0021】また本発明に従えば、分割された複数の区
割の上方空間の容積を、各区割の底面積に対して相対的
に変化させるので、分散板を通過したガスの流速が異な
る区割を形成することができる。流動化可能な粉粒体原
料の粒径の範囲に合わせて一部区割の断面積を変えれ
ば、全体として広い粒径範囲の粉粒体原料を処理するこ
とができる。
Further, according to the present invention, the volume of the upper space of the plurality of divided sections is changed relative to the bottom area of each section, so that the sections having different gas flow rates passing through the dispersion plate are used. A crack can be formed. By changing the cross-sectional area of some sections according to the particle size range of the fluidizable powder or granular material, it is possible to process the powder or granular material with a wide particle size range as a whole.

【0022】[0022]

【実施例】図1は、本発明の第1実施例による予備還元
炉11の概略的な構成を示す。予備還元炉11には仕切
壁12が設けられ、仕切壁12には開口13が形成され
る。このような仕切壁12は、風箱14の上方の分散板
15上に立設される。分散板15上には、風箱14から
供給される還元ガスによって流動層が形成され、流動層
からはシュート16を介して還元鉱石が排出される。原
料である鉄鉱石を装入するシュート17は、仕切壁12
によって分割された複数のセクション18のうち、還元
鉱石排出用のシュート16が接続されるセクション18
とは異なるセクション18に原料装入口19から鉄鉱石
を装入する。風箱14には、還元ガス供給管20を介し
て還元ガスが供給される。還元ガスは、たとえば図13
に示したような溶融還元プロセスの溶融炉からの発生ガ
スであり、COが46%、CO2が20%、H2が11
%、H2Oが18%、N2が5%の組成を有し、温度は1
019℃である。このような組成の還元ガスがガス入口
21から還元ガス供給管20を介して風箱14内に貯留
され、分散板15上で流動層22を形成する。
1 shows a schematic structure of a preliminary reduction furnace 11 according to a first embodiment of the present invention. A partition wall 12 is provided in the preliminary reduction furnace 11, and an opening 13 is formed in the partition wall 12. Such a partition wall 12 is erected on the dispersion plate 15 above the wind box 14. A fluidized bed is formed on the dispersion plate 15 by the reducing gas supplied from the wind box 14, and the reduced ore is discharged from the fluidized bed through the chute 16. The chute 17 into which the raw iron ore is charged is the partition wall 12
The section 18 to which the chute 16 for discharging reduced ore is connected among the plurality of sections 18 divided by
The iron ore is charged into the section 18 different from the above through the raw material charging port 19. The reducing gas is supplied to the wind box 14 through the reducing gas supply pipe 20. The reducing gas is, for example, FIG.
The gas generated from the melting furnace in the smelting reduction process as shown in Fig. 4, CO is 46%, CO 2 is 20%, and H 2 is 11%.
%, H 2 O is 18%, N 2 is 5%, and the temperature is 1
It is 019 ° C. The reducing gas having such a composition is stored in the wind box 14 from the gas inlet 21 through the reducing gas supply pipe 20, and forms the fluidized bed 22 on the dispersion plate 15.

【0023】図2は、図1の切断面線II−IIから見
た断面図を示す。ただし、図1では説明の便宜上、シュ
ート16,17の位置を変えて表示している。装入され
る鉄鉱石から還元鉱石として排出されるまでの間に、仕
切壁12によって区割された3つのセクション18を通
って3段階の反応が行われる。これによって仕切壁12
がない場合には、13%の還元率であったものが、本実
施例によれば仕切壁12を設けて17%の還元率にま
で、4%上昇させることができる。このような17%の
予備還元率を実現する流動層22の温度は、700℃で
あり、流動層22の高さは1100mmである。
FIG. 2 is a sectional view taken along the section line II-II in FIG. However, in FIG. 1, for convenience of description, the positions of the chutes 16 and 17 are changed and displayed. A three-step reaction is carried out through the three sections 18 divided by the partition wall 12 until the iron ore charged is discharged as reduced ore. By this, the partition wall 12
In the case where there is not, the reduction rate of 13% can be increased by 4% to 17% by the partition wall 12 according to the present embodiment. The temperature of the fluidized bed 22 that achieves such a preliminary reduction rate of 17% is 700 ° C., and the height of the fluidized bed 22 is 1100 mm.

【0024】図3は、図1の実施例による予備還元炉1
1の実際の形状を示す。壁上部23の壁外壁24は、風
箱14および分散板15が設けられ、流動層22が形成
される部分よりも径が大きくなっている。これによって
ガスの流速が低下し、流動層22の高さが抑制される。
原料装入口19からのシュート17の途中には、投入バ
ルブ25が設けられ、還元鉱石排出用のシュート16の
途中にも排出バルブ26が設けられ、予備還元炉11内
の気密性を保っている。予備還元炉11の頂部には排気
ダクト27が接続され、サイクロンセパレータ28によ
って微細な原料を回収し、原料装入口19に戻す。
FIG. 3 shows a preliminary reduction furnace 1 according to the embodiment of FIG.
1 shows the actual shape of 1. The outer wall 24 of the upper wall portion 23 is provided with the wind box 14 and the dispersion plate 15 and has a diameter larger than that of the portion where the fluidized bed 22 is formed. As a result, the gas flow velocity is reduced, and the height of the fluidized bed 22 is suppressed.
A charging valve 25 is provided in the middle of the chute 17 from the raw material charging port 19, and a discharge valve 26 is also provided in the middle of the chute 16 for discharging the reduced ore to maintain the airtightness in the preliminary reduction furnace 11. . An exhaust duct 27 is connected to the top of the preliminary reduction furnace 11, and a fine material is collected by a cyclone separator 28 and returned to the material charging port 19.

【0025】図4は、図3のIV部の分散板15の一部
を拡大して示す。分散板15には、ノズル29が配置さ
れ、その上方のキャップに設けられる隙間から還元ガス
が噴出され、流動層22が形成される。
FIG. 4 is an enlarged view of a part of the dispersion plate 15 in the IV section of FIG. A nozzle 29 is arranged in the dispersion plate 15, and reducing gas is ejected from a gap provided in the cap above the dispersion plate 15 to form a fluidized bed 22.

【0026】図5は、流動層の段数と滞留時間との関係
を示す。単段式すなわちn=1の場合は、全流動層に対
する平均の粒子滞留時間t0を基準とした時間t/t0
が0のときに最大の割合となり、時間の増大とともに割
合が低下する。段数nが増大すると、投入直後の排出頻
度が0となり、滞留時間が増大する。
FIG. 5 shows the relationship between the number of stages of the fluidized bed and the residence time. In the case of the single stage type, that is, when n = 1, the time t / t0 based on the average particle retention time t0 for all fluidized beds is used.
When is 0, the maximum ratio is reached, and the ratio decreases as time increases. When the number of stages n increases, the discharge frequency immediately after charging becomes 0 and the residence time increases.

【0027】図6および図7は、本発明の第2実施例に
よる予備還元炉31の構成を示す。図6は縦断面図、図
7は図6の切断面線VII−VIIから見た断面図をそ
れぞれ示す。本実施例では、仕切壁12によって分割さ
れたセクションの1つに、予熱セクション32を設け、
酸素導入口33を介して酸素供給装置34から供給され
る酸素ガスを吹込んで粉粒体を600℃に昇温する。石
炭等の成分に起因する還元ガス中のダストの性状や軟化
温度を考慮して、還元ガスを1000℃以下に保つ必要
がある場合は、鉄鉱石装入によって200〜300℃低
下する還元ガスの温度を、部分的に昇温させ、反応に最
適な900℃付近まで昇温させることができる。ただし
900℃を超えると流動層内で鉱石の一部が固着するの
で、850℃程度に抑える。このように流動層温度を上
昇させることによって、予備還元率を24%程度まで向
上させることができる。
FIG. 6 and FIG. 7 show the structure of the preliminary reduction furnace 31 according to the second embodiment of the present invention. 6 is a longitudinal sectional view, and FIG. 7 is a sectional view taken along the section line VII-VII in FIG. In this embodiment, a preheating section 32 is provided in one of the sections divided by the partition wall 12,
The oxygen gas supplied from the oxygen supply device 34 is blown in through the oxygen introduction port 33 to raise the temperature of the powdery particles to 600 ° C. When it is necessary to keep the reducing gas at 1000 ° C or lower in consideration of the properties of the dust in the reducing gas and the softening temperature due to the components such as coal, when the reducing gas is reduced by 200 to 300 ° C by the iron ore charging, The temperature can be partially raised to approximately 900 ° C., which is optimum for the reaction. However, if the temperature exceeds 900 ° C, some of the ore will stick in the fluidized bed, so the temperature should be kept at around 850 ° C. By increasing the fluidized bed temperature in this way, the preliminary reduction rate can be improved to about 24%.

【0028】図8は、本発明の第3実施例による予備還
元炉51の概略的な構成を示す。本実施例では、仕切壁
52によって分割された予熱セクション53からの排ガ
スを、個別の排気ダクト54を介して他の排ガスと別に
排出し、他の排ガスが保有する潜熱量(LHV)を低下
させることを防ぐことができる。
FIG. 8 shows a schematic structure of a preliminary reduction furnace 51 according to the third embodiment of the present invention. In this embodiment, the exhaust gas from the preheating section 53 divided by the partition wall 52 is discharged separately from the other exhaust gas through the individual exhaust ducts 54 to reduce the latent heat amount (LHV) held by the other exhaust gas. Can be prevented.

【0029】図9は、本発明の第4実施例による予備還
元炉61の概略的な構成を示す。本実施例で注目すべき
は、仕切壁62によって、炉の中心付近で炉外壁24と
は離隔したセクション63が形成されるため、半径方向
に延びる仕切壁64のみで多分割した場合のように、中
心部に鋭角状のデッドポイントが形成されて、流動状態
が悪化することはない。
FIG. 9 shows a schematic structure of a preliminary reduction furnace 61 according to the fourth embodiment of the present invention. It should be noted in this embodiment that the partition wall 62 forms the section 63 which is separated from the furnace outer wall 24 in the vicinity of the center of the furnace, and therefore, as in the case of the multi-division only by the partition wall 64 extending in the radial direction. The sharp dead point is formed in the central portion, and the flow state is not deteriorated.

【0030】図10は、本発明の第5実施例による予備
還元炉71の概略的な構成を示す。本実施例では、仕切
壁72によって仕切られた予熱セクション73に酸素含
有ガスばかりではなく燃料も供給し、予熱セクション7
3を昇温する。燃料としては、天然ガスや石油等の液体
燃料、または排ガスを冷却除塵した後の循環ガスなどを
使用することができる。燃料と酸素含有ガスの燃焼は、
流動層へ吹込む直前に行うようにしてもよく、流動層へ
吹込んだ後で行うようにしてもよい。
FIG. 10 shows a schematic structure of a preliminary reduction furnace 71 according to the fifth embodiment of the present invention. In this embodiment, not only the oxygen-containing gas but also the fuel is supplied to the preheating section 73 partitioned by the partition wall 72, and the preheating section 7
3 is heated. As the fuel, a liquid fuel such as natural gas or petroleum, or a circulating gas obtained by cooling and removing dust from exhaust gas can be used. Combustion of fuel and oxygen-containing gas
It may be performed immediately before blowing into the fluidized bed, or may be performed after blowing into the fluidized bed.

【0031】図11および図12は、本発明の第6実施
例による予備還元炉81の構成を示す。図12は図11
の切断面線XII−XIIから見た断面図を示す。本実
施例で注目すべきは、仕切板82によって仕切られたセ
クション83の炉外壁84が、部分的に膨らんで流動層
形成用の流速が低下するようになっていることである。
炉外壁84が膨らんでいるセクション83の分散板15
上に占める面積は図12に示すように比較的小さくなっ
ており、原料装入口19から装入される鉄鉱石が0.1
〜10mmの粒度分布を有しているようなときには、
0.1〜0.5mmの細粒が仕切壁82の上から移行
し、予備還元されて細粒予備還元鉱石として排出され
る。また飛散した細粒は、サイクロン85によって回収
され、循環細粒鉱石としてセクション83に戻される。
このような細粒用のセクション83の流速はたとえば1
m/sである。これに対して0.5〜10mmの鉄鉱石
の粗粒は、たとえば4.8m/sの流速で流動化され、
粗粒予備還元鉱石として排出される。本実施例によれ
ば、総合的に0.1〜10mmの広い範囲の粒度分布を
有する鉄鉱石を処理することができ、安価な原料を有効
に利用することができる。
11 and 12 show the structure of a preliminary reduction furnace 81 according to the sixth embodiment of the present invention. FIG. 12 shows FIG.
The sectional view seen from the section line XII-XII of FIG. What should be noted in this embodiment is that the furnace outer wall 84 of the section 83 partitioned by the partition plate 82 partially swells to reduce the flow velocity for forming the fluidized bed.
Dispersion plate 15 of section 83 in which outer wall 84 of the furnace is swollen
The area occupied on the top is relatively small as shown in FIG. 12, and the iron ore charged from the raw material charging port 19 is 0.1
When it has a particle size distribution of 10 mm,
Fine grains of 0.1 to 0.5 mm migrate from the top of the partition wall 82, are pre-reduced, and are discharged as fine grain pre-reduction ores. Further, the scattered fine grains are collected by the cyclone 85 and returned to the section 83 as a circulation fine grain ore.
The flow velocity of such fine grain section 83 is, for example, 1
m / s. On the other hand, coarse particles of iron ore of 0.5 to 10 mm are fluidized at a flow velocity of 4.8 m / s,
It is discharged as coarse grain pre-reduction ore. According to this example, iron ore having a wide range of particle size distribution of 0.1 to 10 mm can be treated comprehensively, and inexpensive raw materials can be effectively used.

【0032】以上の各実施例では、溶融還元プロセスに
おける鉄鉱石の予備還元炉について説明しているけれど
も、直接還元製鉄プロセスでも、還元炉に本発明による
層分割型流動層炉を利用することができる。また一般の
鉱石予熱プロセスや、焼成反応プロセスなどにも、本発
明による層分割型流動層炉を使用することができる。さ
らに、流動層をセクション間で移動可能にする開口13
は、仕切壁の上縁などの切欠きとして形成することもで
きる。
In each of the above embodiments, the preliminary reduction furnace for iron ore in the smelting reduction process has been described, but the layer-division type fluidized bed furnace according to the present invention can also be used as the reduction furnace in the direct reduction ironmaking process. it can. Further, the layer-separated fluidized bed furnace according to the present invention can be used for a general ore preheating process, a firing reaction process and the like. In addition, openings 13 that allow the fluidized bed to be moved between sections.
Can also be formed as a notch such as the upper edge of the partition wall.

【0033】[0033]

【発明の効果】以上のように本発明によれば、流動炉内
を複数に分割することによって、直列多段型と同様の効
果を得ることができ、粉粒体原料の炉内での滞留時間を
増大させて平均反応率を向上させることができる。直列
多段型のように炉の高さが増大することはないので、設
備費と操業費の安いプロセスを簡単な設備で実現するこ
とができる。一部の区割では還元ガスを部分的に燃焼さ
せるので、還元率を向上させ、流動層炉入口の還元ガス
温度を下げてダストの分散板等への付着を防止すること
ができる。また部分燃焼したガスは、すでに還元率が向
上している鉱石を再酸化させないので、炉の還元能力を
向上させることができる。
As described above, according to the present invention, by dividing the inside of the flow furnace into a plurality of parts, it is possible to obtain the same effect as that of the series multistage type, and the residence time of the granular material in the furnace. Can be increased to improve the average reaction rate. Since the height of the furnace does not increase unlike the series multi-stage type, a process with low equipment cost and operating cost can be realized with simple equipment. Since the reducing gas is partially burned in some sections, it is possible to improve the reduction rate and lower the temperature of the reducing gas at the inlet of the fluidized bed furnace to prevent dust from adhering to the dispersion plate or the like. Moreover, since the partially burned gas does not reoxidize the ore whose reduction rate has already been improved, the reducing ability of the furnace can be improved.

【0034】また本発明によれば、還元ガス導入用ノズ
ルの配置密度を変えて、区割毎に最適な割合で還元ガス
を分配することができ、還元ガスの有効利用を行うこと
ができる。
Further, according to the present invention, the arrangement density of the reducing gas introducing nozzles can be changed to distribute the reducing gas at an optimum ratio for each division, and the reducing gas can be effectively used.

【0035】また本発明によれば、部分燃焼した排ガス
は他の区割の排ガスとは別個に排出することができるの
で、他の区割の排ガスの発熱量を低下させることはな
く、排ガスの価値を維持することができる。
Further, according to the present invention, the partially burned exhaust gas can be discharged separately from the exhaust gas of the other zones, so that the calorific value of the exhaust gas of the other zones is not reduced, and the exhaust gas Value can be maintained.

【0036】さらに本発明によれば、流動層炉内を複数
の区割に分割し、流動層炉を形成するための反応ガスの
分配を、分散板に形成するガス導入用ノズルの配置密度
によって調整することができるので、反応ガスの有効利
用を図ることができる。
Further, according to the present invention, the inside of the fluidized bed furnace is divided into a plurality of sections, and the distribution of the reaction gas for forming the fluidized bed furnace is determined by the arrangement density of the gas introduction nozzles formed on the dispersion plate. Since it can be adjusted, the reaction gas can be effectively used.

【0037】また本発明によれば、区割の一部に酸素含
有ガスと燃料とを吹込むので、その区割を有効に昇温さ
せることができ、全体として効率的な反応を促進させる
ことができる。
Further, according to the present invention, since the oxygen-containing gas and the fuel are blown into a part of the compartment, the compartment can be effectively heated, and the efficient reaction is promoted as a whole. You can

【0038】また本発明によれば、炉中心付近に炉外壁
から離隔した区割を設けるので、炉内の区割数が大きく
なっても、炉中心付近に別途セクションが生じることな
く、炉内の有効利用を図ることができる。
Further, according to the present invention, since the compartment separated from the outer wall of the furnace is provided near the center of the furnace, even if the number of compartments in the furnace becomes large, a separate section does not occur near the center of the furnace, Can be effectively used.

【0039】また本発明によれば、複数の区割でガスの
流動速度を変えることができるので、粒径の異なる粉粒
体原料を並列に処理することができ、全体として粒度分
布の範囲が広い粉粒体原料を処理することができ、安価
な原料を効率的に処理することができる。
Further, according to the present invention, since the gas flow rate can be changed in a plurality of divisions, it is possible to process the raw materials of the granular material having different particle diameters in parallel, and the range of the particle size distribution as a whole is A wide range of powdery and granular materials can be processed, and inexpensive materials can be efficiently processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による予備還元炉の概略的
な構成を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a schematic configuration of a preliminary reduction furnace according to a first embodiment of the present invention.

【図2】図1の切断面線II−IIから見た断面図であ
る。
FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

【図3】図1の実施例による予備還元炉11の縦断面図
である。
3 is a vertical sectional view of a preliminary reduction furnace 11 according to the embodiment of FIG.

【図4】図3に示す分散板15の部分断面図である。4 is a partial cross-sectional view of the dispersion plate 15 shown in FIG.

【図5】図1の実施例による分割の効果を示すグラフで
ある。
5 is a graph showing an effect of division according to the embodiment of FIG.

【図6】本発明の第2実施例による予備還元炉31の部
分的な縦断面図である。
FIG. 6 is a partial vertical sectional view of a preliminary reduction furnace 31 according to a second embodiment of the present invention.

【図7】図6の切断面線VII−VIIから見た断面図
である。
FIG. 7 is a sectional view taken along section line VII-VII of FIG. 6;

【図8】本発明の第3実施例による予備還元炉41の部
分的な縦断面図である。
FIG. 8 is a partial vertical sectional view of a preliminary reduction furnace 41 according to a third embodiment of the present invention.

【図9】本発明の第4実施例による予備還元炉51の横
断面図である。
FIG. 9 is a cross-sectional view of a preliminary reduction furnace 51 according to a fourth embodiment of the present invention.

【図10】本発明の第5実施例による予備還元炉61の
部分的な縦断面図である。
FIG. 10 is a partial vertical sectional view of a preliminary reduction furnace 61 according to a fifth embodiment of the present invention.

【図11】本発明の第6実施例による予備還元炉81の
概略的な縦断面図である。
FIG. 11 is a schematic vertical sectional view of a preliminary reduction furnace 81 according to a sixth embodiment of the present invention.

【図12】図11の切断面線XII−XIIから見た断
面図である。
FIG. 12 is a cross-sectional view taken along the line XII-XII of FIG. 11;

【図13】鉄鉱石の溶融還元プロセスの基本的構成を示
す簡略化した断面図である。
FIG. 13 is a simplified cross-sectional view showing the basic configuration of the iron ore smelting reduction process.

【図14】単一式の流動層炉における予備還元率とガス
流量および必要な温度との関係を示すグラフである。
FIG. 14 is a graph showing the relationship between the pre-reduction rate, gas flow rate and required temperature in a single type fluidized bed furnace.

【図15】直列多段型流動層炉の概略的な構成を示す縦
断面図である。
FIG. 15 is a vertical cross-sectional view showing a schematic configuration of a series multi-stage fluidized bed furnace.

【符号の説明】[Explanation of symbols]

11,31,51,61,71,81 予備還元炉 12,52,62,64,72,82 仕切壁 13 開口 14 風箱 15 分散板 16,17 シュート 18,53,63,73,83 セクション 19 原料装入口 20 還元ガス供給管 21 ガス入口 22 流動層 27,54 排気ダクト 28 サイクロンセパレータ 29 ノズル 32 予熱セクション 33 酸素導入口 84 炉外壁 11, 31, 51, 61, 71, 81 Pre-reduction furnace 12, 52, 62, 64, 72, 82 Partition wall 13 Opening 14 Wind box 15 Dispersion plate 16, 17 Chute 18, 53, 63, 73, 83 Section 19 Raw material inlet 20 Reducing gas supply pipe 21 Gas inlet 22 Fluidized bed 27,54 Exhaust duct 28 Cyclone separator 29 Nozzle 32 Preheating section 33 Oxygen inlet 84 Outer wall of furnace

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高温の還元ガスを炉下部の分散板を介し
て炉内に導入し、炉内に装入される粉粒体原料の流動層
を形成しながら反応させる流動層炉であって、 炉内を複数の区割に分割し、隣接区割への粉粒体原料移
行用の開口が形成される仕切壁と、 一部の区割に、還元ガスを部分的に燃焼させるための酸
素含有ガスを導入する酸素供給装置とを含むことを特徴
とする層分割型流動層炉。
1. A fluidized bed furnace in which high-temperature reducing gas is introduced into the furnace through a dispersion plate in the lower part of the furnace to react while forming a fluidized bed of a granular material to be charged into the furnace. , The partition wall that divides the furnace into multiple compartments and has openings for the transfer of the granular material to the adjacent compartments, and some compartments for partially burning the reducing gas A layered-type fluidized bed furnace comprising: an oxygen supply device for introducing an oxygen-containing gas.
【請求項2】 前記分散板に形成される還元ガス導入用
ノズルの配置密度を、分割される区割に対応して変える
ことを特徴とする請求項1記載の層分割型流動層炉。
2. The layer-division type fluidized bed furnace according to claim 1, wherein the arrangement density of the reducing gas introduction nozzles formed on the dispersion plate is changed in accordance with the division into which the gas is divided.
【請求項3】 前記酸素供給装置からの酸素含有ガスが
導入されて還元ガスが部分的に燃焼される区割には、他
の区割とは別個の排ガス経路を設けることを特徴とする
請求項1または2記載の層分割型流動層炉。
3. An exhaust gas passage separate from other divisions is provided in the division where the oxygen-containing gas from the oxygen supply device is introduced and the reducing gas is partially combusted. Item 1. A bed-divided fluidized bed furnace according to item 1 or 2.
【請求項4】 高温の反応ガスを炉下部の分散板を介し
て炉内に導入し、炉内に装入される粉粒体原料の流動層
を形成しながら反応させる流動層炉であって、炉内を複
数の区割に分割し、隣接区割への粉粒体原料移行用の開
口が形成される仕切壁を備え、 分散板に形成される反応ガス導入用ノズルの配置密度
を、分割される区割に対応して変えることを特徴とする
層分割型流動層炉。
4. A fluidized bed furnace in which a high-temperature reaction gas is introduced into the furnace through a dispersion plate in the lower part of the furnace to react while forming a fluidized bed of the granular material to be charged into the furnace. , The furnace is divided into a plurality of compartments, the partition wall is provided with an opening for the transfer of the granular material to the adjacent compartment, the arrangement density of the reaction gas introduction nozzles formed in the dispersion plate, A bed-division type fluidized bed furnace characterized by being changed in accordance with the division into which it is divided.
【請求項5】 分割された区割のうちの一部に、酸素含
有ガスと燃料とを吹込むことを特徴とする請求項1〜4
のいずれかに記載の層分割型流動層炉。
5. The oxygen-containing gas and the fuel are blown into a part of the divided compartments.
The layer-divided fluidized bed furnace according to any one of 1.
【請求項6】 炉中心付近に、炉外壁から離隔した区割
を設けることを特徴とする請求項1〜5のいずれかに記
載の層分割型流動層炉。
6. The layer-division type fluidized bed furnace according to claim 1, further comprising a partition provided near the center of the furnace, the partition being separated from the outer wall of the furnace.
【請求項7】 分割された複数の区割の上方空間の容積
を、各区割の底面積に対して相対的に変化させることを
特徴とする請求項1〜6のいずれかに記載の層分割型流
動層炉。
7. The layer division according to claim 1, wherein the volume of the upper space of the plurality of divided divisions is changed relative to the bottom area of each division. Type fluidized bed furnace.
JP16663495A 1995-06-30 1995-06-30 Layer split type fluidized-bet furnace Pending JPH0914853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16663495A JPH0914853A (en) 1995-06-30 1995-06-30 Layer split type fluidized-bet furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16663495A JPH0914853A (en) 1995-06-30 1995-06-30 Layer split type fluidized-bet furnace

Publications (1)

Publication Number Publication Date
JPH0914853A true JPH0914853A (en) 1997-01-17

Family

ID=15834924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16663495A Pending JPH0914853A (en) 1995-06-30 1995-06-30 Layer split type fluidized-bet furnace

Country Status (1)

Country Link
JP (1) JPH0914853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108570A1 (en) * 2010-03-03 2011-09-09 国立大学法人北海道大学 Ironmaking process and ironmaking system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108570A1 (en) * 2010-03-03 2011-09-09 国立大学法人北海道大学 Ironmaking process and ironmaking system
JP2011179089A (en) * 2010-03-03 2011-09-15 Hokkaido Univ Iron-manufacturing method and system

Similar Documents

Publication Publication Date Title
US8021600B2 (en) Method and plant for the heat treatment of solids containing iron oxide
AU776002B2 (en) Method and facilities for metal smelting
EP0748391B1 (en) Fluidized bed type reduction apparatus for iron ore particles and its use for reducing iron ore particles
US5762681A (en) Fluidized bed type reduction apparatus for iron ores and method for reducing iron ores using the apparatus
US9382594B2 (en) Process and apparatus for producing pressed articles
KR102019971B1 (en) Liquid pig iron manufacturing method
CN1030775C (en) Process and apparatus for reducing spongy iron in coal-base shaft furnace
RU2195501C1 (en) Fluidized-bed reactor preventing ground iron ore from sticking and method proposed for this reactor
JPH0914853A (en) Layer split type fluidized-bet furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP3510472B2 (en) Melting furnace
JP5338308B2 (en) Raw material charging method to blast furnace
JP5338310B2 (en) Raw material charging method to blast furnace
KR100236194B1 (en) Two step twin-single type fluidized bed system for fine iron ore
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
KR20000038827A (en) Flow-type pre-reduction apparatus of powder iron ore and pre-reducing method with the same
JP3642027B2 (en) Blast furnace operation method
KR100236191B1 (en) A fluidized-bed apparatus and method for reducing fine iron ores
JP2827451B2 (en) Blast furnace tuyere powder injection operation method
JP4706583B2 (en) How to charge the bellless blast furnace
JPH01152211A (en) Pre-reduction apparatus for smelting reduction
JP2005248271A (en) Method for granulating sintering raw material
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JP2021070870A (en) Method for charging raw material into blast furnace and method for producing molten iron
SU1235900A1 (en) Method of charging blast furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060710

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A711 Notification of change in applicant

Effective date: 20070222

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20070720

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724