JPH09147912A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09147912A
JPH09147912A JP7309391A JP30939195A JPH09147912A JP H09147912 A JPH09147912 A JP H09147912A JP 7309391 A JP7309391 A JP 7309391A JP 30939195 A JP30939195 A JP 30939195A JP H09147912 A JPH09147912 A JP H09147912A
Authority
JP
Japan
Prior art keywords
electrolyte
formula
gel electrolyte
represented
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7309391A
Other languages
Japanese (ja)
Other versions
JP3312836B2 (en
Inventor
Toru Matsui
徹 松井
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30939195A priority Critical patent/JP3312836B2/en
Publication of JPH09147912A publication Critical patent/JPH09147912A/en
Application granted granted Critical
Publication of JP3312836B2 publication Critical patent/JP3312836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable nonaqueous electrolyte secondary battery which suppresses generation of dendrite on a negative electrode by using a gel electrolyte containing a high polymer matrix, in which specific two kinds of compounds are polymerized, as an alkaline ion conductive electrolyte. SOLUTION: A nonaqueous electrolyte secondary battery is provided with a positive electrode, an alkaline ion conductive electrolyte, and a negative electrode using alkali metal as an active material. For the electrolyte, a gel electrolyte containing a high polymer matrix is used. The high polymer matrix is prepared by polymerizing ethylene oxide addition trimethylol propane triacrylate represented by a formula (1) (m>=1), ethylene oxide propylene oxide block polyether diacrylate represented by a formula (2) (n>=1), and polycarbonate diacylate represented by a formula (3) 1>=1; R represents (CH2 )s or [(CH2 )k O (CH2 )k ]t , s, k, t are 1 or more in integer number individually}.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特に、その電解質と負極の界面特性の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improving the interface characteristics between the electrolyte and the negative electrode.

【0002】[0002]

【従来の技術】今日、プロピレンカーボネート,γ−ブ
チロラクトン,ジメトキシエタン,テトラヒドロフラ
ン,ジオキソラン等の有機溶媒に、LiClO4,Li
BF4,LiAsF6,LiPF6,LiCF3SO3等の
溶質を溶解した電解液と、リチウム等のアルカリ金属を
活物質とする負極を組み合わせた非水電解質電池は、高
エネルギー密度を有するため、電子時計,カメラをはじ
めとする小型電子機器に広く用いられるようになった。
Nowadays, propylene carbonate, .gamma.-butyrolactone, dimethoxyethane, tetrahydrofuran, in organic solvent dioxolane, LiClO 4, Li
Since a non-aqueous electrolyte battery in which an electrolyte solution in which a solute such as BF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 or the like is dissolved and a negative electrode using an alkali metal such as lithium as an active material are combined has a high energy density, It has come to be widely used for small electronic devices such as electronic watches and cameras.

【0003】この種の非水電解質電池を充電可能にする
ための課題のひとつは、充電過程において負極上に析出
する樹枝状,フィブリル状,針状の形態、いわゆるデン
ドライトを抑制することである。このデンドライトが著
しく成長すると、負極と正極の内部短絡により電池の寿
命が一瞬にして損なわれる危惧がある。また、以降の放
電過程で溶解を行っても、デンドライトの局部的溶解が
進行し、一部は電気的に極板より遊離するため、すべて
のデンドライトを溶かし出すことができなくなる。すな
わち、充電(析出)量に対する放電(溶解)量が小さく
なり、充放電効率の低下をもたらす。
One of the problems for making this type of non-aqueous electrolyte battery chargeable is to suppress dendritic, fibril-like, and needle-like forms, so-called dendrites, which are deposited on the negative electrode during the charging process. If the dendrite grows remarkably, there is a concern that the life of the battery is instantaneously impaired due to an internal short circuit between the negative electrode and the positive electrode. Further, even if melting is performed in the subsequent discharge process, local melting of the dendrite proceeds, and a part of the dendrite is electrically released from the electrode plate, so that all the dendrites cannot be melted out. That is, the amount of discharge (dissolution) with respect to the amount of charge (precipitation) is reduced, and the charge / discharge efficiency is reduced.

【0004】このような、課題を解決する方法として、
電解液に代わりポリマー電解質を用いることによって、
デンドライトの抑制を行うことが提案された(Fast Ion
Transport in Solids, North-Holland, New York, 197
9, 131頁)。ここで、ポリマー電解質とは、酸素等の極
性原子を分子鎖に有する高分子、例えば、ポリエチレン
オキシドとこの高分子に溶解し解離するアルカリ金属塩
との混合物を指し、また、この混合物中にはプロピレン
カーボネート等の溶媒(可塑剤)を含んでいてもよい
(この場合にはゲル電解質と呼ばれる)。溶媒を含まな
いポリマー電解質は、イオン伝導度が低く、今日の電子
機器に要求される特性を満たすことが困難であるので、
後者のゲル電解質が最も注目されている。
As a method for solving such a problem,
By using a polymer electrolyte instead of the electrolyte,
It was proposed to suppress dendrites (Fast Ion
Transport in Solids, North-Holland, New York, 197
9, 131). Here, the polymer electrolyte refers to a polymer having a polar atom such as oxygen in its molecular chain, for example, a mixture of polyethylene oxide and an alkali metal salt that dissolves and dissociates in the polymer, and in this mixture, It may contain a solvent (plasticizer) such as propylene carbonate (in this case, it is called a gel electrolyte). Solvent-free polymer electrolytes have low ionic conductivity and it is difficult to satisfy the properties required for today's electronic devices.
The latter gel electrolyte has received the most attention.

【0005】[0005]

【発明が解決しようとする課題】以上のようなゲル電解
質を非水電解質二次電池に用いた場合、充放電サイクル
にともなって電池の内部抵抗が徐々に上昇し、電解液を
用いた場合に比べてサイクル寿命が短くなるという課題
があった。これは以下の理由による。電池組み立て直後
や充放電サイクルの初期では、リチウム等のアルカリ金
属を活物質とする負極の表面は比較的平らであり、弾性
的なゲル電解質との密着性は良好であるため、負極とゲ
ル電解質の界面抵抗は小さい。しかし、充放電サイクル
が進行すると、負極の表面は局部的なデンドライトの成
長によって平らではなくなり、デンドライトの各成長点
を中心としてゲル電解質が持ち上げられ、負極とゲル電
解質が剥離するようになる。その結果、負極とゲル電解
質の界面抵抗は増大し、電池の充放電は困難になる。
When the gel electrolyte as described above is used in a non-aqueous electrolyte secondary battery, the internal resistance of the battery gradually increases with charge / discharge cycles, and when an electrolyte solution is used, There was a problem that the cycle life was shorter than that. This is for the following reason. Immediately after the battery is assembled or at the beginning of the charge / discharge cycle, the surface of the negative electrode whose active material is an alkali metal such as lithium is relatively flat, and the adhesiveness with the elastic gel electrolyte is good. Has a small interface resistance. However, as the charge / discharge cycle progresses, the surface of the negative electrode becomes uneven due to the local growth of dendrites, and the gel electrolyte is lifted around the growth points of the dendrites, so that the negative electrode and the gel electrolyte are separated from each other. As a result, the interface resistance between the negative electrode and the gel electrolyte increases, making charging and discharging of the battery difficult.

【0006】本発明は、このような従来の欠点を除去す
るものであり、充放電サイクルを繰り返しても負極とゲ
ル電解質の界面抵抗は増加せず、負極上でのデンドライ
トの発生が抑制されるゲル電解質を得ることによって、
信頼性の大きい非水電解質二次電池を提供することを目
的とする。
The present invention eliminates such conventional drawbacks, and the interface resistance between the negative electrode and the gel electrolyte does not increase even if the charge / discharge cycle is repeated, and the generation of dendrites on the negative electrode is suppressed. By obtaining a gel electrolyte,
It is an object to provide a highly reliable non-aqueous electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明は、良好なゲル電
解質と負極の界面特性を得るために、以下の式(1)で
示されるエチレンオキシド付加・トリメチロールプロパ
ン・トリアクリレートと式(2)で示されるエチレンオ
キシド・プロピレンオキシド・ブロックポリエーテル・
ジアクリレートが重合した高分子マトリックスを含むゲ
ル電解質を用いる。また、式(1)で示されるエチレン
オキシド付加・トリメチロールプロパン・トリアクリレ
ートと式(3)で示されるポリカーボネート・ジアクリ
レートが重合した高分子マトリックスを含むゲル電解質
を用いる。
Means for Solving the Problems In order to obtain good gel electrolyte-negative electrode interface characteristics, the present invention provides an ethylene oxide-added trimethylolpropane triacrylate represented by the following formula (1) and a formula (2). Ethylene oxide, propylene oxide, block polyether
A gel electrolyte containing a polymer matrix in which diacrylate is polymerized is used. Further, a gel electrolyte containing a polymer matrix in which ethylene oxide-added trimethylolpropane triacrylate represented by the formula (1) and polycarbonate diacrylate represented by the formula (3) are polymerized is used.

【0008】[0008]

【化3】 Embedded image

【0009】(上記の式中、m、n、lは1以上の整数
である。また、Rは(CH2sまたは[(CH2k
(CH2ktで、s、k、tはそれぞれ1以上の整数
である。)
(In the above formula, m, n and l are integers of 1 or more. Further, R is (CH 2 ) s or [(CH 2 ) k O
(CH 2 ) k ] t , s, k, and t are each an integer of 1 or more. )

【0010】デンドライト成長による負極表面にける不
均一的な隆起を抑制するためには、ゲル電解質の弾性ま
たは硬さを向上させる必要がある。そのためには、ゲル
電解質中のポリマー鎖の分子運動を抑制することによ
り、ポリマー骨格の剛直性を増加させればよい。一般
に、ポリマー骨格の分子運動、特に、内部回転運動を抑
制するためには、ポリマー鎖に体積の大きい置換基を導
入すればよい。しかし、極端に大きい置換基をポリマー
鎖に導入すると、アルカリ金属イオンを溶解した有機電
解液とは相分離するので適切ではない。
In order to suppress the uneven protrusion on the negative electrode surface due to the dendrite growth, it is necessary to improve the elasticity or hardness of the gel electrolyte. For that purpose, the rigidity of the polymer skeleton may be increased by suppressing the molecular movement of the polymer chains in the gel electrolyte. Generally, in order to suppress the molecular motion of the polymer skeleton, especially the internal rotational motion, a substituent having a large volume may be introduced into the polymer chain. However, introduction of an extremely large substituent into the polymer chain is not suitable because it causes phase separation from the organic electrolyte solution in which the alkali metal ion is dissolved.

【0011】プロピレンオキシドは、エチレンオキシド
にメチル基を導入したもので、これをポリマー鎖の一部
として重合すると、エチレンオキシド単独のポリマーに
比較して骨格の剛直性を高めることができる。また、プ
ロピレンオキシド中の酸素原子の存在により、アルカリ
金属イオンを溶解した有機電解液との相溶性も保つこと
ができる。すなわち、ゲル電解質を調製することが可能
である。また、ポリカーボネートも有機電解液との相溶
性が良好であり、その分子鎖の剛直性により、ポリマー
骨格ひいてはゲル電解質の弾性を向上させることができ
る。さらに、ポリカーボネートのポリマー鎖への導入に
より、ゲル電解質のアルカリ金属を活物質とする負極へ
の粘着性を高めることができ、一層良好な電解質と電極
の界面特性が得られる。
Propylene oxide is a polymer in which a methyl group is introduced into ethylene oxide, and when this is polymerized as a part of the polymer chain, the rigidity of the skeleton can be increased as compared with a polymer containing ethylene oxide alone. Further, the presence of oxygen atoms in propylene oxide makes it possible to maintain compatibility with the organic electrolytic solution in which the alkali metal ion is dissolved. That is, it is possible to prepare a gel electrolyte. Polycarbonate also has good compatibility with the organic electrolytic solution, and the rigidity of its molecular chain can improve the elasticity of the polymer skeleton and thus the gel electrolyte. Further, by introducing the polycarbonate into the polymer chain, the adhesiveness of the gel electrolyte to the negative electrode using an alkali metal as an active material can be enhanced, and more excellent interface characteristics between the electrolyte and the electrode can be obtained.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例について説
明する。なお、実施例はすべてアルゴンガス雰囲気下で
行った。また、アルカリ金属としてリチウムを用いた
が、リチウムと他のアルカリ金属やアルカリ金属との合
金を使用しても同様な結果が得られる。 [実施例1]ゲル電解質材料は以下のようにして調製し
た。以下の式(4)で示されるエチレンオキシド付加・
トリメチロールプロパン・トリアクリレートと式(5)
で示されるエチレンオキシド・プロピレンオキシド・ブ
ロックポリエーテル・ジアクリレートをモル比で1/1
5の割合で混合した。このアクリレート混合液とLiC
lO4の1Mプロピレンカーボネート溶液を重量比で3
/7の割合で混合した。これに、硬化開始剤として、チ
バガイギー社製イルガキュアー651を100ppm添
加して、ゲル電解質用調製液を得た。
Embodiments of the present invention will be described below. In addition, all the examples were performed under an argon gas atmosphere. Although lithium was used as the alkali metal, similar results can be obtained by using lithium and another alkali metal or an alloy of alkali metal. [Example 1] A gel electrolyte material was prepared as follows. Addition of ethylene oxide represented by the following formula (4)
Trimethylolpropane triacrylate and formula (5)
The ethylene oxide / propylene oxide / block polyether / diacrylate represented by
Mixed at a ratio of 5. This acrylate mixture and LiC
1M propylene carbonate solution of 10 4 in a weight ratio of 3
Mixed at a ratio of / 7. To this, 100 ppm of Irgacure 651 manufactured by Ciba-Geigy Co., Ltd. was added as a curing initiator to obtain a preparation liquid for gel electrolyte.

【0013】[0013]

【化4】 Embedded image

【0014】この調製液をリチウムシート上にキャスト
し、43mW/cm2 の紫外線を2分間照射することに
よって、リチウムシートとゲル電解質の一体化物を作製
した。また、この時のゲル電解質膜の厚みは、100μ
mであり、弾性率は6×105 dyne/cm2であっ
た。
The prepared solution was cast on a lithium sheet and irradiated with ultraviolet rays of 43 mW / cm 2 for 2 minutes to prepare an integrated lithium sheet and gel electrolyte. The thickness of the gel electrolyte membrane at this time is 100 μm.
m, and the elastic modulus was 6 × 10 5 dyne / cm 2 .

【0015】次に、リチウムシートとゲル電解質の一体
化物を用いて、図1に示すような偏平型電池を構成し
た。正極1は、LiMn24 粉末,カーボンブラッ
ク,および四弗化エチレン樹脂粉末の混合物を、チタン
のエキスパンドメタルからなる集電体2をスポット溶接
した正極缶3に加圧成型したものである。この正極に、
上記のゲル電解質用調製液を真空含浸させた後、43m
W/cm2 の紫外線を2分間照射することによって、正
極1の表面を硬化させた。負極は、ゲル電解質4を一体
化したリチウムシート5を円盤状に打ち抜き、ニッケル
のエキスパンドメタル6をスポット溶接した封口板7に
圧着して構成した。そして、上記の正極缶3と封口板7
とをガスケット8を介して組み合わせ偏平型電池を構成
した。
Next, a flat type battery as shown in FIG. 1 was constructed by using an integrated product of a lithium sheet and a gel electrolyte. The positive electrode 1 is obtained by press-molding a mixture of LiMn 2 O 4 powder, carbon black, and tetrafluoroethylene resin powder into a positive electrode can 3 in which a current collector 2 made of expanded metal of titanium is spot-welded. To this positive electrode,
43m after vacuum impregnation with the above gel electrolyte preparation solution
The surface of the positive electrode 1 was cured by irradiating it with UV light of W / cm 2 for 2 minutes. The negative electrode was formed by punching a lithium sheet 5 integrated with the gel electrolyte 4 into a disk shape and press-bonding an expanded metal 6 of nickel onto a sealing plate 7 that was spot-welded. Then, the positive electrode can 3 and the sealing plate 7 described above.
Was combined with a gasket 8 to form a flat type battery.

【0016】[比較例1]ゲル電解質調製液の材料とし
て、エチレンオキシド・プロピレンオキシド・ブロック
ポリエーテル・ジアクリレートの代わりに以下の式
(6)で示されるエチレンオキシド・ポリエーテル・ジ
アクリレートを用いたほかは、実施例1と同様にして偏
平型電池を構成した。なお、この比較例でのゲル電解質
の弾性率は5×104 dyne/cm2であった。
[Comparative Example 1] As a material for the gel electrolyte preparation liquid, ethylene oxide / polyether diacrylate represented by the following formula (6) was used instead of ethylene oxide / propylene oxide / block polyether / diacrylate. In the same manner as in Example 1, a flat type battery was constructed. The elastic modulus of the gel electrolyte in this comparative example was 5 × 10 4 dyne / cm 2 .

【0017】[0017]

【化5】 Embedded image

【0018】上記のようにして組み立てた実施例1およ
び比較例1の電池を、25℃において、1mA/cm2
の電流密度,放電下限電圧2.0V,充電上限電圧3.
5Vの条件で充放電サイクルを繰り返し、各サイクルの
充電後における内部抵抗を求めた。図2は、各サイクル
での内部抵抗をプロットしたものである。これより、実
施例1の電池は、比較例1に比べて、充放電サイクルに
よる内部抵抗の増加が著しく改善されていることがわか
る。これは、本発明に用いたゲル電解質の弾性率が高い
ために、負極と電解質界面の密着性が良好になり、結果
として、デンドライトの発生が抑制されるとともに、界
面抵抗の増加が抑制されたためである。比較例1の電池
のゲル電解質は、その弾性率が低いので、充放電サイク
ルによるデンドライトの発生によってゲル電解質とリチ
ウム負極が剥離し、電池内の抵抗が増加する。
The batteries of Example 1 and Comparative Example 1 assembled as described above were subjected to 1 mA / cm 2 at 25 ° C.
Current density, discharge lower limit voltage 2.0V, charge upper limit voltage 3.
The charge / discharge cycle was repeated under the condition of 5 V, and the internal resistance after charging in each cycle was obtained. FIG. 2 is a plot of the internal resistance in each cycle. From this, it can be seen that the battery of Example 1 has significantly improved the increase in internal resistance due to charge / discharge cycles, as compared with Comparative Example 1. This is because the gel electrolyte used in the present invention has a high elastic modulus, so that the adhesion between the negative electrode and the electrolyte interface is good, and as a result, the generation of dendrites is suppressed and the increase in the interface resistance is suppressed. Is. Since the gel electrolyte of the battery of Comparative Example 1 has a low elastic modulus, the gel electrolyte and the lithium negative electrode are separated due to the generation of dendrite due to the charge / discharge cycle, and the resistance inside the battery increases.

【0019】[実施例2]ゲル電解質調製液の材料とし
て、式(2)中のユニット数nを種々変えることによ
り、表1に示されるエチレンオキシド・プロピレンオキ
シド・ブロックポリエーテル・ジアクリレートを検討し
た。その他は、実施例1と同様にして偏平型電池を構成
した。以上のように構成した電池を25℃において、1
mA/cm2の電流密度,放電下限電圧2.0V,充電
上限電圧3.5Vの条件で充放電サイクルを繰り返し、
各サイクル数での放電容量を求めた。サイクル寿命は、
放電容量が1サイクル目の半分になったところとした。
表1に、各アクリレート化合物に対するサイクル寿命を
まとめた。また、比較例1の電池のサイクル寿命も併せ
て記載した。表1より、nが増加するにしたがいサイク
ル寿命は伸びるが、極端に長い領域では、逆にサイクル
寿命が低下し始める。これは、分子鎖が長くなると末端
重合基相互が出会う確率が減少し、ゲル電解質として硬
化しなくなるためである。当然、この領域ではゲル電解
質としての弾性率は減少する。
[Example 2] As a material for the gel electrolyte preparation liquid, ethylene oxide / propylene oxide / block polyether / diacrylate shown in Table 1 was examined by changing the number n of units in the formula (2). . A flat battery was constructed in the same manner as in Example 1 except for the above. The battery configured as described above was stored at 25 ° C. for 1
The charge / discharge cycle was repeated under the conditions of a current density of mA / cm 2 , a discharge lower limit voltage of 2.0 V, and a charge upper limit voltage of 3.5 V.
The discharge capacity at each cycle number was determined. Cycle life is
The discharge capacity was set to be half of that in the first cycle.
Table 1 summarizes the cycle life for each acrylate compound. The cycle life of the battery of Comparative Example 1 is also shown. From Table 1, the cycle life increases as n increases, but in the extremely long region, on the contrary, the cycle life begins to decrease. This is because, when the molecular chain becomes long, the probability that the terminal polymerized groups meet each other decreases, and the gel electrolyte does not cure. Naturally, the elastic modulus as a gel electrolyte decreases in this region.

【0020】[0020]

【表1】 [Table 1]

【0021】[実施例3]ゲル電解質調製液の材料とし
て、ポリカーボネート・ジアクリレートを用い、式
(3)中のRとユニット数lを種々変えることにより、
表2に示されるアクリレート化合物を検討した。その他
は、実施例1と同様にして偏平型電池を構成した。以上
のように構成した電池を25℃において、1mA/cm
2の電流密度,放電下限電圧2.0V,充電上限電圧
3.5Vの条件で充放電サイクルを繰り返し、各サイク
ル数での放電容量を求めた。サイクル寿命は、放電容量
が1サイクル目の半分になったところとした。表2に、
各アクリレート化合物に対するサイクル寿命をまとめ
た。また、比較例1の電池のサイクル寿命も併せて記載
した。表2より、実施例2と同様に、lが極端に大きい
領域ではサイクル寿命は低下の傾向を示すが、適切なl
を選択すると、サイクル寿命が著しく増加することがわ
かる。
[Example 3] Polycarbonate diacrylate was used as the material for the gel electrolyte preparation liquid, and R and the number of units l in the formula (3) were variously changed,
The acrylate compounds shown in Table 2 were investigated. A flat battery was constructed in the same manner as in Example 1 except for the above. The battery configured as described above was operated at 25 ° C. at 1 mA / cm.
The charge / discharge cycle was repeated under the conditions of the current density of 2 , the discharge lower limit voltage of 2.0 V, and the charge upper limit voltage of 3.5 V, and the discharge capacity at each number of cycles was obtained. The cycle life was set to the point where the discharge capacity became half of the first cycle. In Table 2,
The cycle life for each acrylate compound is summarized. The cycle life of the battery of Comparative Example 1 is also shown. From Table 2, as in Example 2, the cycle life tends to decrease in a region where l is extremely large.
It can be seen that the cycle life is significantly increased when is selected.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上のように本発明によれば、負極とゲ
ル電解質との良好な界面特性が得られ、充放電サイクル
寿命が長く、信頼性の高い非水電解質二次電池が得られ
る。
As described above, according to the present invention, a good interfacial property between the negative electrode and the gel electrolyte can be obtained, a long charge / discharge cycle life and a highly reliable non-aqueous electrolyte secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いた偏平型電池の縦断面図
である。
FIG. 1 is a vertical sectional view of a flat battery used in an example of the present invention.

【図2】本発明の実施例および比較例の電池の各サイク
ルでの内部抵抗をプロットした図である。
FIG. 2 is a diagram in which the internal resistances of the batteries of Examples and Comparative Examples of the present invention in each cycle are plotted.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 正極缶 4 ゲル電解質 5 リチウムシート 6 負極集電体 7 封口板 8 ガスケット 1 Positive Electrode 2 Positive Electrode Current Collector 3 Positive Electrode Can 4 Gel Electrolyte 5 Lithium Sheet 6 Negative Current Collector 7 Sealing Plate 8 Gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極、アルカリイオン伝導性の電解質、
およびアルカリ金属を活物質とする負極を具備し、前記
電解質が、以下の式(1)で示されるエチレンオキシド
付加・トリメチロールプロパン・トリアクリレートと式
(2)で示されるエチレンオキシド・プロピレンオキシ
ド・ブロックポリエーテル・ジアクリレートが重合した
高分子マトリックスを含むゲル電解質であることを特徴
とする非水電解質二次電池。 【化1】 (式中m、nは1以上の整数である。)
A cathode, an alkali ion-conductive electrolyte,
And a negative electrode having an alkali metal as an active material, wherein the electrolyte is an ethylene oxide-added trimethylolpropane triacrylate represented by the following formula (1) and an ethylene oxide propylene oxide block polypolyethylene represented by the formula (2). A non-aqueous electrolyte secondary battery, which is a gel electrolyte containing a polymer matrix obtained by polymerizing ether diacrylate. Embedded image (In the formula, m and n are integers of 1 or more.)
【請求項2】 正極、アルカリイオン伝導性の電解質、
およびアルカリ金属を活物質とする負極を具備し、前記
電解質が、以下の式(1)で示されるエチレンオキシド
付加・トリメチロールプロパン・トリアクリレートと式
(3)で示されるポリカーボネート・ジアクリレートが
重合した高分子マトリックスを含むゲル電解質であるこ
とを特徴とする非水電解質二次電池。 【化2】 (式中m、nは1以上の整数である。また、Rは(CH
2sまたは[(CH2kO(CH2ktで、s、k、
tはそれぞれ1以上の整数である。)
2. A positive electrode, an alkali ion conductive electrolyte,
And a negative electrode having an alkali metal as an active material, wherein the electrolyte polymerizes ethylene oxide-added trimethylolpropane triacrylate represented by the following formula (1) and polycarbonate diacrylate represented by the formula (3). A non-aqueous electrolyte secondary battery, which is a gel electrolyte containing a polymer matrix. Embedded image (In the formula, m and n are integers of 1 or more. Further, R is (CH
2 ) s or [(CH 2 ) k O (CH 2 ) k ] t , where s, k,
Each t is an integer of 1 or more. )
JP30939195A 1995-11-28 1995-11-28 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3312836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30939195A JP3312836B2 (en) 1995-11-28 1995-11-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30939195A JP3312836B2 (en) 1995-11-28 1995-11-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09147912A true JPH09147912A (en) 1997-06-06
JP3312836B2 JP3312836B2 (en) 2002-08-12

Family

ID=17992453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30939195A Expired - Fee Related JP3312836B2 (en) 1995-11-28 1995-11-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3312836B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026767A1 (en) * 1998-08-11 2000-08-09 Yuasa Corporation Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
JP2000268866A (en) * 1999-03-18 2000-09-29 Fujitsu Ltd Solid electrolyte and battery using it
US6190805B1 (en) 1997-09-10 2001-02-20 Showa Denko Kabushiki Kaisha Polymerizable compound, solid polymer electrolyte using the same and use thereof
JP2002110242A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery
SG103298A1 (en) * 2000-06-16 2004-04-29 Nisshin Spinning Polymer battery and method of manufacture
KR100441518B1 (en) * 2001-12-03 2004-07-23 삼성에스디아이 주식회사 Lithium secondary battery and method of preparing same
KR100434550B1 (en) * 1997-07-31 2004-09-18 삼성전자주식회사 Composition for composite electrode
KR100434556B1 (en) * 1997-10-31 2004-09-18 삼성전자주식회사 Composition for polymer solid electrolyte and manufacturing method of polymer solid electrolyte using the same
US6878492B2 (en) 2000-07-10 2005-04-12 Showa Denko Kabushiki Kaisha Polymerizable composition and use thereof
KR100592232B1 (en) * 1999-08-05 2006-06-21 삼성에스디아이 주식회사 Polymer electrolyte and lithium ion polymer battery employing the same
JP2007035297A (en) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Collector and lithium ion secondary battery using it
JP2008112722A (en) * 2006-10-02 2008-05-15 Nec Tokin Corp Lithium polymer battery
US7410729B2 (en) 2003-09-29 2008-08-12 Sanyo Electric Co., Ltd. Nonaqueous electrolyte cell with improved high temperature characteristics
WO2024154747A1 (en) * 2023-01-20 2024-07-25 三菱瓦斯化学株式会社 Electrolytic solution containing polycarbonate resin and electrolyte obtained therefrom

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434550B1 (en) * 1997-07-31 2004-09-18 삼성전자주식회사 Composition for composite electrode
US6190805B1 (en) 1997-09-10 2001-02-20 Showa Denko Kabushiki Kaisha Polymerizable compound, solid polymer electrolyte using the same and use thereof
KR100434556B1 (en) * 1997-10-31 2004-09-18 삼성전자주식회사 Composition for polymer solid electrolyte and manufacturing method of polymer solid electrolyte using the same
EP1026767A1 (en) * 1998-08-11 2000-08-09 Yuasa Corporation Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
EP1026767A4 (en) * 1998-08-11 2008-03-26 Gs Yuasa Corp Lithium battery, polymer electrolyte, electrolyte material, di(meth)acrylic ester, and di(meth)acrylate polymer
JP2000268866A (en) * 1999-03-18 2000-09-29 Fujitsu Ltd Solid electrolyte and battery using it
KR100592232B1 (en) * 1999-08-05 2006-06-21 삼성에스디아이 주식회사 Polymer electrolyte and lithium ion polymer battery employing the same
SG103298A1 (en) * 2000-06-16 2004-04-29 Nisshin Spinning Polymer battery and method of manufacture
US6878492B2 (en) 2000-07-10 2005-04-12 Showa Denko Kabushiki Kaisha Polymerizable composition and use thereof
US7022264B2 (en) 2000-07-10 2006-04-04 Showa Denko Kabushiki Kaisha Polymerizable composition and use thereof
JP2002110242A (en) * 2000-09-29 2002-04-12 Sharp Corp Lithium polymer secondary battery
KR100441518B1 (en) * 2001-12-03 2004-07-23 삼성에스디아이 주식회사 Lithium secondary battery and method of preparing same
US7141335B2 (en) 2001-12-03 2006-11-28 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating same
US7452635B2 (en) 2001-12-03 2008-11-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating same
US8541128B2 (en) 2001-12-03 2013-09-24 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating same
US7410729B2 (en) 2003-09-29 2008-08-12 Sanyo Electric Co., Ltd. Nonaqueous electrolyte cell with improved high temperature characteristics
JP2007035297A (en) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Collector and lithium ion secondary battery using it
JP2008112722A (en) * 2006-10-02 2008-05-15 Nec Tokin Corp Lithium polymer battery
WO2024154747A1 (en) * 2023-01-20 2024-07-25 三菱瓦斯化学株式会社 Electrolytic solution containing polycarbonate resin and electrolyte obtained therefrom

Also Published As

Publication number Publication date
JP3312836B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
KR100425585B1 (en) Lithium polymer secondary battery having crosslinked polymer protective thin film and method for manufacturing the same
JP3312836B2 (en) Non-aqueous electrolyte secondary battery
US8043386B2 (en) Process for producing polymer electrolyte
US6465126B1 (en) Binder and/or electrolyte material
US6190804B1 (en) Solid battery
WO2002061874A1 (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
JP3394125B2 (en) Non-aqueous electrolyte secondary battery
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
US6444369B1 (en) Gelled polymer electrolyte lithium secondary cell
JPH0896849A (en) Nonaqueous electrolytic secondary battery
KR20200122659A (en) A electrolyte membrane for all solid-state battery and an all solid-state battery comprising the same
JPWO1999034372A6 (en) Polymer electrolyte and non-aqueous battery using the same
US5738691A (en) Ultrasonic extraction of plasticizer from electrochemical cells
JPH08287949A (en) Lithium-polymer battery and its manufacture
CN1577946A (en) Polymer electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US5772702A (en) Method of preparing electrochemical cells
JP3384661B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP3300168B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JPH08241734A (en) Polymer solid electrolytic battery
CN117650244B (en) Structure and method for protecting lithium metal anode material and application thereof
CN110289392B (en) Polymer electrolyte for lithium ion battery and polymer battery
JPH09289040A (en) Manufacture of nonaqueous electrolyte secondary battery
JP4266054B2 (en) Polymer electrolyte and non-aqueous battery using the same
JP2001035534A (en) Gel composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees