JPH09147907A - Paste type nickel electrode for alkaline storage battery - Google Patents

Paste type nickel electrode for alkaline storage battery

Info

Publication number
JPH09147907A
JPH09147907A JP7323977A JP32397795A JPH09147907A JP H09147907 A JPH09147907 A JP H09147907A JP 7323977 A JP7323977 A JP 7323977A JP 32397795 A JP32397795 A JP 32397795A JP H09147907 A JPH09147907 A JP H09147907A
Authority
JP
Japan
Prior art keywords
hydroxide
nickel
layer
cobalt
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7323977A
Other languages
Japanese (ja)
Inventor
Mitsuzo Nogami
光造 野上
Mutsumi Yano
睦 矢野
Hiroshi Watanabe
浩志 渡辺
Reizo Maeda
礼造 前田
Katsuhiko Niiyama
克彦 新山
Masao Inoue
雅雄 井上
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7323977A priority Critical patent/JPH09147907A/en
Publication of JPH09147907A publication Critical patent/JPH09147907A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a paste type nickel electrode, in which discharging capacity is hardly reduced after over discharge, by using active material powder consisting of composite grains in each of which a coating layer of magnesium hydroxide or zinc hydroxide covering the surface of nickel hydroxide grain is covered with a cobalt hydroxide layer. SOLUTION: In a paste type nickel electrode, active material powder consisting of composite grains, in each of which the surface of nickel hydroxide grain is covered with a magnesium hydroxide layer or a zinc hydroxide layer and this coating layer is covered with a cobalt hydroxide layer, is used. In this composite grain, 0.05-3% by weight of the magnesium hydroxide layer or the zinc hydroxide layer are container desirably. Meanwhile, the composite grain contains 1-20% by weight of the cobalt hydroxide layer feasibly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
のペースト式ニッケル極に係わり、詳しくは過放電後の
導電性の低下に因る放電容量の低下を抑制するための、
活物質粉末の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type nickel electrode for an alkaline storage battery, and more specifically, for suppressing a decrease in discharge capacity due to a decrease in conductivity after over-discharging,
The present invention relates to improvement of active material powder.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
アルカリ蓄電池用のニッケル極としては、ニッケル粉末
を穿孔鋼板等に焼結させて得た焼結基板に活物質(水酸
化ニッケル)を含浸させてなる焼結式ニッケル極がよく
知られている。
2. Description of the Related Art
As a nickel electrode for an alkaline storage battery, a sintered nickel electrode obtained by impregnating a sintered substrate obtained by sintering nickel powder on a perforated steel plate or the like with an active material (nickel hydroxide) is well known.

【0003】焼結式ニッケル極において活物質の充填密
度を大きくするためには、多孔度の大きい焼結基板を用
いる必要がある。しかし、焼結によるニッケル粒子間の
結合は弱く、焼結基板の多孔度を大きくするとニッケル
粉末が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填密
度が小さいという問題がある。また、ニッケル粉末の焼
結体の孔径は10μm以下と小さいため、活物質の基板
(焼結体)への充填を、煩雑な含浸工程を数回繰り返し
行う必要がある溶液含浸法により行わなければならない
という問題もある。
[0003] In order to increase the packing density of the active material in the sintered nickel electrode, it is necessary to use a sintered substrate having a high porosity. However, the bond between the nickel particles due to sintering is weak, and if the porosity of the sintered substrate is increased, the nickel powder tends to fall off the sintered substrate. Therefore, in practice, the porosity of the sintered substrate cannot be made larger than 80%, and the sintered nickel electrode has a problem that the packing density of the active material is small. Moreover, since the pore size of the sintered body of nickel powder is as small as 10 μm or less, the filling of the active material into the substrate (sintered body) must be performed by the solution impregnation method, which requires repeated complicated impregnation steps several times. There is also the problem of not becoming.

【0004】このようなことから、最近、ペースト式ニ
ッケル極が提案されている。ペースト式ニッケル極は、
活物質(水酸化ニッケル)と結合剤溶液(メチルセルロ
ース水溶液など)との混練物(ペースト)を多孔度の大
きい基板(発泡メタルなど)に直接充填することにより
作製される。ペースト式ニッケル極では、多孔度の大き
い基板を用いることができるので(ペースト式ニッケル
極では多孔度が95%以上の基板を用いることができ
る)、活物質の充填密度を大きくすることができるとと
もに、活物質の基板への充填を一回的に行うことができ
る。
Under these circumstances, a paste type nickel electrode has recently been proposed. The paste nickel electrode is
It is prepared by directly filling a kneaded material (paste) of an active material (nickel hydroxide) and a binder solution (aqueous solution of methyl cellulose, etc.) into a substrate (foamed metal, etc.) having a high porosity. Since the paste nickel electrode can use a substrate having a large porosity (the paste nickel electrode can use a substrate having a porosity of 95% or more), it is possible to increase the packing density of the active material. The active material can be charged into the substrate once.

【0005】しかしながら、ペースト式ニッケル極にお
いて活物質の充填密度を大きくするべく多孔度の大きい
基板を用いると、基板の集電能力が焼結基板に比べて悪
くなるので、焼結式ニッケル極に比べて、導電性が悪く
なる。斯かる導電性の悪さは、活物質利用率の低下及び
充放電サイクル寿命の短命化を招く。
However, when a substrate having a high porosity is used in order to increase the packing density of the active material in the paste type nickel electrode, the current collecting ability of the substrate becomes worse than that of the sintered substrate. In comparison, the conductivity becomes worse. Such poor conductivity leads to a reduction in utilization rate of the active material and a shortening of charge / discharge cycle life.

【0006】斯かるペースト式ニッケル極の導電性を改
良するためには、水酸化ニッケル粒子の表面を水酸化コ
バルトで被覆して活物質粒子表面の導電性を高めればよ
い。アルカリ電解液に水酸化コバルトが溶解して、イオ
ン価1価のHCoO2 - が生成し、このHCoO2 -
貴な電位において導電性の高いCoOOH(オキシ水酸
化コバルト)となって水酸化ニッケル粒子の表面に析出
するからである。このような水酸化ニッケル粒子の表面
を水酸化コバルトで被覆する方法は、特開昭62−23
4867号公報及び特開昭62−237667号公報に
開示されている。この外、特開平3−62457号公報
には、水酸化ニッケルと水酸化コバルトとの固溶体被膜
にて水酸化ニッケル粒子の表面を被覆する方法が提案さ
れている。
In order to improve the conductivity of such a paste type nickel electrode, the surface of the nickel hydroxide particles may be coated with cobalt hydroxide to increase the conductivity of the surface of the active material particles. Cobalt hydroxide is dissolved in the alkaline electrolyte to form monovalent HCoO 2 , and this HCoO 2 becomes highly conductive CoOOH (cobalt oxyhydroxide) at a noble potential and nickel hydroxide. This is because they are deposited on the surface of the particles. A method for coating the surface of such nickel hydroxide particles with cobalt hydroxide is disclosed in JP-A-62-23.
It is disclosed in Japanese Patent No. 4867 and Japanese Patent Laid-Open No. 62-237667. In addition, JP-A-3-62457 proposes a method of coating the surface of nickel hydroxide particles with a solid solution coating of nickel hydroxide and cobalt hydroxide.

【0007】しかしながら、これらのペースト式ニッケ
ル極には、水酸化ニッケル粒子の表面に存在していたオ
キシ水酸化コバルトが充放電サイクルを重ねるうちに粒
子内部に拡散して、水酸化ニッケル粒子表面の導電性が
低下し、その結果放電容量が低下するという問題がある
ことが分かった。とりわけ、過放電後の放電容量の低下
が著しかった。これは、通常の放電では、オキシ水酸化
コバルト(水酸化コバルト層は充電時に酸化されてオキ
シ水酸化コバルトになっている)は変化しないが、過放
電した場合には、オキシ水酸化コバルトが還元されて水
酸化コバルトになるため〔CoOOH+H2 O+e-
Co(OH)2 +OH- 〕、オキシ水酸化ニッケルより
もさらに水酸化ニッケル粒子内部へ拡散し易くなるため
である。
However, in these paste type nickel electrodes, the cobalt oxyhydroxide existing on the surface of the nickel hydroxide particles diffuses inside the particles during repeated charge and discharge cycles, and the nickel hydroxide particle surface It has been found that there is a problem that the conductivity is lowered, and as a result, the discharge capacity is lowered. In particular, the decrease in discharge capacity after overdischarge was remarkable. This is because cobalt oxyhydroxide (the cobalt hydroxide layer is oxidized to cobalt oxyhydroxide at the time of charging) does not change in normal discharge, but cobalt oxyhydroxide is reduced in the case of overdischarge. Is converted to cobalt hydroxide [CoOOH + H 2 O + e -
This is because it is more likely to diffuse into the nickel hydroxide particles than Co (OH) 2 + OH ], nickel oxyhydroxide.

【0008】本発明は、従来のペースト式ニッケル極が
有する上述の問題を解決するべくなされたものであっ
て、その目的とするところは、過放電後も放電容量が低
下しにくいアルカリ蓄電池用のペースト式ニッケル極を
提供するにある。
The present invention has been made to solve the above-mentioned problems of the conventional paste type nickel electrode, and an object thereof is to provide an alkaline storage battery whose discharge capacity does not easily decrease even after over-discharge. Providing a pasted nickel electrode.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用のペースト式ニッケル
極(本発明電極)においては、水酸化ニッケル粒子の表
面を、水酸化マグネシウム層又は水酸化亜鉛層で被覆
し、該水酸化マグネシウム層又は該水酸化亜鉛層を、水
酸化コバルト層で被覆してなる複合体粒子からなる活物
質粉末が用いられる。
In a paste type nickel electrode for an alkaline storage battery (electrode of the present invention) according to the present invention for achieving the above object, the surface of the nickel hydroxide particles is replaced by a magnesium hydroxide layer or water. An active material powder composed of composite particles coated with a zinc oxide layer and coated with the magnesium hydroxide layer or the zinc hydroxide layer with a cobalt hydroxide layer is used.

【0010】本発明電極は、活物質粉末と結合剤溶液
(メチルセルロース水溶液など)との混練物(ペース
ト)を非焼結式の多孔性基板に充填し、乾燥し、加圧成
形して作製される。
The electrode of the present invention is produced by filling a non-sintering type porous substrate with a kneaded material (paste) of an active material powder and a binder solution (such as an aqueous solution of methylcellulose), drying, and press-molding. It

【0011】本発明における水酸化ニッケル粒子には、
水酸化ニッケルに、コバルト、亜鉛、カドミウム、カル
シウム、マンガン、マグネシウムなどが固溶した固溶体
粒子も含まれる。
The nickel hydroxide particles in the present invention include
Solid solution particles in which cobalt, zinc, cadmium, calcium, manganese, magnesium, and the like are solid-dissolved in nickel hydroxide are also included.

【0012】水酸化ニッケル粒子表面への2層の被覆層
の形成は、例えば次のようにして行う。先ず、水酸化ニ
ッケル粉末を硫酸亜鉛水溶液又は硫酸マグネシウム水溶
液に入れ、攪拌しながらアルカリ水溶液(水酸化ナトリ
ウム水溶液など)を滴下し、生成した沈澱物をろ別し、
真空乾燥して、水酸化ニッケル粒子の表面を水酸化亜鉛
又は水酸化マグネシウムで被覆した複合体粒子からなる
粉末を得る。次いで、この粉末を、硫酸コバルト水溶液
(必要に応じて硫酸マグネシウムや硫酸亜鉛を添加した
硫酸コバルト水溶液を用いてもよい)に入れ、攪拌しな
がらアルカリ水溶液を滴下し、生成した沈澱物をろ別
し、真空乾燥することにより、水酸化ニッケル粒子の表
面に2層の被覆層が形成された複合体粒子からなる活物
質粉末を得る。
The formation of the two coating layers on the surface of the nickel hydroxide particles is carried out, for example, as follows. First, nickel hydroxide powder is placed in a zinc sulfate aqueous solution or a magnesium sulfate aqueous solution, an alkaline aqueous solution (sodium hydroxide aqueous solution, etc.) is added dropwise with stirring, and the formed precipitate is filtered off,
Vacuum drying is performed to obtain a powder composed of composite particles in which the surface of nickel hydroxide particles is coated with zinc hydroxide or magnesium hydroxide. Then, put this powder in an aqueous cobalt sulfate solution (if necessary, an aqueous cobalt sulfate solution to which magnesium sulfate or zinc sulfate has been added may be used), add an alkaline aqueous solution with stirring, and filter the formed precipitate. Then, by vacuum drying, active material powder composed of composite particles in which two coating layers are formed on the surface of nickel hydroxide particles is obtained.

【0013】上記複合体粒子としては、水酸化マグネシ
ウム層又は水酸化亜鉛層の含有量が0.05〜3重量%
のものが好ましい。この含有量が0.05重量%未満の
ものでは、水酸化マグネシウム又は水酸化亜鉛が過少な
ために、水酸化コバルトの水酸化ニッケル粒子内部への
拡散が充分に抑制されない。一方、この含有量が3重量
%を越えるものでは、中間層が厚すぎるために、水酸化
ニッケル粒子表面の導電性が充分に改善されないととも
に、容量に直接関係する水酸化ニッケルの量が少なくな
るので電池容量が小さくなる。
The above composite particles have a magnesium hydroxide layer or zinc hydroxide layer content of 0.05 to 3% by weight.
Are preferred. If the content is less than 0.05% by weight, the diffusion of cobalt hydroxide into the nickel hydroxide particles is not sufficiently suppressed because the amount of magnesium hydroxide or zinc hydroxide is too small. On the other hand, when the content exceeds 3% by weight, the conductivity of the surface of the nickel hydroxide particles is not sufficiently improved because the intermediate layer is too thick, and the amount of nickel hydroxide directly related to the capacity decreases. Therefore, the battery capacity becomes small.

【0014】また、上記複合体粒子としては、水酸化コ
バルト層の含有量が1〜20重量%のものが好ましい。
この含有量が1重量%未満のものでは、導電性付与剤と
しての水酸化コバルトが過少なために、水酸化ニッケル
粒子表面の導電性が充分に改善されない。一方、この含
有量が20重量%を越えるものでは、容量に直接関係す
る水酸化ニッケルの量が少なくなるので、電池容量が小
さくなる。水酸化コバルト層は、水酸化コバルトに水酸
化マグネシウム又は水酸化亜鉛が固溶した固溶体からな
る層であってもよい。この場合の水酸化コバルトと水酸
化マグネシウム又は水酸化亜鉛の好適な重量比は、5以
上である。
The composite particles preferably have a cobalt hydroxide layer content of 1 to 20% by weight.
If the content is less than 1% by weight, the conductivity of the nickel hydroxide particles cannot be sufficiently improved because the amount of cobalt hydroxide as the conductivity-imparting agent is too small. On the other hand, if the content exceeds 20% by weight, the amount of nickel hydroxide, which is directly related to the capacity, decreases, and the battery capacity decreases. The cobalt hydroxide layer may be a layer formed of a solid solution in which magnesium hydroxide or zinc hydroxide is solid-dissolved in cobalt hydroxide. In this case, the preferred weight ratio of cobalt hydroxide to magnesium hydroxide or zinc hydroxide is 5 or more.

【0015】本発明電極においては、過放電により生成
した水酸化コバルトが、水酸化マグネシウム又は水酸化
亜鉛と固溶して、水酸化ニッケル粒子内部へ拡散しにく
い固溶体(混晶)に変化するので、過放電後も水酸化ニ
ッケル粒子表面の優れた導電性が低下しにくい。
In the electrode of the present invention, the cobalt hydroxide produced by over-discharging becomes a solid solution with magnesium hydroxide or zinc hydroxide and changes into a solid solution (mixed crystal) which is difficult to diffuse into the nickel hydroxide particles. Even after over-discharging, the excellent conductivity of the surface of the nickel hydroxide particles does not easily deteriorate.

【0016】[0016]

【発明の実施の形態】本発明は、ニッケル−カドミウム
蓄電池、ニッケル−水素蓄電池などのアルカリ蓄電池の
正極として使用されるペースト式ニッケル極に、広く適
用可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is widely applicable to a paste type nickel electrode used as a positive electrode of an alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0018】(実施例1〜10) 〔複合体粒子からなる粉末の作製〕水酸化ニッケル粉末
100gを、所定重量%の硫酸亜鉛水溶液(A4の場合
は0.008重量%)又は硫酸マグネシウム水溶液(A
1の場合は0.01重量%)1リットルに入れ、攪拌し
ながら1N−水酸化ナトリウム水溶液をpH12になる
まで滴下し、生成した沈澱物をろ別し、真空乾燥して、
水酸化ニッケル粒子の表面を水酸化亜鉛又は水酸化マグ
ネシウムで被覆した複合体粒子からなる粉末を得た。こ
のときの被覆量については、硫酸亜鉛又は硫酸マクネシ
ウムの濃度で調節した。なお、水酸化ニッケル粉末とし
て、水酸化ニッケルに水酸化コバルト及び水酸化カルウ
ムが固溶した固溶体粒子からなる粉末を用いた(Coの
重量/(Niの重量+Coの重量)×100=1%;C
aの重量/(Niの重量+Caの重量)×100=1
%)。
(Examples 1 to 10) [Preparation of powder consisting of composite particles] 100 g of nickel hydroxide powder was mixed with a predetermined weight% of zinc sulfate aqueous solution (0.008 weight% in the case of A4) or magnesium sulfate aqueous solution ( A
1% (0.01% by weight in the case of 1) was added to 1 liter, 1N-sodium hydroxide aqueous solution was added dropwise to the mixture with stirring until the pH reached 12, and the formed precipitate was filtered off and dried in vacuum.
A powder composed of composite particles in which the surface of nickel hydroxide particles was coated with zinc hydroxide or magnesium hydroxide was obtained. The coating amount at this time was adjusted by the concentration of zinc sulfate or magnesium sulfate. As the nickel hydroxide powder, a powder composed of solid solution particles in which cobalt hydroxide and calcium hydroxide were solid-dissolved in nickel hydroxide was used (weight of Co / (weight of Ni + weight of Co) × 100 = 1%; C
Weight of a / (weight of Ni + weight of Ca) × 100 = 1
%).

【0019】次いで、この粉末100gを、0.8重量
%の硫酸コバルト水溶液(実施例9では硫酸マグネシウ
ムを添加した硫酸コバルト水溶液を、また実施例10で
は硫酸亜鉛を添加した硫酸コバルト水溶液を、それぞれ
用いた)1リットルに入れ、攪拌しながら1N−水酸化
ナトリウム水溶液をpH12になるまで滴下し、生成し
た沈澱物をろ別し、真空乾燥することにより、水酸化ニ
ッケル粒子の表面に二層の被覆層が形成された複合体粒
子からなる活物質粉末を得た。なお、実施例9で作製し
た複合体粒子の外層は、水酸化コバルトと水酸化マグネ
シウムとの重量比が9:1の固溶体からなり、また実施
例10で作製した複合体粒子の外層は、水酸化コバルト
と水酸化亜鉛との重量比が9:1の固溶体からなるもの
であった。
Next, 100 g of this powder was added to a 0.8 wt% cobalt sulfate aqueous solution (in Example 9, a magnesium sulfate-added cobalt sulfate aqueous solution, and in Example 10 a zinc sulfate-added cobalt sulfate aqueous solution, respectively). (1) used, and 1N-sodium hydroxide aqueous solution was added dropwise with stirring until the pH reached 12, and the formed precipitate was separated by filtration and vacuum dried to form a double layer on the surface of the nickel hydroxide particles. An active material powder composed of composite particles having a coating layer formed was obtained. The outer layer of the composite particles prepared in Example 9 was composed of a solid solution having a weight ratio of cobalt hydroxide to magnesium hydroxide of 9: 1, and the outer layer of the composite particles prepared in Example 10 was water. It consisted of a solid solution with a weight ratio of cobalt oxide to zinc hydroxide of 9: 1.

【0020】〔ペースト式ニッケル極の作製〕上記の各
活物質粉末80重量部と、1重量%メチルセルロース水
溶液20重量部とを混練してペーストを調製し、このペ
ーストをニッケルめっきした発泡メタル(多孔度95
%、平均孔径200μm)からなる多孔体(基板)に充
填し、乾燥し、加圧成形して、10種のペースト式ニッ
ケル極(本発明電極)を作製した。
[Preparation of Paste Type Nickel Electrode] 80 parts by weight of each active material powder described above and 20 parts by weight of a 1% by weight methylcellulose aqueous solution are kneaded to prepare a paste, and this paste is nickel-plated foam metal (porous metal). 95 degrees
%, An average pore diameter of 200 μm) was filled, dried and pressure-molded to prepare 10 kinds of paste nickel electrodes (electrodes of the present invention).

【0021】〔アルカリ蓄電池の作製〕上記の各ペース
ト式ニッケル極(正極)、正極に比べて電気化学的容量
が大きい公知のペースト式カドミウム極(負極)、ポリ
アミド不織布(セパレータ)、30重量%水酸化カリウ
ム水溶液(アルカリ電解液)、金属製の電池缶、金属製
の電池蓋などを用いて、AAサイズのアルカリ蓄電池
(電池容量:約1200mAh)A1〜A10を作製し
た。
[Preparation of Alkaline Storage Battery] Each of the above-mentioned paste type nickel electrodes (positive electrode), a known paste type cadmium electrode (negative electrode) having a larger electrochemical capacity than the positive electrode, polyamide nonwoven fabric (separator), 30 wt% water AA size alkaline storage batteries (battery capacity: about 1200 mAh) A1 to A10 were produced using a potassium oxide aqueous solution (alkali electrolyte solution), a metal battery can, a metal battery lid, and the like.

【0022】(比較例1)水酸化ニッケル粉末100g
を、0.8重量%の硫酸コバルト水溶液1リットルに入
れ、攪拌しながら1N−水酸化ナトリウム水溶液をpH
12になるまで滴下し、生成した沈澱物をろ別し、真空
乾燥することにより、水酸化ニッケル粒子の表面を水酸
化コバルトで被覆してなる複合体粒子からなる粉末を得
た。次いで、この粉末を活物質粉末として用いたこと以
外は実施例1〜10と同様にして、ペースト式ニッケル
極(比較電極)及びアルカリ蓄電池B1を作製した。
Comparative Example 1 100 g of nickel hydroxide powder
Was added to 1 liter of a 0.8 wt% cobalt sulfate aqueous solution, and the pH of the 1N-sodium hydroxide aqueous solution was adjusted with stirring.
The resulting precipitate was filtered off and dried under vacuum to obtain a powder consisting of composite particles in which the surface of nickel hydroxide particles was coated with cobalt hydroxide. Next, a paste type nickel electrode (reference electrode) and an alkaline storage battery B1 were produced in the same manner as in Examples 1 to 10 except that this powder was used as the active material powder.

【0023】(比較例2)水酸化ニッケル粉末100g
を、硫酸コバルト及び硫酸マグネシウムをそれぞれ0.
8重量%及び0.1重量%溶かした水溶液1リットルに
入れ、攪拌しながら1N−水酸化ナトリウム水溶液をp
H12になるまで滴下し、生成した沈澱物をろ別し、真
空乾燥して、水酸化ニッケル粒子の表面を水酸化コバル
トと水酸化マグネシウムとの重量比が9:1の固溶体
(混晶)で被覆した複合体粒子からなる粉末を得た。次
いで、この粉末を活物質粉末として用いたこと以外は実
施例1〜10と同様にして、ペースト式ニッケル極(比
較電極)及びアルカリ蓄電池B2を作製した。
(Comparative Example 2) 100 g of nickel hydroxide powder
To cobalt sulfate and magnesium sulfate respectively.
8% by weight and 0.1% by weight of an aqueous solution of 0.1% by weight were added to 1 liter, and 1N-sodium hydroxide aqueous solution was added while stirring.
It was added dropwise until H12, the precipitate formed was filtered off, and dried in vacuum to form a solid solution (mixed crystal) of nickel hydroxide particles on the surface of which the weight ratio of cobalt hydroxide and magnesium hydroxide was 9: 1. A powder consisting of the coated composite particles was obtained. Next, a paste type nickel electrode (reference electrode) and an alkaline storage battery B2 were produced in the same manner as in Examples 1 to 10 except that this powder was used as the active material powder.

【0024】(比較例3)水酸化ニッケル粉末100g
を、硫酸コバルト及び硫酸亜鉛をそれぞれ0.8重量%
及び0.08重量%溶かした水溶液1リットルに入れ、
攪拌しながら1N−水酸化ナトリウム水溶液をpH12
になるまで滴下し、生成した沈澱物をろ別し、真空乾燥
して、水酸化ニッケル粒子の表面を水酸化コバルトと水
酸化亜鉛との重量比が9:1の固溶体(混晶)で被覆し
た複合体粒子からなる粉末を得た。次いで、この粉末を
活物質粉末として用いたこと以外は実施例1〜10と同
様にして、ペースト式ニッケル極(比較電極)及びアル
カリ蓄電池B3を作製した。
(Comparative Example 3) Nickel hydroxide powder 100 g
0.8 wt% of cobalt sulfate and zinc sulfate
And 1 liter of 0.08% by weight solution,
With stirring, 1N-sodium hydroxide aqueous solution was added to pH 12
The resulting precipitate is filtered off and dried under vacuum to coat the surface of the nickel hydroxide particles with a solid solution (mixed crystal) of cobalt hydroxide and zinc hydroxide in a weight ratio of 9: 1. A powder consisting of the composite particles was obtained. Next, a paste type nickel electrode (reference electrode) and an alkaline storage battery B3 were produced in the same manner as in Examples 1 to 10 except that this powder was used as the active material powder.

【0025】〈各電池の過放電後の放電容量維持率〉各
電池について、120mAで160%充電した後、1.
2Aで1.0Vまで放電する工程を1サイクルとする充
放電サイクル試験を行い、各電池に使用したペースト式
ニッケル極の10サイクル目の放電容量C1を求めた。
次いで、上記10サイクル目の放電後、さらに各電池を
120mAで20%過放電し、120mAで160%充
電した後、1.2Aで1.0Vまで放電して、放電容量
C2を求めた。C1に対するC2の比率Pを下式より算
出して、各電池の耐過放電特性を評価した。Pが大きい
ほど、使用せるペースト式ニッケル極が、過放電時に水
酸化コバルトの水酸化ニッケル粒子内部への拡散が起こ
りにくい電極であることを示す。結果を表1に示す。
<Discharge capacity maintenance rate after over-discharging of each battery> After each battery was charged at 160% at 120 mA, 1.
A charging / discharging cycle test in which the step of discharging to 1.0 V at 2 A was set as one cycle was performed, and the discharge capacity C1 at the 10th cycle of the paste nickel electrode used for each battery was obtained.
Next, after the 10th cycle of discharging, each battery was further over-discharged at 120 mA by 20%, charged at 120 mA by 160%, and then discharged at 1.2 A to 1.0 V to obtain a discharge capacity C2. The ratio P of C2 to C1 was calculated by the following formula, and the over-discharge resistance characteristics of each battery were evaluated. The larger P indicates that the paste-type nickel electrode that can be used is an electrode in which the diffusion of cobalt hydroxide into the nickel hydroxide particles does not easily occur during overdischarge. Table 1 shows the results.

【0026】P(%)=(C2/C1)×100P (%) = (C2 / C1) × 100

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、電池A1〜A10はP
が大きいのに対して、電池B1〜B3はPが小さい。こ
の事実から、水酸化ニッケル粒子の表面を、水酸化マグ
ネシウム層又は水酸化亜鉛層で被覆し、該水酸化マグネ
シウム層又は該水酸化亜鉛層を、さらに水酸化コバルト
層で被覆してなる複合体粒子からなる粉末を用いること
により、過放電後も導電性が低下しにくいペースト式ニ
ッケル極が得られることが分かる。
As shown in Table 1, the batteries A1 to A10 are P
Is large, whereas batteries B1 to B3 have small P. From this fact, a composite obtained by coating the surface of nickel hydroxide particles with a magnesium hydroxide layer or a zinc hydroxide layer, and further coating the magnesium hydroxide layer or the zinc hydroxide layer with a cobalt hydroxide layer. It can be seen that by using the powder made of particles, a paste-type nickel electrode in which the conductivity is less likely to decrease even after over-discharging can be obtained.

【0029】[0029]

【発明の効果】本発明電極は、過放電後も導電性が低下
しにくい。
EFFECT OF THE INVENTION The electrode of the present invention is less likely to decrease in conductivity even after overdischarge.

フロントページの続き (72)発明者 前田 礼造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 新山 克彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 井上 雅雄 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front page continued (72) Inventor Reizou Maeda 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Katsuhiko Niiyama 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Denki Co., Ltd. (72) Inventor Masao Inoue 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Denki Co., Ltd. (72) Inventor Ikuo Yonezu 2-chome, Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケル粒子の表面を、水酸化マグ
ネシウム層又は水酸化亜鉛層で被覆し、該水酸化マグネ
シウム層又は該水酸化亜鉛層を、水酸化コバルト層で被
覆してなる複合体粒子からなる活物質粉末を用いたアル
カリ蓄電池用のペースト式ニッケル極。
1. A composite obtained by coating the surface of nickel hydroxide particles with a magnesium hydroxide layer or a zinc hydroxide layer, and coating the magnesium hydroxide layer or the zinc hydroxide layer with a cobalt hydroxide layer. A paste-type nickel electrode for alkaline storage batteries that uses active material powder consisting of particles.
【請求項2】前記複合体粒子が、前記水酸化マグネシウ
ム層又は前記水酸化亜鉛層を0.05〜3重量%含有す
る請求項1記載のアルカリ蓄電池用のペースト式ニッケ
ル極。
2. The paste-type nickel electrode for an alkaline storage battery according to claim 1, wherein the composite particles contain 0.05 to 3% by weight of the magnesium hydroxide layer or the zinc hydroxide layer.
【請求項3】前記複合体粒子が、前記水酸化コバルト層
を1〜20重量%含有する請求項1記載のアルカリ蓄電
池用のペースト式ニッケル極。
3. The paste type nickel electrode for an alkaline storage battery according to claim 1, wherein the composite particles contain the cobalt hydroxide layer in an amount of 1 to 20% by weight.
【請求項4】前記水酸化コバルト層が、水酸化コバルト
と水酸化マグネシウム又は水酸化亜鉛との固溶体からな
る請求項1記載のアルカリ蓄電池用のペースト式ニッケ
ル極。
4. The paste-type nickel electrode for an alkaline storage battery according to claim 1, wherein the cobalt hydroxide layer is made of a solid solution of cobalt hydroxide and magnesium hydroxide or zinc hydroxide.
JP7323977A 1995-11-17 1995-11-17 Paste type nickel electrode for alkaline storage battery Pending JPH09147907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7323977A JPH09147907A (en) 1995-11-17 1995-11-17 Paste type nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7323977A JPH09147907A (en) 1995-11-17 1995-11-17 Paste type nickel electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH09147907A true JPH09147907A (en) 1997-06-06

Family

ID=18160747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7323977A Pending JPH09147907A (en) 1995-11-17 1995-11-17 Paste type nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH09147907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920873A (en) * 2014-04-19 2014-07-16 河南工业大学 Composite nickel nano-particle coated with outer inert shell and manufacturing method of composite nickel nano-particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920873A (en) * 2014-04-19 2014-07-16 河南工业大学 Composite nickel nano-particle coated with outer inert shell and manufacturing method of composite nickel nano-particle
CN103920873B (en) * 2014-04-19 2015-11-11 河南工业大学 Be coated with the preparation method of the compound nano nickel particles of inertia shell

Similar Documents

Publication Publication Date Title
JP3490818B2 (en) Paste nickel electrode for alkaline storage batteries
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JPH117950A (en) Non-sintered nickel electrode for alkali storage battery
JP2001043855A (en) Non-sintered nickel electrode for alkali storage battery
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH09147907A (en) Paste type nickel electrode for alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH09147908A (en) Paste type nickel electrode for alkaline storage battery
JP3272151B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3433066B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP2001283902A (en) Alkaline battery
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JPH1173956A (en) Non-sintered nickel electrode for alkaline storage battery
JPH10261411A (en) Non-sintered nickel electrode for alkaline storage battery
JPH11307091A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it