JPH09147348A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH09147348A
JPH09147348A JP30960695A JP30960695A JPH09147348A JP H09147348 A JPH09147348 A JP H09147348A JP 30960695 A JP30960695 A JP 30960695A JP 30960695 A JP30960695 A JP 30960695A JP H09147348 A JPH09147348 A JP H09147348A
Authority
JP
Japan
Prior art keywords
magnetic
underlayer
recording medium
film
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30960695A
Other languages
Japanese (ja)
Other versions
JP2911797B2 (en
Inventor
Masato Kobayashi
正人 小林
Keiji Moroishi
圭二 諸石
Junichi Horikawa
順一 堀川
Jun Nozawa
順 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP30960695A priority Critical patent/JP2911797B2/en
Priority to US08/758,015 priority patent/US5968679A/en
Priority to SG1996011436A priority patent/SG74575A1/en
Publication of JPH09147348A publication Critical patent/JPH09147348A/en
Application granted granted Critical
Publication of JP2911797B2 publication Critical patent/JP2911797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce medium noise and to increase coercive force and squareness ratio by specifying value given by subtracting the interplanar spacing of a prescribed face of a nonmagnetic underlayer from that of a prescribed face of a magnetic layer. SOLUTION: An underlayer 2 on the mirror-polished surface of a glass substrate 1 consists of a thin Al film 2a, a thin Cr film 2b and a thin CrV film 2c from the substrate 1 side. A magnetic layer 3 is made of a CoPtCr alloy. Value [d(002) -d(110) ] given by subtracting the interplanar spacing of the bcc (110) face of the CrV film 2c from that of the hcp (002) face of the magnetic layer 3 is 0.002-0.032Å.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク、磁
気テープ等の磁気記録媒体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic disk and a magnetic tape and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、スパッタリングあるいは真空蒸着
により製造された金属磁性薄膜を磁性層とする磁気記録
媒体が注目されている。金属磁性薄膜が磁気記録媒体と
して注目されている大きな理由は、周知のごとく、従来
の磁性粉を塗布したものに比べて高い記録密度を実現で
きるためである。この様な金属磁性薄膜の磁性材料とし
て、Co含有合金が良好な保磁力と角形比を示すものと
して知られている。特に近年、CoPt系合金薄膜が、
高保磁力と高い残留磁束密度を有することから、磁気記
録の高密度化に対応できる材料として工業的に大きな注
目を集めている。
2. Description of the Related Art In recent years, a magnetic recording medium having a magnetic layer of a metal magnetic thin film manufactured by sputtering or vacuum deposition has been receiving attention. As is well known, a major reason why a metal magnetic thin film is attracting attention as a magnetic recording medium is that a higher recording density can be realized as compared with a conventional magnetic powder-coated one. As a magnetic material for such a metal magnetic thin film, a Co-containing alloy is known to exhibit good coercive force and squareness ratio. Especially in recent years, CoPt-based alloy thin films have
Due to its high coercive force and high residual magnetic flux density, it has attracted a great deal of industrial attention as a material that can be used for higher density magnetic recording.

【0003】ところで、CoNiCr合金やCoCrT
a合金等の磁性層を有する磁気記録媒体において、下地
層としてCrを用いると高い保磁力が得られることが知
られている(例えば、IEEE TRANSACTION ON MAGNETICS
VOL.MAG-3 ,NO.3(1967)p205-207 )。
By the way, CoNiCr alloy and CoCrT
It is known that high coercive force can be obtained by using Cr as an underlayer in a magnetic recording medium having a magnetic layer such as an a-alloy (for example, IEEE TRANSACTION ON MAGNETICS).
VOL.MAG-3, NO.3 (1967) p205-207).

【0004】[0004]

【発明が解決しようとする課題】ところが、CoPt系
合金磁性層の場合には、Crの単一成分からなる下地層
を用いるとC軸配向性が悪くなるという問題があった。
CoPt系合金磁性層の格子定数は、Ptの原子半径が
大きいため、従来のCoNiCr合金やCoCrTa合
金等の磁性層の結晶格子定数に比べて大きい。そのた
め、Crの単一成分からなる下地層との原子配列の整合
性が悪くなり、その結果、C軸配向性も悪かった。この
問題を解決する手段として、Cr下地層に結晶格子定数
を大きくする第2の金属(異種金属)を添加することが
提案されている。Crに異種金属を添加したCr合金
(例えばCrV)下地層を用いて合金下地層の格子定数
を変化させることにより、膜面内における磁性層のC軸
配向性を改善して保磁力及び角形比を向上させることが
できる(特公平4−16848号公報)。
However, in the case of the CoPt type alloy magnetic layer, there is a problem that the C-axis orientation is deteriorated when an underlayer made of a single component of Cr is used.
Since the atomic radius of Pt is large, the lattice constant of the CoPt-based alloy magnetic layer is larger than the crystal lattice constant of the magnetic layer of the conventional CoNiCr alloy or CoCrTa alloy. Therefore, the conformity of the atomic arrangement with the underlayer made of a single component of Cr was poor, and as a result, the C-axis orientation was also poor. As a means for solving this problem, it has been proposed to add a second metal (different metal) for increasing the crystal lattice constant to the Cr underlayer. By changing the lattice constant of the alloy underlayer using a Cr alloy (eg, CrV) underlayer in which a dissimilar metal is added to Cr, the C-axis orientation of the magnetic layer in the film plane is improved to improve the coercive force and the squareness ratio. Can be improved (Japanese Patent Publication No. 4-16848).

【0005】しかしながら、本発明者らの検討の結果、
磁気特性のもう一つの重要な特性である媒体ノイズは、
Cr下地層に異種金属を添加することにより急激に大き
くなってしまうことが明らかになった。
However, as a result of the study by the present inventors,
Media noise, another important characteristic of magnetic properties, is
It was revealed that the addition of a dissimilar metal to the Cr underlayer causes the size to increase rapidly.

【0006】そこで本発明の目的は、Cr合金下地層及
びCoPt系合金磁性層を有する磁気記録媒体であっ
て、媒体ノイズが低い磁気記録媒体及びその製造方法を
提供することにある。さらに本発明の別の目的は、Cr
合金下地層及びCoPt系合金磁性層を有する磁気記録
媒体であって、保磁力及び角形比が高く、かつ媒体ノイ
ズも低い磁気記録媒体及びその製造方法を提供すること
にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic recording medium having a Cr alloy underlayer and a CoPt type alloy magnetic layer, which has low medium noise, and a method for manufacturing the same. Still another object of the present invention is Cr
A magnetic recording medium having an alloy underlayer and a CoPt-based alloy magnetic layer, which has a high coercive force and squareness ratio and a low medium noise, and a method for manufacturing the same.

【0007】本発明者らが種々検討したところ、Cr下
地層に異種金属(例えば、V等)を添加すると、結晶粒
径の不均一性及び結晶性の低下が起こることが、透過型
電子顕微鏡観察により判明した。すなわち、結晶粒径が
不均一で結晶性の悪いCr合金下地層の上にCoPt系
合金磁性層(例えばCoPtCr等)を積層させると、
下地層の粒径及び結晶性に強く影響を受けて成長するた
め、磁性層の結晶粒径の不均一性を引き起こすと共に、
結晶性も著しく低下させることが分かった。そして、こ
れが原因となって媒体ノイズを増加させることが判明し
た。
As a result of various studies by the present inventors, it was found that when a dissimilar metal (for example, V) is added to the Cr underlayer, nonuniformity of crystal grain size and deterioration of crystallinity occur. Observed. That is, when a CoPt-based alloy magnetic layer (for example, CoPtCr or the like) is laminated on a Cr alloy underlayer having a nonuniform crystal grain size and poor crystallinity,
Since the growth is strongly influenced by the grain size and crystallinity of the underlayer, it causes non-uniformity of the crystal grain size of the magnetic layer, and
It was found that the crystallinity was also significantly reduced. It was found that this causes the medium noise to increase.

【0008】この解決策として結晶粒径が均一で結晶性
の良い膜上にCrに異種金属を添加したCr合金下地層
を積層すれば、Cr合金下地層の結晶粒径は均一にな
り、また結晶性が良くなることが実験的に明らかになっ
た。しかしながら、このように下地層を2層にするだけ
では媒体ノイズの低減は不十分であった。
As a solution to this problem, if a Cr alloy underlayer in which a dissimilar metal is added to Cr is laminated on a film having a uniform crystal grain size and good crystallinity, the crystal grain size of the Cr alloy underlayer becomes uniform, and It has been experimentally revealed that the crystallinity is improved. However, the reduction of the medium noise is not sufficient just by using two underlayers in this way.

【0009】そこで、さらに検討したところ、CoPt
系合金磁性層の(002)面の結晶格子面間隔と、下地
層の最上層であるCr合金(Crに異種金属を添加し
た)下地層の(110)面の結晶格子面間隔を整合させ
ることで、媒体ノイズが大幅に低減されることがわかっ
た。即ち、CoPt系合金磁性層の(002)面の結晶
格子面間隔と、下地層の最上層であるCr合金下地層の
(110)面の結晶格子面間隔の差を小さくすること
で、保磁力及び角型比を向上させることができると同時
に、媒体ノイズを低減することもできる。
[0009] Then, further examination, CoPt
To match the crystal lattice plane spacing of the (002) plane of the base alloy magnetic layer with the crystal lattice plane spacing of the (110) plane of the Cr alloy (Cr is a different metal added) which is the uppermost layer of the underlayer. It was found that the medium noise was significantly reduced. That is, the coercive force is reduced by reducing the difference between the crystal lattice plane spacing of the (002) plane of the CoPt-based alloy magnetic layer and the crystal lattice plane spacing of the (110) plane of the Cr alloy underlayer which is the uppermost layer of the underlayer. Also, the squareness ratio can be improved, and at the same time, the medium noise can be reduced.

【0010】さらに、CoPt系合金磁性層の(00
2)面の結晶格子面間隔とCr合金下地層の(110)
面の結晶格子面間隔の差をゼロにすることが望ましいわ
けではなく、若干の差をもたせた方がノイズ低減の観点
からは好ましいことが、実験結果から明らかになった。
すなわち、磁性層のC軸配向をある範囲内に制御してや
ることによって媒体ノイズは低減することになる。
Further, (00) of the CoPt-based alloy magnetic layer is formed.
2) Crystal lattice spacing of plane and (110) of Cr alloy underlayer
From the experimental results, it is clear that it is not desirable to make the difference between the crystal lattice planes of the planes zero, and that a slight difference is preferable from the viewpoint of noise reduction.
That is, medium noise is reduced by controlling the C-axis orientation of the magnetic layer within a certain range.

【0011】[0011]

【課題を解決するための手段】そこで本発明は、基板上
に非磁性下地層及びCoPt系磁性層をこの順に有する
磁気記録媒体であって、前記非磁性下地層は1層又は2
層以上の層からなり、前記CoPt系磁性層と接する非
磁性下地層がCrとVを主成分とする材料からなり、前
記磁性層のhcp(002)面の結晶格子面間隔から前
記CrとVを主成分とする材料からなる非磁性下地層の
bcc(110)面の結晶格子面間隔を引いた差(d
(002) −d(110) )が、0.002〜0.032オング
ストロームの範囲であることを特徴とする磁気記録媒体
に関する。
Therefore, the present invention is a magnetic recording medium having a nonmagnetic underlayer and a CoPt-based magnetic layer in this order on a substrate, wherein the nonmagnetic underlayer is one layer or two layers.
The non-magnetic underlayer which is in contact with the CoPt-based magnetic layer is made of a material containing Cr and V as main components, and the Cr and V are determined from the crystal lattice spacing of the hcp (002) plane of the magnetic layer. The difference (d) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the non-magnetic underlayer made of a material containing
(002) -d (110) ) is in the range of 0.002 to 0.032 angstrom.

【0012】さらに本発明は、上記本発明の磁気記録媒
体の製造方法であって、少なくともCrとVを主成分と
する材料からなる非磁性下地層及びCoPt系磁性層
を、基板加熱温度範囲を250℃〜425℃とし、Ar
ガス圧力範囲を0.5〜10mTorrとして、スパッ
タリング法により形成することを特徴とする磁気記録媒
体の製造方法に関する。以下本発明について説明する。
Further, the present invention is the method for manufacturing a magnetic recording medium according to the present invention, wherein the non-magnetic underlayer and the CoPt magnetic layer made of a material containing at least Cr and V as main components are provided in a substrate heating temperature range. 250 ° C to 425 ° C, Ar
The present invention relates to a method for manufacturing a magnetic recording medium, which is formed by a sputtering method with a gas pressure range of 0.5 to 10 mTorr. The present invention will be described below.

【0013】本発明の磁気記録媒体の磁性層はCoPt
系合金、即ち、CoとPtを主成分とする合金である。
CoとPtを主成分とする合金は充分な保磁力を得ると
いう観点から、CoとPtとの合計が70at%以上の
合金であることが適当である。また、CoとPtの比率
には特に制限はないが、保磁力、ノイズ及びコストを考
慮すると、Pt(at%)/Co(at%)は0.07
以上0.2以下の範囲であることが適当である。
The magnetic layer of the magnetic recording medium of the present invention is CoPt.
It is a system alloy, that is, an alloy containing Co and Pt as main components.
From the viewpoint of obtaining a sufficient coercive force, the alloy containing Co and Pt as the main components is preferably an alloy containing 70 at% or more of Co and Pt in total. The ratio of Co and Pt is not particularly limited, but Pt (at%) / Co (at%) is 0.07 in consideration of coercive force, noise and cost.
It is appropriate that the range is not less than 0.2 and not more than 0.2.

【0014】Co及びPt以外の成分には特に制限はな
いが、例えば、Cr、Ta、Ni、Si、B、O、N、
Nb、Mn、Mo、Zn、W、Pb、Re、V、Sm及
びZrの1種または2種以上を適宜使用することができ
る。これらの元素の添加量は磁気特性等を考慮して適宜
決定され、通常30at%以下であることが適当であ
る。より具体的な磁性層の材料としては、例えばCoP
tCr合金、CoPtTa合金、CoPtCrB合金、
CoPtCrTa合金、CoPtCrNi合金等を上げ
ることができる。
Components other than Co and Pt are not particularly limited, but for example, Cr, Ta, Ni, Si, B, O, N,
One or more of Nb, Mn, Mo, Zn, W, Pb, Re, V, Sm and Zr can be appropriately used. The addition amount of these elements is appropriately determined in consideration of magnetic properties and the like, and is usually 30 at% or less. As a more specific material for the magnetic layer, for example, CoP
tCr alloy, CoPtTa alloy, CoPtCrB alloy,
CoPtCrTa alloy, CoPtCrNi alloy, etc. can be used.

【0015】CoPt系合金磁性層の膜厚は、例えば4
00〜550Åの範囲であることが出力、重ね書き特
性、ノイズ等を考慮すると適当である。膜厚が400Å
を下回ると、十分な出力を得られない場合がある。ま
た、膜厚が550Åを超えると重ね書き特性が劣化し、
かつノイズが増加する傾向がある。
The film thickness of the CoPt-based alloy magnetic layer is, for example, 4
The range of 00 to 550Å is appropriate in consideration of output, overwriting characteristics, noise and the like. Film thickness is 400Å
If it falls below the range, sufficient output may not be obtained. Also, when the film thickness exceeds 550Å, the overwriting characteristics deteriorate,
And noise tends to increase.

【0016】さらに本発明の磁気記録媒体は、1層又は
2層以上の非磁性下地層を有し、前記CoPt系磁性層
と接する非磁性下地層がCrとVを主成分とする材料か
らなる。この非磁性下地層を、以下、CrV系非磁性下
地層と呼ぶ。CrV系非磁性下地層は、CrとVのみか
らなる場合、Cr金属に添加するV量を50原子%以下
とすることが、結晶粒系が均一で且つ結晶性が良い膜と
することができるという観点から適当である。
Further, the magnetic recording medium of the present invention has one or more nonmagnetic underlayers, and the nonmagnetic underlayer in contact with the CoPt magnetic layer is made of a material containing Cr and V as main components. . Hereinafter, this nonmagnetic underlayer is referred to as a CrV-based nonmagnetic underlayer. When the CrV-based non-magnetic underlayer is composed of only Cr and V, the V content added to the Cr metal may be 50 atomic% or less to form a film having a uniform crystal grain system and good crystallinity. It is suitable from the viewpoint.

【0017】さらに、Vの一部に代えて、Zr、W、
B、Mo、Nb、Ta、Fe、Ni、Re、Ce、Z
n、P、Si、Ga、Hf、Al、Ti等の1種または
2種以上を添加することもできる。これらの成分の添加
量は、V量と合計で50原子%以下とすることが、結晶
粒系が均一で且つ結晶性が良い膜とすることができると
いう観点から適当である。但し、Crに対するV等の添
加量は、磁性層におけるCo、Ptあるいはその他の添
加元素の含有量およびその添加元素の種類により適宜調
整することができる。
Further, instead of a part of V, Zr, W,
B, Mo, Nb, Ta, Fe, Ni, Re, Ce, Z
One or more of n, P, Si, Ga, Hf, Al, Ti and the like may be added. It is appropriate that the total amount of these components added to the amount of V is 50 atomic% or less from the viewpoint that a film having a uniform crystal grain system and good crystallinity can be obtained. However, the amount of V or the like added to Cr can be appropriately adjusted depending on the content of Co, Pt or other additive element in the magnetic layer and the type of the additive element.

【0018】例えば、CoPtCr合金磁性層において
Pt含有量を4〜20原子%、Cr含有量を3〜30原
子%とし、CrV系非磁性下地層をCrVとした場合に
は、CrV系非磁性下地層のVの含有量は4〜40原子
%とすることが、磁性層、CrV系非磁性下地層の結晶
粒径が均一で且つ結晶性が良く、さらにCrV系非磁性
下地層と磁性層の結晶格子定数の差を適切な範囲内に制
御しやすいので好ましい。また、Hcが大きく且つ高い
S/N比を有するために特に好ましいV含有量は10〜
20原子%である。
For example, when the Pt content in the CoPtCr alloy magnetic layer is 4 to 20 atomic%, the Cr content is 3 to 30 atomic%, and the CrV-based nonmagnetic underlayer is CrV, a CrV-based nonmagnetic material is used. It is preferable that the V content of the formation is 4 to 40 atomic%, because the crystal grain size of the magnetic layer and the CrV-based nonmagnetic underlayer is uniform and the crystallinity is good, and further, the V content of the CrV-based nonmagnetic underlayer and the magnetic layer is This is preferable because it is easy to control the difference in crystal lattice constant within an appropriate range. In addition, since the Hc is large and the S / N ratio is high, the particularly preferable V content is 10
It is 20 atomic%.

【0019】CrV系非磁性下地層の膜厚は、10〜1
50Åとすることが適当である。CrV系非磁性下地層
の膜厚の上限と下限は、結晶粒径が均一で且つ結晶性が
良い膜になると共に、磁性層と適合した結晶格子面間隔
になるように定められる。このような観点から、CrV
系非磁性下地層の好ましい膜厚は、20〜100Åであ
る。
The thickness of the CrV nonmagnetic underlayer is 10 to 1
A value of 50Å is appropriate. The upper and lower limits of the film thickness of the CrV-based non-magnetic underlayer are determined so that the film has a uniform crystal grain size and good crystallinity, and has a crystal lattice spacing that matches the magnetic layer. From such a viewpoint, CrV
The preferred thickness of the non-magnetic underlayer is 20-100Å.

【0020】CrV系非磁性下地層としてCrVZr合
金を用いた場合、高いHc、Mrδ及び、S/N比が得
られることが好ましい。CrV合金にZrを添加する
と、一層ノイズ低減効果が増長されるため、S/N比が
向上するからである。このような効果を引き出すため
に、Zrの含有量は2〜5at%の範囲とすることが好
ましい。またこの特性は膜厚によっても左右され、Cr
VZr合金下地層の膜厚は10〜150Å、特に好まし
くは20〜100Åである。10Åを下回ると、充分な
Hcが得られない場合があり、150Åを超えると出力
の低下と重ね書き特性の劣化及びノイズが増加する傾向
がある。
When CrVZr alloy is used as the CrV-based non-magnetic underlayer, it is preferable that high Hc, Mr δ and S / N ratio can be obtained. This is because the addition of Zr to the CrV alloy further enhances the noise reduction effect and improves the S / N ratio. In order to bring out such an effect, the Zr content is preferably in the range of 2 to 5 at%. In addition, this characteristic depends on the film thickness, and Cr
The VZr alloy underlayer has a film thickness of 10 to 150Å, particularly preferably 20 to 100Å. If it is less than 10Å, sufficient Hc may not be obtained, and if it exceeds 150Å, there is a tendency that output decreases, overwrite characteristics deteriorate, and noise increases.

【0021】本発明の磁気記録媒体においては、前記磁
性層のhcp(002)面の結晶格子面間隔から前記C
rV系非磁性下地層のbcc(110)面の結晶格子面
間隔を引いた差(d(002) −d(110) )は、0.002
〜0.032オングストロームの範囲である。(d
(002) −d(110) )が、0.002オングストローム未
満及び0.032オングストロームを超えるとHcが低
下し、かつS/N比も低下してしまう。また、さらに高
いS/N比を得るためには、(d(002) −d(110))を
0.014オングストローム〜0.030オングストロ
ームの範囲とすることが好ましい。
In the magnetic recording medium of the present invention, the above-mentioned C is determined from the crystal lattice spacing of the hcp (002) plane of the magnetic layer.
The difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the rV nonmagnetic underlayer is 0.002.
˜0.032 Å. (D
When (002) -d (110) ) is less than 0.002 angstroms and exceeds 0.032 angstroms, Hc is lowered and the S / N ratio is also lowered. Further, in order to obtain an even higher S / N ratio, it is preferable that (d (002) -d (110) ) be in the range of 0.014 angstrom to 0.030 angstrom.

【0022】本発明の磁気記録媒体においては、前記C
rV系非磁性下地層と基板との間に1層又は2層以上の
非磁性下地層を有することができる。そして、前記Cr
V系非磁性下地層と接する非磁性下地層は体心立方最密
充填結晶構造を有する金属からなることが好ましい。体
心立方最密充填結晶構造を有する金属からなる非磁性下
地層としては、Cr下地層を挙げることができる。前記
CrV系非磁性下地層と接する非磁性下地層は、結晶粒
径が均一で且つ結晶性が良い金属膜であることが好まし
く、実験的にCr膜が最も好ましいことが確認された。
また、体心立方最密充填結晶構造を有する金属としてC
r以外にTi、Ta、Zr等を例示することもできる。
In the magnetic recording medium of the present invention, the C
One or two or more nonmagnetic underlayers may be provided between the rV-based nonmagnetic underlayer and the substrate. And the Cr
The nonmagnetic underlayer in contact with the V-based nonmagnetic underlayer is preferably made of a metal having a body-centered cubic closest-packed crystal structure. An example of the nonmagnetic underlayer made of a metal having a body-centered cubic closest-packed crystal structure is a Cr underlayer. The nonmagnetic underlayer in contact with the CrV-based nonmagnetic underlayer is preferably a metal film having a uniform crystal grain size and good crystallinity, and it has been experimentally confirmed that the Cr film is most preferable.
Further, as a metal having a body-centered cubic closest-packed crystal structure, C
Other than r, Ti, Ta, Zr and the like can be exemplified.

【0023】体心立方最密充填結晶構造を有する金属か
らなる非磁性下地層の膜厚は、100〜1000Åの範
囲とすることが適当である。この非磁性下地層の上限と
下限は、結晶粒径が均一で且つ結晶性が良い膜になるよ
うに決定され、特にHcが大きく且つ高いS/N比を有
するためには、上記非磁性下地層の膜厚は100〜80
0Åの範囲とすることが適当である。さらに、(CrV
系非磁性下地層の膜厚)/(体心立方最密充填結晶構造
を有する金属からなる非磁性下地層の膜厚)の比は、
0.05〜0.5の間であることが、Hcが大きく、か
つ高いS/N比を有するという観点から好ましい。
The thickness of the non-magnetic underlayer made of a metal having a body-centered cubic closest-packed crystal structure is preferably in the range of 100 to 1000Å. The upper and lower limits of this non-magnetic underlayer are determined so that the film has a uniform crystal grain size and good crystallinity. In particular, in order to have a large Hc and a high S / N ratio, The thickness of the formation is 100-80
A range of 0Å is suitable. Furthermore, (CrV
(The thickness of the non-magnetic underlayer of the system) / (the thickness of the nonmagnetic underlayer made of a metal having a body-centered cubic close-packed crystal structure)
It is preferably between 0.05 and 0.5 from the viewpoint that Hc is large and the S / N ratio is high.

【0024】本発明の磁気記録媒体においては、前記体
心立方最密充填結晶構造を有する金属からなる非磁性下
地層と非磁性基板の間に、さらに別異の非磁性下地層を
設けることができる。そのような非磁性下地層として、
Al、Ti、Zr膜等を挙げることができる。この非磁
性下地層の膜厚は、例えば、10〜100Åとするのが
できる。この非磁性下地層の膜厚の上限と下限は、上に
積層される体心立方最密充填結晶構造を有する金属から
なる膜の結晶粒径が均一で且つ結晶性の良い膜になる範
囲として定められる。そして、さらにHcが大きく且つ
高いS/N比を有するためには、膜厚は30〜80Åで
あることが好ましい。
In the magnetic recording medium of the present invention, another non-magnetic under layer may be provided between the non-magnetic under layer and the non-magnetic substrate which are made of a metal having the body-centered cubic closest packed crystal structure. it can. As such a non-magnetic underlayer,
Examples thereof include Al, Ti and Zr films. The film thickness of this non-magnetic underlayer can be set to, for example, 10 to 100Å. The upper and lower limits of the film thickness of this non-magnetic underlayer are set so that the film formed of a metal having a body-centered cubic closest-packed crystal structure and having a uniform crystal grain size and good crystallinity Determined. Further, in order to have a larger Hc and a high S / N ratio, the film thickness is preferably 30 to 80Å.

【0025】本発明の磁気記録媒体は、前記CoPt系
磁性層の上に保護層及び潤滑層を設けることができる。
保護層には、磁性層を湿気等の化学的攻撃から保護する
役割の保護層と、ヘッドの接触摺動による破壊から防護
する目的で磁性層の上(非磁性基板と反対側の面)に設
けられる耐摩耗性を付与する保護層とがある。保護層
は、異なる材質の1層または2層以上から構成されるこ
とができる。本発明の磁気記録媒体においては、保護層
の材質や構造等には特に制限はない。材質としては、例
えば、化学的保護層としてはCr等の金属膜を挙げるこ
とができ、耐摩耗性を付与する保護層としては、酸化珪
素膜、炭素膜、ジルコニア膜、水素化カーボン膜、窒素
珪素膜、SiC膜等を挙げることができる。
In the magnetic recording medium of the present invention, a protective layer and a lubricating layer can be provided on the CoPt magnetic layer.
The protective layer is a protective layer that protects the magnetic layer from chemical attack such as moisture, and on the magnetic layer (the surface opposite to the non-magnetic substrate) for the purpose of protecting the magnetic layer from damage caused by contact sliding. There is a protective layer provided to provide wear resistance. The protective layer may be composed of one layer or two or more layers made of different materials. In the magnetic recording medium of the present invention, the material and structure of the protective layer are not particularly limited. As the material, for example, a metal film such as Cr can be used as the chemical protective layer, and a silicon oxide film, a carbon film, a zirconia film, a hydrogenated carbon film, nitrogen can be used as the protective layer imparting wear resistance. Examples thereof include a silicon film and a SiC film.

【0026】上記酸化珪素膜等は表面に凹凸を有し、ヘ
ッドが磁気記録媒体の表面に吸着するのを防止する役割
も有する。磁気記録媒体の表面を凹凸にする技術(テク
スチャー化技術)としては、以下のものも利用できる。
まず、下地層として表面が凹凸状のアルミニウムや窒化
アルミニウム(AlN)層を基板上に、スパッタリング
法により設ける。この表面が凹凸状の下地層の上に、所
定の非磁性下地層及び磁性層を順次設け、さらに磁性層
の上に保護層を設ける。この保護層は、例えば、スパッ
タリング法により形成した炭素膜であることができる。
このような構成とすることにより、保護層の表面は、下
地層の凹凸状の表面を反映した形状となる。尚、上記表
面が凹凸状の下地層と基板との間に上記下地層の結晶成
長を促進するためにチタンやクロム等の第2の下地層を
設けることもできる。
The silicon oxide film or the like has irregularities on the surface and also has a role of preventing the head from adsorbing to the surface of the magnetic recording medium. The following can also be used as a technique for making the surface of the magnetic recording medium uneven (texturing technique).
First, an aluminum or aluminum nitride (AlN) layer having an uneven surface is provided as a base layer on a substrate by a sputtering method. A predetermined nonmagnetic underlayer and a magnetic layer are sequentially provided on the underlayer having an uneven surface, and a protective layer is further provided on the magnetic layer. This protective layer can be, for example, a carbon film formed by a sputtering method.
With such a structure, the surface of the protective layer has a shape that reflects the uneven surface of the underlayer. A second underlayer of titanium, chromium or the like may be provided between the substrate and the underlayer having an uneven surface to promote crystal growth of the underlayer.

【0027】潤滑層は、ヘッドとの接触摺動により抵抗
する目的で設けられる膜であり、材質等には特に制限は
ない。例えば、パーフルオロポリエーテル等を挙げるこ
とができる。
The lubricating layer is a film provided for the purpose of resisting by contact sliding with the head, and the material and the like are not particularly limited. For example, perfluoropolyether and the like can be mentioned.

【0028】基板は、非磁性基板であれば、その材質や
形状等に特に制限はない。例えば、ガラス基板、結晶化
ガラス基板、アルミニウム基板、セラミック基板、カー
ボン基板、シリコン基板等を使用することができる。
The material and shape of the substrate are not particularly limited as long as it is a non-magnetic substrate. For example, a glass substrate, a crystallized glass substrate, an aluminum substrate, a ceramic substrate, a carbon substrate, a silicon substrate or the like can be used.

【0029】本発明の磁気記録媒体は、スパッタリング
法等の公知の薄膜形成法を利用して製造することができ
る。特に、CrV系非磁性下地層の組成を調整するとと
もに、CrV系非磁性下地層及びCoPt系磁性層の形
成条件を調整することにより、所定の範囲の結晶格子面
間隔の差(d(002) −d(110) )を有する磁気記録媒体
を得ることができる。
The magnetic recording medium of the present invention can be manufactured by utilizing a known thin film forming method such as a sputtering method. In particular, by adjusting the composition of the CrV-based non-magnetic underlayer and the formation conditions of the CrV-based non-magnetic underlayer and the CoPt-based magnetic layer, the difference in the crystal lattice plane spacing (d (002) A magnetic recording medium having -d (110) ) can be obtained.

【0030】例えば、少なくともCrV系非磁性下地層
及びCoPt系磁性層を、基板加熱温度範囲を250℃
〜425℃とし、Arガス圧力範囲を0.5〜10mT
orrとして、スパッタリング法により形成することに
より、所定の範囲の結晶格子面間隔の差(d(002) −d
(110) )を有する磁気記録媒体を得ることができる。基
板加熱温度の範囲は、好ましくは300℃〜400℃で
ある。また、Arガス圧力の範囲は、好ましくは1〜8
mTorrである。
For example, at least the CrV-based nonmagnetic underlayer and the CoPt-based magnetic layer are used at a substrate heating temperature range of 250 ° C.
~ 425 ° C, Ar gas pressure range 0.5 ~ 10mT
Orr is formed by a sputtering method, so that a difference in crystal lattice plane spacing in a predetermined range (d (002) −d
A magnetic recording medium having (110) ) can be obtained. The substrate heating temperature range is preferably 300 ° C to 400 ° C. The range of Ar gas pressure is preferably 1-8.
mTorr.

【0031】本発明の磁気記録媒体は、低減した媒体ノ
イズと高い保磁力、角形比を有することから、磁気ディ
スクや磁気テープ等に有用である。
The magnetic recording medium of the present invention has reduced medium noise, high coercive force, and squareness ratio, and is therefore useful for magnetic disks, magnetic tapes and the like.

【0032】[0032]

【実施例】以下、実施例と比較例により本発明を詳細に
説明する。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples.

【0033】実施例1 本実施例の磁気記録媒体は図1に示す通り、ガラス基板
1上に下地層2、磁性層3、保護層4、潤滑層5を順次
積層してなる磁気ディスクである。
Example 1 As shown in FIG. 1, the magnetic recording medium of this example is a magnetic disk in which an underlayer 2, a magnetic layer 3, a protective layer 4, and a lubricating layer 5 are sequentially laminated on a glass substrate 1. .

【0034】ガラス基板1はアルミノシリケイトガラス
からなり、その表面はRa=50Å程度に鏡面研磨され
ている。下地層2は、ガラス基板1側からAl薄膜2a
(膜厚50Å)、Cr薄膜2b(厚膜600Å)、Cr
V薄膜2c(膜厚50Å)からなる。尚、CrV薄膜2
cはCrが96原子%、Vが4原子%の組成比で構成さ
れている。
The glass substrate 1 is made of aluminosilicate glass, and the surface thereof is mirror-polished to Ra = 50Å. The underlying layer 2 is an Al thin film 2a from the glass substrate 1 side.
(Film thickness 50Å), Cr thin film 2b (thick film 600Å), Cr
It consists of a V thin film 2c (film thickness 50Å). In addition, CrV thin film 2
The composition of c is 96 atomic% of Cr and 4 atomic% of V.

【0035】磁性層3は、CoPtCr合金からなり、
膜厚は500Åである。尚、CoPtCr磁性層3のC
o、Pt、Crの各含有量は、それぞれ78原子%、1
1原子%、11原子%である。
The magnetic layer 3 is made of a CoPtCr alloy,
The film thickness is 500Å. Incidentally, C of the CoPtCr magnetic layer 3
The contents of o, Pt, and Cr are 78 atomic% and 1 respectively.
They are 1 atom% and 11 atom%.

【0036】保護層4は、基板側から第1保護層4a及
び第1保護層4bからなる。第1保護層4aは、膜厚50
ÅのCr膜からなり、磁性層に対して化学的保護膜にな
っている。もう一方の第2保護層4bは硬質微粒子を分
散させた、膜厚160Åの酸化珪素膜からなり、この第
2保護層4bによって耐摩耗性が得られる。潤滑層5
は、パーフルオロポリエーテルからなり、この膜によっ
て磁気ヘッドとの接触を緩和している。
The protective layer 4 comprises a first protective layer 4a and a first protective layer 4b from the substrate side. The first protective layer 4a has a film thickness of 50.
It consists of a Cr film of Å and is a chemical protection film for the magnetic layer. The other second protective layer 4b is made of a silicon oxide film having a film thickness of 160Å in which hard particles are dispersed, and the second protective layer 4b provides abrasion resistance. Lubrication layer 5
Is made of perfluoropolyether, and this film alleviates the contact with the magnetic head.

【0037】以下に上記磁気ディスクの製造方法につい
て説明する。上記ガラス基板を基板ホルダ(パレット)
に装着し、図2に示すインライン型スパッタ装置10の
仕込室11にパッレト18を導入した後、仕込室内11
を大気状態からスパッタ室(真空チャンバー)12の真
空度と同等になるまで真空排気する。その後、仕切板1
4を開放してパレット18を第一真空チャンバー12a
内に導入する。この第一真空チャンバー12a内では、
パレット18に装着したガラス基板をランプヒータ19
によって300℃、1分間の加熱条件で加熱した後、パ
レット18を1.2m/minの搬送速度で移動させ、
Arガス圧力5mTorrの条件下で放電状態にあり、
対向して配置されたターゲット15aと16aの間及び
ターゲット15bと16bの間を順次通過させる。ター
ゲットはパレット搬送方向に対してAl、Crの順で配
置されており、この配置されたターゲットの順番通りに
ガラス基板の両面にAl下地膜2a、Cr下地膜2bの
順で積層される。なお、Alターゲットの投入電力は3
00W、Crターゲットの投入電力は1.5kWでスパ
ッタを行った。
A method of manufacturing the above magnetic disk will be described below. The above glass substrate is a substrate holder (pallet)
2 and the pallet 18 was introduced into the charging chamber 11 of the in-line type sputtering apparatus 10 shown in FIG.
Is evacuated from the atmospheric state until the degree of vacuum in the sputtering chamber (vacuum chamber) 12 becomes equivalent to that. After that, partition plate 1
4 to open the pallet 18 to the first vacuum chamber 12a
Introduce within. In the first vacuum chamber 12a,
The glass substrate mounted on the pallet 18 is attached to the lamp heater 19
After heating under a heating condition of 300 ° C. for 1 minute, the pallet 18 is moved at a conveying speed of 1.2 m / min,
In a discharge state under Ar gas pressure of 5 mTorr,
The targets 15a and 16a and the targets 15b and 16b, which are arranged to face each other, are sequentially passed. The targets are arranged in the order of Al and Cr with respect to the pallet transport direction, and the Al base film 2a and the Cr base film 2b are laminated in this order on both surfaces of the glass substrate in the order of the arranged targets. The input power of the Al target is 3
Sputtering was performed at a power of 00 W and a Cr target of 1.5 kW.

【0038】次に、パレット18をポート21を介して
第2真空チャンバー12bに移動し、この第2真空チャ
ンバー12b内に配置されたヒータ20で基板を再び加
熱する。加熱条件は375℃、1分間とする。その後、
CrVターゲット15cと16c、CoPtCrターゲ
ット15dと16d、Crターゲット15eと16eの
順に配置され、且つArガス圧力1.3mTorrの条
件下で放電状態にあるターゲット15cと16c〜15
eと16eの間を、1.2m/minの搬送速度でパレ
ット18を順次通過させる。そしてこの配置されたター
ゲットの順番通りにCrV下地膜2c、CoPtCr磁
性膜3、Cr第一保護膜4aの順で各膜が積層される。
なお、CrVターゲットの投入電力は500W、CoP
tCrターゲットの投入電力は1.2kW、Crターゲ
ットの投入電力は500Wでスパッタを行った。さら
に、第1真空チャンバー及び第2真空チャンバー内の到
達圧力(真空度)は5×10-6Torr以下とした。
Next, the pallet 18 is moved to the second vacuum chamber 12b via the port 21, and the substrate is heated again by the heater 20 arranged in the second vacuum chamber 12b. The heating conditions are 375 ° C. and 1 minute. afterwards,
The CrV targets 15c and 16c, the CoPtCr targets 15d and 16d, the Cr targets 15e and 16e are arranged in this order, and the targets 15c and 16c to 15c are in a discharged state under the condition of Ar gas pressure of 1.3 mTorr.
The pallet 18 is sequentially passed between e and 16e at a transportation speed of 1.2 m / min. Then, the CrV underlayer film 2c, the CoPtCr magnetic film 3, and the Cr first protective film 4a are laminated in this order in the order of the arranged targets.
The CrV target input power is 500 W, CoP
Sputtering was performed with the input power of the tCr target being 1.2 kW and the input power of the Cr target being 500 W. Furthermore, the ultimate pressure (vacuum degree) in the first vacuum chamber and the second vacuum chamber was set to 5 × 10 −6 Torr or less.

【0039】上記スパッタによる成膜終了後、第一保護
膜4aに対してIPA(イソプロピルアルコール)洗浄
による親水化処理を施した後、基板をシリカ微粒子(粒
径100Å)を分散した有機珪素化合物溶液(水とIP
Aとテトラエトキシシランとの混合液)に浸し、焼成す
ることによってSiO2 からなる第2の保護層4bを形
成した。最後に、この第2保護層4b上にパーフロロポ
リエーテルからなる潤滑剤をディップ処理して潤滑層5
を形成した。
After the film formation by the above-mentioned sputtering, the first protective film 4a is subjected to a hydrophilizing treatment by IPA (isopropyl alcohol) cleaning, and then the substrate is an organosilicon compound solution in which silica fine particles (particle size 100Å) are dispersed. (Water and IP
The second protective layer 4b made of SiO 2 was formed by immersing in A) and tetraethoxysilane and baking. Finally, a lubricant made of perfluoropolyether is dip-processed on the second protective layer 4b to form the lubricating layer 5
Was formed.

【0040】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。この結
果を、CrV下地層2cの組成及び膜厚、基板加熱温度
及びArガス圧力、CoPtCr磁性層の(002)面
の結晶格子面間隔からそれに接するCrV下地層の(1
10)面の結晶格子間隔を引いた差(d(002) −d
(110) )と共に表1に示す。
A running test of the magnetic disk thus obtained was conducted with a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the residual magnetization film thickness product (Mrδ), and the S / N ratio were evaluated. The results are shown in terms of the composition and film thickness of the CrV underlayer 2c, the substrate heating temperature and the Ar gas pressure, the crystal lattice spacing of the (002) plane of the CoPtCr magnetic layer, and (1
10) Difference obtained by subtracting the crystal lattice spacing (d (002) -d
(110) ) and shown in Table 1.

【0041】なお、S/Nの評価は次のように行った。
磁気ヘッド浮上量が0.060μmの薄膜ヘッドを用い
て、この薄膜ヘッドとディスクの相対速度を5.4m/
sとし、線記録密度80kfciにおける記録再生出力
を測定した。また、キャリア周波数8.5MHzで、測
定帯域を20MHzとしてスペクトルアナライザーによ
ってこの磁気ディスクについて信号記録再生時における
ノイズスペクトラムを測定した。なお、上述の測定で用
いた薄膜ヘッドは、コイルターン数60、トラック幅
4.8μm、磁気ヘッドギャップ長0.25μmであ
る。
The S / N was evaluated as follows.
Using a thin film head having a magnetic head flying height of 0.060 μm, the relative speed between the thin film head and the disk is 5.4 m /
s, and the recording / reproducing output at a linear recording density of 80 kfci was measured. Further, the noise spectrum at the time of signal recording / reproduction was measured for this magnetic disk by a spectrum analyzer with a carrier frequency of 8.5 MHz and a measurement band of 20 MHz. The thin film head used in the above measurement has 60 coil turns, a track width of 4.8 μm, and a magnetic head gap length of 0.25 μm.

【0042】実施例2〜25 実施例2〜22では、CrV系下地層2cの組成及び膜
厚、基板加熱温度及びArガス圧力を変えた以外は実施
例1と同様にして磁気ディスクを作製した。また、実施
例23〜25では、Al薄膜(下地層)2aを膜厚50
Åで表面粗さRa10Åの凹凸表面を有するAl薄膜
(スパッタリング法で形成)とし、CrV系下地層2c
を膜厚50ÅのCrVZr合金(表2に示す組成比)と
し、かつ保護層4を膜厚130Åの炭素膜(スパッタリ
ング法で形成)単層とした以外は実施例1と同様にして
磁気ディスクを作製した。
Examples 2 to 25 In Examples 2 to 22, magnetic disks were produced in the same manner as in Example 1 except that the composition and film thickness of the CrV underlayer 2c, the substrate heating temperature and the Ar gas pressure were changed. . Moreover, in Examples 23 to 25, the Al thin film (underlayer) 2a was formed to a thickness of 50.
An Al thin film (formed by a sputtering method) having an uneven surface having a surface roughness Ra10Å with Å and a CrV base layer 2c
Was a CrVZr alloy (composition ratio shown in Table 2) having a film thickness of 50Å, and the protective layer 4 was a single carbon film (formed by a sputtering method) having a film thickness of 130Å. It was made.

【0043】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。また、
S/N比の測定は実施例1と同様の方法で行った。この
結果を、CrV系下地層2cの組成及び膜厚、基板加熱
温度及びArガス圧力、CoPtCr磁性層の(00
2)面の結晶格子面間隔からそれに接する下地層の(1
10)面の結晶格子間隔を引いた差(d(002) −d
(110) )と共に表1及び表2に示す。
A running test of the magnetic disk thus obtained was conducted with a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the residual magnetization film thickness product (Mrδ), and the S / N ratio were evaluated. Also,
The S / N ratio was measured in the same manner as in Example 1. The results are used for the composition and film thickness of the CrV-based underlayer 2c, the substrate heating temperature and the Ar gas pressure, and (00) of the CoPtCr magnetic layer.
2) From the crystal lattice spacing of the plane, the (1
10) Difference obtained by subtracting the crystal lattice spacing (d (002) -d
(110) ) and the results are shown in Tables 1 and 2.

【0044】比較例1〜6 比較例1は下地層2cをCrに変えた以外は実施例1と
同様にして磁気ディスクを作製した。比較例2はCrV
系下地層2cの組成比以外は実施例1と同様にして磁気
ディスクを作製した。比較例3、4は、CrV系下地層
2c作製時の基板加熱温度及びArガス圧力を変えた以
外は実施例1と同様にして磁気ディスクを作製した。比
較例5、6は、CrV系下地層2c作製時の基板加熱温
度及びArガス圧力を変えた以外は実施例20と同様に
して磁気ディスクを作製した。
Comparative Examples 1 to 6 In Comparative Example 1, a magnetic disk was manufactured in the same manner as in Example 1 except that the underlayer 2c was changed to Cr. Comparative Example 2 is CrV
A magnetic disk was produced in the same manner as in Example 1 except for the composition ratio of the system underlayer 2c. In Comparative Examples 3 and 4, magnetic disks were produced in the same manner as in Example 1 except that the substrate heating temperature and the Ar gas pressure during the production of the CrV underlayer 2c were changed. In Comparative Examples 5 and 6, magnetic disks were produced in the same manner as in Example 20 except that the substrate heating temperature and the Ar gas pressure during the production of the CrV underlayer 2c were changed.

【0045】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。また、
S/N比の測定は実施例1と同様の方法で行った。この
結果を、下地層2cの組成及び膜厚、基板加熱温度及び
Arガス圧力、CoPtCr磁性層の(002)面の結
晶格子面間隔からそれに接する下地層の(110)面の
結晶格子面間隔を引いた差(d(002) −d(110) )と共
に表3に示す。
A running test of the magnetic disk thus obtained was conducted with a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the residual magnetization film thickness product (Mrδ), and the S / N ratio were evaluated. Also,
The S / N ratio was measured in the same manner as in Example 1. The results are obtained by changing the composition and film thickness of the underlayer 2c, the substrate heating temperature and the Ar gas pressure, the crystal lattice spacing of the (002) plane of the CoPtCr magnetic layer to the crystal lattice spacing of the (110) plane of the underlayer in contact therewith. It is shown in Table 3 together with the subtracted difference (d (002) -d (110) ).

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】表1〜表3から分かるように、実施例1〜
22に示した下地層2cをCrV合金とした磁気記録媒
体は、比較例1の下地層2cをCrとした磁気記録媒体
に比べて保磁力(Hc)、残留磁化膜厚積(Mrδ)、
及びS/N比が大きい。さらに、実施例23〜25に示
した下地層2cをCrVZr合金とした磁気記録媒体
は、比較例1の下地層2cをCrとした磁気記録媒体に
比べて保磁力(Hc)、残留磁化膜厚積(Mrδ)、及
びS/N比が大きい。特に、CrV合金にZrを添加す
ると、一層ノイズ低減効果が増長されるため、S/N比
が向上する。このような効果を引き出すためには、Zr
の含有量を2〜5at%の範囲とすることが好ましいこ
とが分かる。
As can be seen from Tables 1 to 3, Examples 1 to 1
The magnetic recording medium shown in 22 in which the underlayer 2c is a CrV alloy has a coercive force (Hc), a residual magnetization film thickness product (Mrδ), which is higher than that of the magnetic recording medium in which the underlayer 2c in Comparative Example 1 is Cr.
And the S / N ratio is large. Further, the magnetic recording medium in which the underlayer 2c was formed of CrVZr alloy shown in Examples 23 to 25 was higher than the magnetic recording medium of Comparative Example 1 in which the underlayer 2c was Cr in coercive force (Hc) and residual magnetization film thickness. The product (Mrδ) and the S / N ratio are large. Particularly, when Zr is added to the CrV alloy, the noise reduction effect is further enhanced, so that the S / N ratio is improved. In order to bring out such an effect, Zr
It can be seen that it is preferable to set the content of 2 to 5 at%.

【0050】さらに、CoPt磁性層の(002)面の
結晶格子面間隔からそれに接する下地層の(110)面
の結晶格子面間隔を引いた差(d(002) −d(110)
は、下地層2cの組成、基板加熱温度及びArガス圧力
により変化することが、実施例1〜25及び比較例2〜
6を比較することにより分かる。例えば、比較例2の磁
気記録媒体は、下地層2cのCrV合金のV含有量を5
0at%としたために、(d(002) −d(110) )が−
0.015となり、その結果、実施例1〜25の磁気記
録媒体に比べてS/N比が低下してしまった。この結果
は、(d(002) −d(110) )を本発明の所定の範囲とす
るためには、下地層2cのCrV合金のV含有量を4〜
40at%とすることが好ましいことを示すものであ
る。
Further, the difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the underlying layer in contact with the crystal lattice spacing of the (002) plane of the CoPt magnetic layer.
Changes depending on the composition of the underlayer 2c, the substrate heating temperature, and the Ar gas pressure.
It can be seen by comparing 6 For example, in the magnetic recording medium of Comparative Example 2, the V content of the CrV alloy of the underlayer 2c is 5%.
Since it was 0 at%, (d (002) −d (110) ) was −
The value was 0.015, and as a result, the S / N ratio was lower than that of the magnetic recording media of Examples 1 to 25. This result shows that the V content of the CrV alloy of the underlayer 2c is 4 to 4 in order to make (d (002) -d (110) ) within the predetermined range of the present invention.
This shows that the content of 40 at% is preferable.

【0051】さらに、比較例3〜6の結果から、(d
(002) −d(110) )が基板加熱温度及びArガス圧力に
よっても大きく変化することが分かる。これは、膜の作
製条件によって膜内に格子歪が起こり、基板加熱温度及
びArガス圧力の変化によって膜内の格子歪が変化する
ためであると推測される。このことから、(d(002)
(110) )は、CrV系下地層のV含有量とともに、基
板加熱温度及びArガス圧力を調整することで、本発明
の範囲にすることができることを示す。
Further, from the results of Comparative Examples 3 to 6, (d
It can be seen that (002) -d (110) ) changes greatly depending on the substrate heating temperature and Ar gas pressure. It is presumed that this is because lattice strain occurs in the film depending on the film manufacturing conditions, and the lattice strain in the film changes due to changes in the substrate heating temperature and Ar gas pressure. From this, (d (002)
d (110) ) indicates that the range of the present invention can be achieved by adjusting the substrate heating temperature and Ar gas pressure together with the V content of the CrV underlayer.

【0052】比較例3、4は、実施例1と下地層の組成
比、膜厚は同一であるが、基板加熱温度、Arガス圧力
がそれぞれ異なって作製された磁気ディスクである。比
較例3では、基板加熱温度の低下により、(d(002)
(110) )は0.037となり、その結果、Hc及びS
/N比が低下した。比較例4では、Arガス圧力の増加
により、(d(002) −d(110) )は0.039となり、
その結果、Mrδ及びS/N比が低下した。比較例5、
6は、実施例20と下地層の組成比、膜厚は同一である
が、基板加熱温度、Arガス圧力がそれぞれ異なって作
製された磁気ディスクである。比較例5では、基板加熱
温度の増加により、(d(002) −d(110) )は−0.0
06となり、その結果、Mrδ及びS/N比が低下し
た。比較例6では、Arガス圧力の低下により、(d
(002) −d(110) )は−0.008となり、その結果、
Hc及びS/N比が低下した。
Comparative Examples 3 and 4 are magnetic disks which have the same composition ratio and film thickness of the underlayer as those of Example 1, but are different in substrate heating temperature and Ar gas pressure. In Comparative Example 3, (d (002) -
d (110) ) becomes 0.037, resulting in Hc and S
/ N ratio decreased. In Comparative Example 4, (d (002) -d (110) ) became 0.039 due to the increase in Ar gas pressure,
As a result, Mr δ and S / N ratio decreased. Comparative Example 5,
Example 6 is a magnetic disk having the same composition ratio and film thickness of the underlayer as those of Example 20, but different substrate heating temperatures and Ar gas pressures. In Comparative Example 5, (d (002) -d (110) ) was -0.0 due to the increase in the substrate heating temperature.
06, and as a result, Mr δ and S / N ratio decreased. In Comparative Example 6, (d
(002) -d (110) ) becomes -0.008, and as a result,
Hc and S / N ratio decreased.

【0053】実施例26〜43 実施例の26〜35では、磁性層3の組成比及び下地層
2cのCrVの組成比を変えた以外は実施例1と同様に
して磁気ディスクを作製した。実施例36〜43では、
磁性層3の材料及び組成比、並びに下地層2cのCrV
の組成比を変えた以外は実施例1と同様にして磁気ディ
スクを作製した。このようにして得た磁気ディスクの走
行テストをヘッド浮上量0.075μm以下で行った。
その結果、良好であった。そして、保磁力(Hc)、残
留磁化膜厚積(Mrδ)、及びS/N比を評価した。
尚、S/N比の測定は実施例1と同様の方法で行った。
この結果を、磁性層3の組成、CrV下地層2cの組成
及び膜厚、基板加熱温度及びArガス圧力、CoPtC
r磁性層の(002)面の結晶格子面間隔からそれに接
する下地層の(110)面の結晶格子面間隔を引いた差
(d(002) −d(110) )と共に表4に示す。
Examples 26 to 43 In Examples 26 to 35, magnetic disks were manufactured in the same manner as in Example 1 except that the composition ratio of the magnetic layer 3 and the composition ratio of CrV of the underlayer 2c were changed. In Examples 36-43,
Material and composition ratio of the magnetic layer 3 and CrV of the underlayer 2c
A magnetic disk was manufactured in the same manner as in Example 1 except that the composition ratio was changed. A running test of the magnetic disk thus obtained was conducted with a head flying height of 0.075 μm or less.
As a result, it was good. Then, the coercive force (Hc), the residual magnetization film thickness product (Mrδ), and the S / N ratio were evaluated.
The S / N ratio was measured in the same manner as in Example 1.
The results are used for the composition of the magnetic layer 3, the composition and film thickness of the CrV underlayer 2c, the substrate heating temperature and the Ar gas pressure, and CoPtC.
Table 4 shows the difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the underlying layer in contact with the crystal lattice spacing of the (002) plane of the r magnetic layer.

【0054】[0054]

【表4】 [Table 4]

【0055】表4の実施例26〜35から分かるよう
に、V含有量が10〜20at%のCrV下地層を用
い、かつ磁性層をCoPtCr合金とする場合、Co含
有量を60〜90at%、Pt含有量を4〜20at
%、Cr含有量を3〜30at%とすることで、高H
c、高S/N比を得ることができる。さらに、高Hc、
高S/N比を得るためには、CoPtCr合金磁性層の
Co含有量は64〜84at%とし、Pt含有量は5〜
18at%とし、Cr含有量は5〜25at%とするこ
とが適当である。
As can be seen from Examples 26 to 35 in Table 4, when a CrV underlayer having a V content of 10 to 20 at% is used and the magnetic layer is a CoPtCr alloy, the Co content is 60 to 90 at%. Pt content of 4 to 20 at
%, Cr content of 3 to 30 at%, high H
c, a high S / N ratio can be obtained. Furthermore, high Hc,
In order to obtain a high S / N ratio, the CoPtCr alloy magnetic layer has a Co content of 64 to 84 at% and a Pt content of 5 to 5.
18 at% and the Cr content is 5 to 25 at%.

【0056】また、実施例36〜39から分かるよう
に、磁性層がCoPtTa合金の場合には、Co含有量
を80〜90at%、Pt含有量を5〜15at%、T
a含有量を1〜7at%とすることで高Hc、高S/N
比を得ることができる。また、実施例40〜43から分
かるように、磁性層がCoPtCrTa合金の場合、C
o含有量70〜80at%、Pt含有量5〜15at
%、Cr含有量5〜25at%、Ta含有量1〜7at
%とすることで高Hc、高S/N比を得ることができ
る。
As can be seen from Examples 36 to 39, when the magnetic layer is a CoPtTa alloy, the Co content is 80 to 90 at%, the Pt content is 5 to 15 at%, and the T content is T.
High Hc and high S / N by setting a content to 1 to 7 at%
Ratio can be obtained. Further, as can be seen from Examples 40 to 43, when the magnetic layer is a CoPtCrTa alloy, C
o content 70-80 at%, Pt content 5-15 at
%, Cr content 5 to 25 at%, Ta content 1 to 7 at
A high Hc and a high S / N ratio can be obtained by setting the ratio to%.

【0057】[0057]

【発明の効果】本発明によれば、従来のCr下地膜とC
oPt系合金磁性膜との組合せで構成された磁気ディス
クに比べ、優れた静磁気特性(保磁力、残留磁化膜厚
積)及び記録再生特性(S/N比、OW)を有しており
500Mb/in2 以上の面記録密度での記録再生にお
いても大きな出力、小さな媒体ノイズを有する磁気ディ
スクを提供することができる。
According to the present invention, the conventional Cr underlayer and C
It has excellent magnetostatic characteristics (coercive force, remanent magnetization film thickness product) and recording / reproducing characteristics (S / N ratio, OW) as compared with a magnetic disk composed of a combination with an oPt-based alloy magnetic film, and is 500 Mb. It is possible to provide a magnetic disk having a large output and a small medium noise even in recording / reproducing at an areal recording density of / in 2 or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の磁気ディスクの断面説明図。FIG. 1 is an explanatory cross-sectional view of a magnetic disk of the present invention.

【図2】 本実施例に用いたインライン型スパッタ装置
の概略図。
FIG. 2 is a schematic diagram of an in-line type sputtering apparatus used in this example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 10/16 H01F 10/16 41/18 41/18 (72)発明者 野澤 順 東京都新宿区中落合2丁目7番5号 ホー ヤ株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01F 10/16 H01F 10/16 41/18 41/18 (72) Inventor Jun Nozawa Shinjuku-ku, Tokyo 2-7-5 Nakaochiai Hoya Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に非磁性下地層及びCoPt系磁
性層をこの順に有する磁気記録媒体であって、 前記非磁性下地層は1層又は2層以上の層からなり、前
記CoPt系磁性層と接する非磁性下地層がCrとVを
主成分とする材料からなり、 前記磁性層のhcp(002)面の結晶格子面間隔から
前記CrとVを主成分とする材料からなる非磁性下地層
のbcc(110)面の結晶格子面間隔を引いた差(d
(002) −d(110) )が、0.002〜0.032オング
ストロームの範囲であることを特徴とする磁気記録媒
体。
1. A magnetic recording medium having a non-magnetic underlayer and a CoPt-based magnetic layer in this order on a substrate, wherein the non-magnetic underlayer is composed of one or more layers, and the CoPt-based magnetic layer. The non-magnetic underlayer in contact with is composed of a material containing Cr and V as main components, and the non-magnetic underlayer is composed of a material containing Cr and V as main components from the crystal lattice spacing of the hcp (002) plane of the magnetic layer. Difference (d) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of
(002) -d (110) ) is in the range of 0.002 to 0.032 angstroms.
【請求項2】 結晶格子面間隔の差(d(002) −d
(110) )が、0.014〜0.030オングストローム
の範囲である請求項1記載の磁気記録媒体。
2. A difference in crystal lattice spacing (d (002) −d
The magnetic recording medium according to claim 1, wherein (110) ) is in the range of 0.014 to 0.030 angstrom.
【請求項3】 CrとVを主成分とする材料からなる非
磁性下地層と基板との間に1層又は2層以上の非磁性下
地層を有し、前記CrとVを主成分とする材料からなる
非磁性下地層と接する非磁性下地層が体心立方最密充填
結晶構造を有する金属からなる、請求項1又は2記載の
磁気記録媒体。
3. A nonmagnetic underlayer made of a material containing Cr and V as main components and a nonmagnetic underlayer of one or more layers between the substrate and the main components of Cr and V. The magnetic recording medium according to claim 1 or 2, wherein the nonmagnetic underlayer in contact with the nonmagnetic underlayer made of a material is made of a metal having a body-centered cubic closest-packed crystal structure.
【請求項4】 体心立方最密充填結晶構造を有する金属
からなる非磁性下地層がCr層である請求項3記載の磁
気記録媒体。
4. The magnetic recording medium according to claim 3, wherein the nonmagnetic underlayer made of a metal having a body-centered cubic closest-packed crystal structure is a Cr layer.
【請求項5】 CoPt系磁性層がCoPtCr合金磁
性層である請求項1〜4のいずれか1項に記載の磁気記
録媒体。
5. The magnetic recording medium according to claim 1, wherein the CoPt-based magnetic layer is a CoPtCr alloy magnetic layer.
【請求項6】 CoPtCr合金は、Coの含有量が6
0〜90at%、Ptの含有量が4〜20at%、Cr
の含有量が3〜30at%である請求項5記載の磁気記
録媒体。
6. The CoPtCr alloy has a Co content of 6
0 to 90 at%, Pt content 4 to 20 at%, Cr
6. The magnetic recording medium according to claim 5, wherein the content of 3 to 30 at%.
【請求項7】 請求項1〜6のいずれか1項に記載の磁
気記録媒体の製造方法であって、 少なくともCrとVを主成分とする材料からなる非磁性
下地層及びCoPt系磁性層を、基板加熱温度範囲を2
50℃〜425℃とし、Arガス圧力範囲を0.5〜1
0mTorrとして、スパッタリング法により形成する
ことを特徴とする磁気記録媒体の製造方法。
7. The method for manufacturing a magnetic recording medium according to claim 1, further comprising a non-magnetic underlayer and a CoPt-based magnetic layer made of a material containing at least Cr and V as main components. , Substrate heating temperature range 2
50 ° C. to 425 ° C., Ar gas pressure range 0.5 to 1
A method of manufacturing a magnetic recording medium, which is formed by a sputtering method at 0 mTorr.
JP30960695A 1995-11-28 1995-11-28 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2911797B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30960695A JP2911797B2 (en) 1995-11-28 1995-11-28 Magnetic recording medium and method of manufacturing the same
US08/758,015 US5968679A (en) 1995-11-28 1996-11-27 Magnetic recording medium and method of manufacturing the same
SG1996011436A SG74575A1 (en) 1995-11-28 1996-11-27 Magentic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30960695A JP2911797B2 (en) 1995-11-28 1995-11-28 Magnetic recording medium and method of manufacturing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP11002694A Division JP2989820B2 (en) 1999-01-08 1999-01-08 Magnetic recording medium and method of manufacturing the same
JP11002698A Division JP2989821B2 (en) 1999-01-08 1999-01-08 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09147348A true JPH09147348A (en) 1997-06-06
JP2911797B2 JP2911797B2 (en) 1999-06-23

Family

ID=17995056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30960695A Expired - Lifetime JP2911797B2 (en) 1995-11-28 1995-11-28 Magnetic recording medium and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2911797B2 (en)
SG (1) SG74575A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070106A1 (en) * 1999-05-14 2000-11-23 Fuji Electric Co., Ltd. Magnetic alloy and magnetic recording medium and method for preparation thereof, and target for forming magnetic film and magnetic recording device
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665155B2 (en) * 2004-10-22 2011-04-06 株式会社昭和真空 Thin film forming apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device
WO2000070106A1 (en) * 1999-05-14 2000-11-23 Fuji Electric Co., Ltd. Magnetic alloy and magnetic recording medium and method for preparation thereof, and target for forming magnetic film and magnetic recording device
US6607612B1 (en) 1999-05-14 2003-08-19 Migaku Takahashi Magnetic alloy and magnetic recording medium and method for preparation thereof, and target for forming magnetic film and magnetic recording device

Also Published As

Publication number Publication date
JP2911797B2 (en) 1999-06-23
SG74575A1 (en) 2000-08-22

Similar Documents

Publication Publication Date Title
US5900324A (en) Magnetic recording media, methods for producing the same and magnetic recorders
US7618722B2 (en) Perpendicular magnetic recording media and magnetic storage apparatus using the same
US5733370A (en) Method of manufacturing a bicrystal cluster magnetic recording medium
US6586116B1 (en) Nonmetallic thin film magnetic recording disk with pre-seed layer
US5968679A (en) Magnetic recording medium and method of manufacturing the same
US7407685B2 (en) Magnetic recording medium and the method of manufacturing the same
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
EP0710949B1 (en) Magnetic recording medium and its manufacture
US6150016A (en) High coercivity magnetic recording medium comprising a thin CoCrTa intermediate layer
JP3298893B2 (en) Bicrystalline cluster magnetic recording media
US5746893A (en) Method of manufacturing magnetic recording medium
JP2911798B2 (en) Magnetic recording medium and method of manufacturing the same
US6042939A (en) Magnetic recording medium and method of manufacturing the same
US6146754A (en) Substantially isotropic magnetic recording medium comprising a seedlayer
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
US6242086B1 (en) High coercivity, low noise magnetic recording medium comprising an intermediate cocrtaox layer
JP2989820B2 (en) Magnetic recording medium and method of manufacturing the same
US6045931A (en) Magnetic recording medium comprising a cobalt-samarium magnetic alloy layer and method
JP2989821B2 (en) Magnetic recording medium and method of manufacturing the same
JP2911783B2 (en) Magnetic recording medium and method of manufacturing the same
JP3657344B2 (en) Method for manufacturing magnetic recording medium
JP3983813B2 (en) Magnetic recording medium comprising a nickel-aluminum or iron-aluminum underlayer
JP3200787B2 (en) Manufacturing method of magnetic recording medium
JP3195898B2 (en) Manufacturing method of magnetic recording medium
JPH0721543A (en) Magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term