JP2911783B2 - Magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic recording medium and method of manufacturing the same

Info

Publication number
JP2911783B2
JP2911783B2 JP16194295A JP16194295A JP2911783B2 JP 2911783 B2 JP2911783 B2 JP 2911783B2 JP 16194295 A JP16194295 A JP 16194295A JP 16194295 A JP16194295 A JP 16194295A JP 2911783 B2 JP2911783 B2 JP 2911783B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
plane
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16194295A
Other languages
Japanese (ja)
Other versions
JPH0916938A (en
Inventor
正人 小林
圭二 諸石
順一 堀川
順 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOYA KK
Original Assignee
HOOYA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOYA KK filed Critical HOOYA KK
Priority to JP16194295A priority Critical patent/JP2911783B2/en
Priority to US08/548,863 priority patent/US5900324A/en
Priority to EP95116983A priority patent/EP0709830A2/en
Priority to EP95309234A priority patent/EP0718829A3/en
Priority to US08/575,019 priority patent/US5746893A/en
Priority to SG1995002234A priority patent/SG38900A1/en
Publication of JPH0916938A publication Critical patent/JPH0916938A/en
Priority to US08/917,112 priority patent/US5954927A/en
Application granted granted Critical
Publication of JP2911783B2 publication Critical patent/JP2911783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク、磁気テ
ープ等の磁気記録媒体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic disk and a magnetic tape and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、スパッタリングあるいは真空蒸着
により製造された金属磁性薄膜を磁性層とする磁気記録
媒体が注目されている。金属磁性薄膜が磁気記録媒体と
して注目されている大きな理由は、周知のごとく、従来
の磁性粉を塗布したものに比べて高い記録密度を実現で
きるためである。この様な金属磁性薄膜の磁性材料とし
て、Co含有合金が良好な保磁力と角形比を示すものと
して知られている。特に近年、CoPt系合金薄膜が、
高保磁力と高い残留磁束密度を有することから、磁気記
録の高密度化に対応できる材料として工業的に大きな注
目を集めている。
2. Description of the Related Art In recent years, a magnetic recording medium having a magnetic layer formed of a metal magnetic thin film manufactured by sputtering or vacuum evaporation has attracted attention. As is well known, a major reason why a metal magnetic thin film has attracted attention as a magnetic recording medium is that a higher recording density can be realized as compared with a conventional magnetic recording medium coated with magnetic powder. As a magnetic material for such a metal magnetic thin film, a Co-containing alloy is known to exhibit good coercive force and squareness. Particularly in recent years, CoPt-based alloy thin films have
Due to its high coercive force and high residual magnetic flux density, it has attracted a great deal of industrial attention as a material that can cope with high density magnetic recording.

【0003】さらに、MR(磁気抵抗型)ヘッド対応用
の磁気記録媒体においては、出力の大きさよりも媒体ノ
イズが小さいことが要求される。このような要求に応え
るものとして、基板上にCoPtCrの2層の磁性層を
設け、この2層の磁性層の間にCrからなる非磁性中間
層を介在させた磁気記録媒体が知られている〔特開平2
−210614号公報〕。この磁気記録媒体は、磁気層
を非磁性中間層で2層に分割することにより、個々の磁
性層の膜厚はトータル膜厚が等しい単層の磁性層の場合
に比べて薄いので、記録信号の再生時のノイズを低減す
ることができる。
Further, in a magnetic recording medium for an MR (magnetoresistive) head, it is required that the medium noise is smaller than the magnitude of the output. To meet such demands, there is known a magnetic recording medium in which two magnetic layers of CoPtCr are provided on a substrate, and a non-magnetic intermediate layer made of Cr is interposed between the two magnetic layers. [JP 2
-210614 gazette]. In this magnetic recording medium, since the magnetic layer is divided into two layers by a non-magnetic intermediate layer, the thickness of each magnetic layer is smaller than that of a single magnetic layer having the same total thickness. Can be reduced at the time of reproduction.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記公
報に記載の磁気記録媒体について媒体ノイズ以外の特性
について実用上の観点から種々検討した結果、以下のよ
うな問題点があることが判明した。 磁性層1層のみの場合に比べると、保磁力の低下が著
しい。 重ね書き特性(オーバーライト特性)が不十分であ
る。
However, as a result of various studies on characteristics other than the medium noise of the magnetic recording medium described in the above publication from a practical viewpoint, the following problems were found. The coercive force is remarkably reduced as compared with the case of only one magnetic layer. Overwriting characteristics (overwrite characteristics) are insufficient.

【0005】そこで本発明の第1の目的は、非磁性中間
層で分割された2層以上のCoPt系合金磁性層を有す
る磁気記録媒体であって、媒体ノイズが低く、かつ保磁
力及び重ね書き特性に優れた磁気記録媒体及びその製造
方法を提供することにある。
Accordingly, a first object of the present invention is to provide a magnetic recording medium having two or more CoPt-based alloy magnetic layers divided by a non-magnetic intermediate layer, which has low medium noise, coercive force and overwrite. An object of the present invention is to provide a magnetic recording medium having excellent characteristics and a method for manufacturing the same.

【0006】ところで、CoNiCr合金やCoCrT
a合金等の磁性層を有する磁気記録媒体においては、下
地層としてCrを用いると高い保磁力が得られることが
知られている(例えば、IEEE TRANSACTION ON MAGNETIC
S VOL.MAG-3 ,NO.3(1967)p205-207 )。
Incidentally, CoNiCr alloys and CoCrT
It is known that a high coercive force can be obtained by using Cr as a base layer in a magnetic recording medium having a magnetic layer such as an a alloy (for example, IEEE TRANSACTION ON MAGNETIC).
S VOL.MAG-3, NO.3 (1967) p205-207).

【0007】ところが、CoPt合金磁性層の場合に
は、Crの単一成分からなる下地層を用いるとC軸配向
性が悪くなるという問題があった。CoPt系合金磁性
層の格子定数は、Ptの原子半径が大きいため、従来の
CoNiCr合金やCoCrTa合金等の磁性層の結晶
格子定数に比べて大きい。そのため、Crの単一成分か
らなる下地層との原子配列の整合性が悪くなり、その結
果、C軸配向性も悪かった。この問題を解決する手段と
して、Cr下地層に結晶格子定数を大きくする第2の金
属(異種金属)を添加することが提案されている。Cr
に異種金属を添加したCr合金(例えばCrV)下地層
を用いて合金下地層の格子定数を変化させることによ
り、膜面内における磁性層のC軸配向性を改善して保磁
力及び角形比を向上させることができる(特公平4−1
6848号公報)。
However, in the case of a CoPt alloy magnetic layer, there is a problem that the use of an underlayer consisting of a single component of Cr deteriorates the C-axis orientation. Since the atomic radius of Pt is large, the lattice constant of the CoPt-based alloy magnetic layer is larger than the crystal lattice constant of a conventional magnetic layer such as a CoNiCr alloy or a CoCrTa alloy. For this reason, the consistency of the atomic arrangement with the underlayer consisting of a single component of Cr was deteriorated, and as a result, the C-axis orientation was also poor. As a means for solving this problem, it has been proposed to add a second metal (a dissimilar metal) for increasing the crystal lattice constant to the Cr underlayer. Cr
By changing the lattice constant of the alloy underlayer using a Cr alloy (for example, CrV) underlayer to which a dissimilar metal is added, the C-axis orientation of the magnetic layer in the film plane is improved, and the coercive force and the squareness ratio are improved. Can be improved.
No. 6848).

【0008】しかしながら、本発明者らの検討の結果、
媒体ノイズはCr下地層に異種金属を添加することによ
り急激に大きくなってしまうことが明らかになった。
However, as a result of the study by the present inventors,
It has been clarified that the medium noise increases sharply by adding a dissimilar metal to the Cr underlayer.

【0009】そこで本発明の第2の目的は、Cr合金下
地層及び非磁性中間層で分割された2層以上のCoPt
系合金磁性層を有する磁気記録媒体であって、媒体ノイ
ズが低い磁気記録媒体及びその製造方法を提供すること
にある。加えて本発明の第3の目的は、Cr合金下地層
及びCoPt系合金磁性層を有する磁気記録媒体であっ
て、保磁力及び角形比が高く、かつ媒体ノイズも低い磁
気記録媒体及びその製造方法を提供することにある。さ
らに本発明の第4の目的は、Cr合金下地層及び非磁性
中間層で分割された2層以上のCoPt系合金磁性層を
有する磁気記録媒体であって、媒体ノイズが低く、かつ
保磁力及び重ね書き特性に優れた磁気記録媒体及びその
製造方法を提供することにある。
Accordingly, a second object of the present invention is to provide two or more CoPt layers divided by a Cr alloy underlayer and a non-magnetic intermediate layer.
An object of the present invention is to provide a magnetic recording medium having a system alloy magnetic layer, which has low medium noise and a method of manufacturing the same. In addition, a third object of the present invention is a magnetic recording medium having a Cr alloy underlayer and a CoPt-based alloy magnetic layer, the magnetic recording medium having high coercive force and squareness ratio and low medium noise, and a method of manufacturing the same. Is to provide. Further, a fourth object of the present invention is a magnetic recording medium having two or more CoPt-based alloy magnetic layers divided by a Cr alloy underlayer and a nonmagnetic intermediate layer, which has low medium noise, coercive force and An object of the present invention is to provide a magnetic recording medium having excellent overwriting characteristics and a method for manufacturing the same.

【0010】本発明者らが種々検討したところ、非磁性
中間層で分割された2層以上のCoPt系合金磁性層を
有する磁気記録媒体において、保磁力及び重ね書き特性
の低下等の原因が磁性層を分割している膜材料の組成及
び作製条件にあることが判明した。そして、磁性層とし
てCoPt系合金を用いた場合、磁性層を分割している
非磁性中間層にCrとMoとを主成分とする合金を用
い、CoPt系合金磁性層の(002)面の結晶格子面
間隔と該磁性層の直下のCr合金非磁性下地層の(11
0)面の結晶格子面間隔の差を整合させることで、保磁
力及び重ね書き特性を低下させることなく更に媒体ノイ
ズを低減できることを見いだした。
The present inventors have conducted various studies. As a result, in a magnetic recording medium having two or more CoPt-based alloy magnetic layers divided by a non-magnetic intermediate layer, the magnetic coercive force and the overwriting characteristics are deteriorated. It was found that the composition of the film material for dividing the layers and the production conditions were satisfied. When a CoPt-based alloy is used as the magnetic layer, an alloy mainly composed of Cr and Mo is used for the non-magnetic intermediate layer that divides the magnetic layer, and the crystal of the (002) plane of the CoPt-based alloy magnetic layer is used. The lattice spacing and (11) of the Cr alloy non-magnetic underlayer immediately below the magnetic layer
It has been found that by matching the difference in the crystal lattice spacing between the 0) planes, the medium noise can be further reduced without lowering the coercive force and the overwriting characteristics.

【0011】さらに本発明者らの検討の結果、Cr下地
層に異種金属(例えば、Mo等)を添加すると、結晶粒
径の不均一性及び結晶性の低下が起こることが、透過型
電子顕微鏡観察により判明した。すなわち、Cr合金下
地層の上に積層されるCoPt系合金磁性層(例えばC
oPtCr等)は、下地層の粒径及び結晶性に強く影響
を受けて成長する。そのため、Cr合金下地層の結晶粒
径が不均一で結晶性が悪いと、磁性層の結晶粒径の不均
一性を引き起こし、結晶性を著しく低下させることが分
かった。そして、これが原因となって媒体ノイズを増加
させることが判明した。
As a result of studies by the present inventors, it has been found that the addition of a dissimilar metal (for example, Mo) to the Cr underlayer causes non-uniformity in crystal grain size and reduction in crystallinity. Observation revealed. That is, a CoPt-based alloy magnetic layer (for example, C
oPtCr or the like grows strongly affected by the grain size and crystallinity of the underlayer. Therefore, it has been found that if the crystal grain size of the Cr alloy underlayer is non-uniform and the crystallinity is poor, the magnetic layer has non-uniform crystal grain size and the crystallinity is significantly reduced. It has been found that this causes an increase in medium noise.

【0012】そこで、結晶粒径が均一で結晶性の良い膜
(下地層)上にCrに異種金属を添加したCr合金の第
2の下地層を積層してみたところ、Cr合金下地層の結
晶粒径は均一になり、また結晶性が良くなることが実験
的に明らかになった。しかしながら、このように下地層
を2層にするだけでは媒体ノイズの低減は不十分であっ
た。
Then, when a second underlayer of a Cr alloy in which a different kind of metal was added to Cr was laminated on a film (underlayer) having a uniform crystal grain size and good crystallinity, it was found that the crystal of the Cr alloy underlayer was It was experimentally found that the particle size became uniform and the crystallinity improved. However, reduction of the medium noise is not sufficient only by using two underlayers.

【0013】そこで、さらに検討したところ、CoPt
系合金磁性層の(002)面の結晶格子面間隔と、下地
層の最上層であるCr合金(Crに異種金属を添加し
た)下地層の(110)面の結晶格子面間隔を整合させ
ることで、媒体ノイズが大幅に低減されることがわかっ
た。即ち、CoPt系合金磁性層の(002)面の結晶
格子面間隔と、下地層の最上層であるCr合金下地層の
(110)面の結晶格子面間隔の差を小さくすること
で、保磁力及び角型比を向上させることができると同時
に、媒体ノイズを低減することもできる。
[0013] Then, further investigation revealed that CoPt
Matching the crystal lattice spacing of the (002) plane of the base alloy magnetic layer with the crystal lattice spacing of the (110) plane of the Cr alloy (Cr added with a dissimilar metal) which is the uppermost layer of the underlayer. It was found that the medium noise was significantly reduced. That is, by reducing the difference between the crystal lattice spacing of the (002) plane of the CoPt-based alloy magnetic layer and the crystal lattice spacing of the (110) plane of the Cr alloy underlayer, which is the uppermost layer of the underlayer, the coercive force is reduced. And the squareness ratio can be improved, and at the same time, the medium noise can be reduced.

【0014】尚、CoPt系合金磁性層の(002)面
の結晶格子面間隔とCr合金下地層やCr合金中間層の
(110)面の結晶格子面間隔の差は、ゼロにすること
が望ましいわけではない。種々の実験結果、若干の差を
もたせた方がノイズ低減の観点からは好ましい。すなわ
ち、磁性層のC軸配向をある範囲内に制御してやること
によって媒体ノイズは低減することになる。
It is desirable that the difference between the crystal lattice spacing of the (002) plane of the CoPt-based alloy magnetic layer and the crystal lattice spacing of the (110) plane of the Cr alloy underlayer or the Cr alloy intermediate layer be zero. Do not mean. From the results of various experiments, it is preferable to have a slight difference from the viewpoint of noise reduction. That is, the medium noise is reduced by controlling the C-axis orientation of the magnetic layer within a certain range.

【0015】[0015]

【課題を解決するための手段】そこで本発明は、基板上
に非磁性下地層及びCoPt系磁性層群をこの順に有す
る磁気記録媒体であって、前記CoPt系磁性層群は、
2層以上の磁性層からなり、各磁性層の間にCrとMo
を主成分とする材料からなる非磁性中間層を有し、前記
磁性層のhcp(002)面の結晶格子面間隔から、該
磁性層の直下のCrとMoを主成分とする材料からなる
非磁性中間層のbcc(110)面の結晶格子面間隔を
引いた差(d(002) −d(110) )が、0.002〜0.
032オングストロームの範囲であることを特徴とする
磁気記録媒体(第1の態様の磁気記録媒体)に関する。
Accordingly, the present invention provides a magnetic recording medium having a non-magnetic underlayer and a CoPt-based magnetic layer group on a substrate in this order, wherein the CoPt-based magnetic layer group comprises:
It is composed of two or more magnetic layers, with Cr and Mo between each magnetic layer.
And a non-magnetic intermediate layer made of a material mainly composed of Cr and Mo immediately below the magnetic layer based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer. The difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the magnetic intermediate layer is 0.002 to 0.
The present invention relates to a magnetic recording medium (the magnetic recording medium of the first embodiment), which is in a range of 032 Å.

【0016】さらに本発明は、基板上に非磁性下地層及
びCoPt系磁性層群をこの順に有する磁気記録媒体で
あって、前記CoPt系磁性層群は、2層以上の磁性層
からなり、各磁性層の間にCrとMoを主成分とする材
料からなる非磁性中間層を有し、前記磁性層のhcp
(002)面の結晶格子面間隔から、該磁性層の直下の
CrとMoを主成分とする材料からなる非磁性中間層の
bcc(110)面の結晶格子面間隔を引いた差(d
(002) −d(110) )が、0.002〜0.032オング
ストロームの範囲であり、前記非磁性下地層は1層又は
2層以上の層からなり、前記CoPt系磁性層群の最下
層の磁性層の直下の非磁性下地層がCrとMoを主成分
とする材料からなり、前記磁性層群の最下層の磁性層の
hcp(002)面の結晶格子面間隔から、前記Crと
Moを主成分とする材料からなる非磁性下地層のbcc
(110)面の結晶格子面間隔を引いた差(d(002)
(110) )が、0.002〜0.032オングストロー
ムの範囲であることを特徴とする磁気記録媒体(第2の
態様の磁気記録媒体)に関する。
Further, the present invention relates to a magnetic recording medium having a non-magnetic underlayer and a CoPt-based magnetic layer group in this order on a substrate, wherein the CoPt-based magnetic layer group comprises two or more magnetic layers. A non-magnetic intermediate layer made of a material containing Cr and Mo as main components between the magnetic layers;
The difference (d) is obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the nonmagnetic intermediate layer made of a material mainly composed of Cr and Mo directly below the magnetic layer from the crystal lattice spacing of the (002) plane.
(002) -d (110) ) is in the range of 0.002 to 0.032 angstroms, and the nonmagnetic underlayer is composed of one or more layers, and is the lowermost layer of the CoPt-based magnetic layer group. The nonmagnetic underlayer immediately below the magnetic layer is made of a material containing Cr and Mo as main components, and the Cr and Mo are determined from the crystal lattice spacing of the hcp (002) plane of the lowermost magnetic layer in the magnetic layer group. Bcc of the nonmagnetic underlayer made of a material mainly composed of
Difference (d (002)
d (110) ) in the range of 0.002 to 0.032 angstroms (the magnetic recording medium of the second embodiment).

【0017】さらに本発明は、上記本発明の第1の態様
の磁気記録媒体の製造方法であって、CoPt系磁性層
群及びCrとMoを主成分とする材料からなる非磁性中
間層を、基板加熱温度範囲を250℃〜425℃とし、
Arガス圧力範囲を0.5〜10mTorrとして、ス
パッタリング法により形成することを特徴とする磁気記
録媒体の製造方法に関する。
Further, the present invention provides the method for manufacturing a magnetic recording medium according to the first aspect of the present invention, wherein the CoPt-based magnetic layer group and the non-magnetic intermediate layer made of a material containing Cr and Mo as main components are provided. The substrate heating temperature range is 250 ° C. to 425 ° C.,
The present invention relates to a method for manufacturing a magnetic recording medium, wherein the magnetic recording medium is formed by a sputtering method with an Ar gas pressure range of 0.5 to 10 mTorr.

【0018】加えて本発明は、上記本発明の第2の態様
の磁気記録媒体の製造方法であって、少なくともCrと
Moを主成分とする材料からなる非磁性下地層、CoP
t系磁性層群及びCrとMoを主成分とする材料からな
る非磁性中間層を、基板加熱温度範囲を250℃〜42
5℃とし、Arガス圧力範囲を0.5〜10mTorr
として、スパッタリング法により形成することを特徴と
する磁気記録媒体の製造方法に関する。以下本発明につ
いて説明する。
In addition, the present invention provides the method for manufacturing a magnetic recording medium according to the second aspect of the present invention, wherein the non-magnetic underlayer made of a material containing at least Cr and Mo as main components;
The t-type magnetic layer group and the non-magnetic intermediate layer made of a material containing Cr and Mo as main components were heated at a substrate heating temperature range of 250 ° C. to 42 ° C.
5 ° C., Ar gas pressure range 0.5 to 10 mTorr
The present invention relates to a method for manufacturing a magnetic recording medium, which is formed by a sputtering method. Hereinafter, the present invention will be described.

【0019】本発明の磁気記録媒体は、CoPt系磁性
層群を有し、該磁性層群は、2層以上の磁性層からな
り、各磁性層の間の非磁性中間層を有し、前記非磁性中
間層の少なくとも1つがCrとMoを主成分とする材料
からなる非磁性中間層である。上記の各磁性層はCoP
t系合金、即ち、CoとPtを主成分とする合金であ
る。CoとPtを主成分とする合金は充分な保磁力を得
るという観点から、CoとPtとの合計が70at%以
上の合金であることが適当である。また、CoとPtの
比率には特に制限はないが、保磁力、ノイズ及びコスト
を考慮すると、Pt(at%)/Co(at%)は0.
07以上0.2以下の範囲であることが適当である。
The magnetic recording medium of the present invention has a CoPt-based magnetic layer group, the magnetic layer group includes two or more magnetic layers, and has a non-magnetic intermediate layer between each magnetic layer. At least one of the nonmagnetic intermediate layers is a nonmagnetic intermediate layer made of a material containing Cr and Mo as main components. Each magnetic layer is made of CoP
It is a t-based alloy, that is, an alloy containing Co and Pt as main components. From the viewpoint of obtaining a sufficient coercive force, the alloy containing Co and Pt as main components is suitably an alloy having a total of 70 at% or more of Co and Pt. Although there is no particular limitation on the ratio of Co to Pt, considering the coercive force, noise and cost, Pt (at%) / Co (at%) is 0.1%.
Suitably, it is in the range of 07 or more and 0.2 or less.

【0020】Co及びPt以外の成分には特に制限はな
いが、例えば、Cr、Ta、Ni、Si、B、O、N、
Nb、Mn、Mo、Zn、W、Pb、Re、V、Sm及
びZrの1種または2種以上を適宜使用することができ
る。これらの元素の添加量は磁気特性等を考慮して適宜
決定され、通常30at%以下であることが適当であ
る。より具体的な磁性層の材料としては、例えばCoP
tCr合金、CoPtTa合金、CoPtCrB合金、
CoPtCrTa合金、CoPtCrNi合金等を挙げ
ることができる。
There are no particular restrictions on the components other than Co and Pt, but for example, Cr, Ta, Ni, Si, B, O, N,
One or more of Nb, Mn, Mo, Zn, W, Pb, Re, V, Sm and Zr can be used as appropriate. The addition amount of these elements is appropriately determined in consideration of the magnetic characteristics and the like, and is usually preferably 30 at% or less. More specific materials for the magnetic layer include, for example, CoP
tCr alloy, CoPtTa alloy, CoPtCrB alloy,
CoPtCrTa alloy, CoPtCrNi alloy and the like can be mentioned.

【0021】さらに少なくとも1つの非磁性中間層は、
CrとMoを主成分とする材料からなる。このCrとM
oを主成分とする材料からなる非磁性中間層を、以下、
CrMo系非磁性中間層と呼ぶ。CrMo系非磁性中間
層は、CrとMoのみからなる場合、Cr金属に添加す
るMo量を40原子%以下とすることが、結晶粒系が均
一で且つ結晶性が良い膜とすることができるという観点
から適当である。
Further, at least one non-magnetic intermediate layer includes:
It is made of a material containing Cr and Mo as main components. This Cr and M
A non-magnetic intermediate layer made of a material mainly containing o
It is called a CrMo-based nonmagnetic intermediate layer. When the CrMo-based nonmagnetic intermediate layer is composed of only Cr and Mo, the amount of Mo added to the Cr metal is set to 40 atomic% or less, so that a film having a uniform crystal grain system and good crystallinity can be obtained. It is appropriate from the viewpoint.

【0022】さらに、Moの一部に代えて、Zr、W、
B、V、Nb、Ta、Fe、Ni、Re、Ce、Zn、
P、Si、Ga、Hf、Al、Ti等の1種または2種
以上を添加することもできる。これらの成分の添加量
は、Mo量と合計で40原子%以下とすることが、結晶
粒系が均一で且つ結晶性が良い膜とすることができると
いう観点から適当である。但し、Crに対するMo等の
添加量は、磁性層におけるCo、Ptあるいはその他の
添加元素の含有量およびその添加元素の種類により適宜
調整することができる。
Further, instead of part of Mo, Zr, W,
B, V, Nb, Ta, Fe, Ni, Re, Ce, Zn,
One or more of P, Si, Ga, Hf, Al, Ti and the like can be added. It is appropriate that the total amount of these components and the amount of Mo be 40 atom% or less from the viewpoint that a film having a uniform crystal grain system and good crystallinity can be obtained. However, the amount of Mo or the like added to Cr can be appropriately adjusted depending on the content of Co, Pt or other additional elements in the magnetic layer and the type of the additional element.

【0023】例えば、CoPtCr合金磁性層において
Pt含有量を4〜20原子%、Cr含有量を3〜30原
子%とし、その直下のCrMo系非磁性中間層をCrM
oとした場合には、CrMo系非磁性中間層のMoの含
有量は2〜20原子%とすることが、磁性層、CrMo
系非磁性中間層の結晶粒径が均一で且つ結晶性が良く、
さらにCrMo系非磁性中間層と磁性層の結晶格子定数
の差を適切な範囲内に制御しやすいので好ましい。ま
た、Hcが大きく且つ高いS/N比を有するために特に
好ましいMo含有量は5〜10原子%である。
For example, in the CoPtCr alloy magnetic layer, the Pt content is set to 4 to 20 at%, the Cr content is set to 3 to 30 at%, and the CrMo-based non-magnetic intermediate layer immediately thereunder is formed of CrM.
In the case of o, the content of Mo in the CrMo-based non-magnetic intermediate layer is set to 2 to 20 atomic%,
The non-magnetic intermediate layer has a uniform crystal grain size and good crystallinity,
Further, the difference between the crystal lattice constants of the CrMo-based non-magnetic intermediate layer and the magnetic layer is easily controlled within an appropriate range, which is preferable. Further, the Mo content is particularly preferably 5 to 10 atomic% because Hc is large and has a high S / N ratio.

【0024】CrMo系非磁性中間層としてCrMoZ
r合金を用いた場合、高いHc、Mrδ及び、S/N比
が得られることが好ましい。CrMo合金にZrを添加
すると、一層ノイズ低減効果が増長されるため、S/N
比が向上するからである。このような効果を引き出すた
めに、Zrの含有量は2〜5at%の範囲とすることが
好ましい。
CrMoZ as a CrMo-based non-magnetic intermediate layer
When an r alloy is used, it is preferable that a high Hc, Mrδ, and an S / N ratio are obtained. When Zr is added to the CrMo alloy, the noise reduction effect is further enhanced, so that S / N
This is because the ratio is improved. In order to bring out such an effect, the content of Zr is preferably set in a range of 2 to 5 at%.

【0025】磁性層群を構成する磁性層の数は、再生出
力、重ね書き特性を考慮して2層以上の2層、3層、4
層、5層等とすることができる。ただし、実用的な観点
からは、通常は最大5層程度である。しかし、必要によ
り6層以上の磁性層を設けることも勿論できる。
The number of magnetic layers constituting the magnetic layer group may be two or more, three layers, four layers or more in consideration of reproduction output and overwriting characteristics.
, Five layers or the like. However, from a practical viewpoint, the number of layers is usually about 5 at the maximum. However, if necessary, six or more magnetic layers can be provided.

【0026】本発明の磁気記録媒体は、2層以上ある磁
性層の間の少なくとも1つに非磁性中間層を有し、かつ
該非磁性中間層の少なくとも1つはCrMo系非磁性中
間層である。非磁性中間層は、磁性層と磁性層の間に直
接設けられ、必要により、磁性層とその上層の非磁性中
間層との間に更に別の層を設けることもできる。また、
磁性層が3層以上ある場合、各磁性層間に、それぞれ非
磁性中間層を設けることが好ましい。その場合、磁性層
の層数をnとするとn−1層の非磁性中間層を設けるこ
とになる。しかし、磁性層が3層以上ある場合、場合に
よっては、全ての磁性層の間に非磁性中間層を設けず、
磁性層の間の少なくとも1つに非磁性中間層を設けるこ
ともできる。
The magnetic recording medium of the present invention has a non-magnetic intermediate layer in at least one of two or more magnetic layers, and at least one of the non-magnetic intermediate layers is a CrMo-based non-magnetic intermediate layer. . The non-magnetic intermediate layer is provided directly between the magnetic layers, and if necessary, another layer may be provided between the magnetic layer and the non-magnetic intermediate layer thereabove. Also,
When there are three or more magnetic layers, it is preferable to provide a non-magnetic intermediate layer between each magnetic layer. In this case, if the number of magnetic layers is n, n-1 nonmagnetic intermediate layers are provided. However, when there are three or more magnetic layers, in some cases, a non-magnetic intermediate layer is not provided between all the magnetic layers,
A non-magnetic intermediate layer can be provided at least between the magnetic layers.

【0027】磁性層群の層構成としては、例えば、磁性
層−非磁性中間層−磁性層、磁性層−非磁性中間層−磁
性層−非磁性中間層−磁性層、さらには、磁性層−非磁
性中間層−磁性層−非磁性中間層−磁性層−非磁性中間
層−磁性層を挙げることができる。さらに磁性層と非磁
性中間層の組数を適宜増やすことができる。また、各磁
性層を構成する材料及び膜厚は同一でも異なっていても
良い。同様に2層以上の非磁性中間層がある場合、各非
磁性中間層を構成する材料及び膜厚は同一でも異なって
いても良い。
The layer structure of the magnetic layer group includes, for example, a magnetic layer—a nonmagnetic intermediate layer—a magnetic layer, a magnetic layer—a nonmagnetic intermediate layer—a magnetic layer—a nonmagnetic intermediate layer—a magnetic layer, Non-magnetic intermediate layer-magnetic layer-non-magnetic intermediate layer-magnetic layer-non-magnetic intermediate layer-magnetic layer. Further, the number of sets of the magnetic layer and the non-magnetic intermediate layer can be appropriately increased. In addition, the material and the thickness of each magnetic layer may be the same or different. Similarly, when there are two or more non-magnetic intermediate layers, the materials and thicknesses of the respective non-magnetic intermediate layers may be the same or different.

【0028】各磁性層の厚みは20〜230Å、好まし
くは40〜150Åとすることが適当である。20Åを
下回ると充分な保磁力が得られず、230Åを超えると
重ね書き特性の劣化及び媒体ノイズが増加する傾向があ
る。また各非磁性中間層の厚みは10〜100Å、好ま
しくは30〜80Åとすることが適当である。10Åを
下回ると充分な保磁力が得られず、100Åを超えると
出力の低下と重ね書き特性の劣化及び媒体ノイズが増加
する傾向がある。
It is appropriate that the thickness of each magnetic layer is 20 to 230 °, preferably 40 to 150 °. If it is less than 20 °, a sufficient coercive force cannot be obtained, and if it exceeds 230 °, the overwriting characteristics tend to deteriorate and the medium noise tends to increase. The thickness of each non-magnetic intermediate layer is suitably 10 to 100 °, preferably 30 to 80 °. If it is less than 10 °, a sufficient coercive force cannot be obtained, and if it exceeds 100 °, the output tends to decrease, the overwriting characteristics deteriorate, and the medium noise tends to increase.

【0029】本発明の磁気記録媒体においては、前記磁
性層のhcp(002)面の結晶格子面間隔から、該磁
性層の直下のCrMo系非磁性中間層のbcc(11
0)面の結晶格子面間隔を引いた差(d(002) −d
(110) )を、0.002〜0.032オングストローム
の範囲とすることが適当である。上記(d(002) −d
(110))が、0.002オングストローム未満及び0.
032オングストロームを超えるとHcが低下し、かつ
S/N比も低下してしまう。尚、2層以上のCrMo系
非磁性中間層を有する場合、上記(d(002)
(110) )は、各非磁性中間層について独立に、0.0
02〜0.032オングストロームとすることができ
る。
In the magnetic recording medium of the present invention, the bcc (11) of the CrMo-based nonmagnetic intermediate layer immediately below the magnetic layer is determined from the crystal lattice spacing of the hcp (002) plane of the magnetic layer.
Difference obtained by subtracting the crystal lattice spacing of the (0) plane (d (002) −d
(110) ) is suitably in the range of 0.002 to 0.032 angstroms. The above (d (002) -d
(110) ) is less than 0.002 angstroms and 0.1.
When it exceeds 032 Å, Hc decreases and the S / N ratio also decreases. When two or more CrMo-based nonmagnetic intermediate layers are provided, the above (d (002)
d (110) ) is independently 0.0 for each non-magnetic intermediate layer.
02 to 0.032 angstroms.

【0030】さらに高いS/N比を得るという観点から
は、磁性層のhcp(002)面の結晶格子面間隔から
CrMo系非磁性中間層のbcc(110)面の結晶格
子面間隔を引いた差(d(002) −d(110) )は、0.0
14〜0.030オングストロームの範囲であることが
好ましい。2層以上のCrMo系非磁性中間層を有する
場合、上記(d(002) −d(110))は、各非磁性中間層
について独立に0.014〜0.030オングストロー
ムの範囲であることが好ましい。
From the viewpoint of obtaining a higher S / N ratio, the crystal lattice spacing of the bcc (110) plane of the CrMo-based nonmagnetic intermediate layer is subtracted from the crystal lattice spacing of the hcp (002) plane of the magnetic layer. The difference (d (002) −d (110) ) is 0.0
Preferably, it is in the range of 14 to 0.030 angstroms. When there are two or more CrMo-based non-magnetic intermediate layers, the above (d (002) -d (110) ) may be independently in the range of 0.014 to 0.030 angstroms for each non-magnetic intermediate layer. preferable.

【0031】さらに本発明の磁気記録媒体は、1層又は
2層以上の非磁性下地層を有し、前記CoPt系磁性層
群の最下層と接する非磁性下地層がCrとMoを主成分
とする材料からなる。この非磁性下地層を、以下、Cr
Mo系非磁性下地層と呼ぶ。CrMo系非磁性下地層
は、CrとMoのみからなる場合、Cr金属に添加する
Mo量を40原子%以下とすることが、結晶粒系が均一
で且つ結晶性が良い膜とすることができるという観点か
ら適当である。
Further, the magnetic recording medium of the present invention has one or more nonmagnetic underlayers, and the nonmagnetic underlayer in contact with the lowermost layer of the CoPt-based magnetic layer group contains Cr and Mo as main components. It consists of the material which does. This non-magnetic underlayer is hereinafter referred to as Cr
It is referred to as a Mo-based nonmagnetic underlayer. When the CrMo-based nonmagnetic underlayer is composed of only Cr and Mo, the amount of Mo added to the Cr metal is set to 40 atomic% or less, whereby a film having a uniform crystal grain system and good crystallinity can be obtained. It is appropriate from the viewpoint.

【0032】さらに、Moの一部に代えて、Zr、W、
B、V、Nb、Ta、Fe、Ni、Re、Ce、Zn、
P、Si、Ga、Hf、Al、Ti等の1種または2種
以上を添加することもできる。これらの成分の添加量
は、Mo量と合計で40原子%以下とすることが、結晶
粒系が均一で且つ結晶性が良い膜とすることができると
いう観点から適当である。但し、Crに対するMo等の
添加量は、CrMo系非磁性下地層と接する磁性層にお
けるCo、Ptあるいはその他の添加元素の含有量およ
びその添加元素の種類により適宜調整することができ
る。
Further, instead of part of Mo, Zr, W,
B, V, Nb, Ta, Fe, Ni, Re, Ce, Zn,
One or more of P, Si, Ga, Hf, Al, Ti and the like can be added. It is appropriate that the total amount of these components and the amount of Mo be 40 atom% or less from the viewpoint that a film having a uniform crystal grain system and good crystallinity can be obtained. However, the amount of Mo or the like added to Cr can be appropriately adjusted depending on the contents of Co, Pt or other additional elements in the magnetic layer in contact with the CrMo-based nonmagnetic underlayer, and the types of the additional elements.

【0033】例えば、CoPtCr合金磁性層において
Pt含有量を4〜20原子%、Cr含有量を3〜30原
子%とし、その直下のCrMo系非磁性下地層をCrM
oとした場合には、CrMo系非磁性下地層のMoの含
有量は2〜20原子%とすることが、磁性層、CrMo
系非磁性下地層の結晶粒径が均一で且つ結晶性が良く、
さらにCrMo系非磁性下地層と磁性層の結晶格子定数
の差を適切な範囲内に制御しやすいので好ましい。ま
た、Hcが大きく且つ高いS/N比を有するために特に
好ましいMo含有量は5〜10原子%である。
For example, in the CoPtCr alloy magnetic layer, the Pt content is set to 4 to 20 at%, the Cr content is set to 3 to 30 at%, and the CrMo-based non-magnetic underlayer immediately below the CrMo based non-magnetic underlayer is made of CrM.
In the case of o, the content of Mo in the CrMo-based nonmagnetic underlayer is preferably set to 2 to 20 atomic%,
The non-magnetic underlayer has a uniform crystal grain size and good crystallinity,
Further, the difference between the crystal lattice constants of the CrMo-based nonmagnetic underlayer and the magnetic layer can be easily controlled within an appropriate range, which is preferable. Further, the Mo content is particularly preferably 5 to 10 atomic% because Hc is large and has a high S / N ratio.

【0034】CrMo系非磁性下地層の膜厚は、10〜
150Åとすることが適当である。CrMo系非磁性下
地層の膜厚の上限と下限は、結晶粒径が均一で且つ結晶
性が良い膜になると共に、磁性層と適合した結晶格子面
間隔になるように定められる。このような観点から、C
rMo系非磁性下地層の好ましい膜厚は、20〜100
Åである。
The thickness of the CrMo-based nonmagnetic underlayer is 10 to
Suitably, it is 150 °. The upper and lower limits of the thickness of the CrMo-based non-magnetic underlayer are determined so that the film has a uniform crystal grain size and good crystallinity, and has a crystal lattice spacing suitable for the magnetic layer. From such a viewpoint, C
The preferred thickness of the rMo-based nonmagnetic underlayer is 20 to 100.
Å.

【0035】CrMo系非磁性下地層としてCrMoZ
r合金を用いた場合、高いHc、Mrδ及びS/N比が
得られることか好ましい。CrMo合金にZrを添加す
ると一層ノイズ低減効果が増長されるため、S/N比が
向上するからである。このような効果を引き出すため
に、Zrの含有量は2〜5at%の範囲とすることが好
ましい。またこの特性は膜厚によっても左右され、Cr
MoZr合金非磁性下地層の膜厚は10〜150Å、特
に好ましくは20〜100Åである。10Åを下回る
と、充分なHcが得られない場合があり、150Åを超
えると出力の低下と重ね書き特性の劣化及びノイズが増
加する傾向がある。
As a CrMo-based nonmagnetic underlayer, CrMoZ
When an r alloy is used, it is preferable that high Hc, Mr δ, and S / N ratio be obtained. This is because when Zr is added to the CrMo alloy, the noise reduction effect is further enhanced, and the S / N ratio is improved. In order to bring out such an effect, the content of Zr is preferably set in a range of 2 to 5 at%. This characteristic also depends on the film thickness.
The film thickness of the MoZr alloy nonmagnetic underlayer is 10 to 150 °, particularly preferably 20 to 100 °. If it is less than 10 °, sufficient Hc may not be obtained, and if it exceeds 150 °, the output tends to decrease, the overwriting characteristics deteriorate, and noise tends to increase.

【0036】本発明の磁気記録媒体においては、前記磁
性層のhcp(002)面の結晶格子面間隔から前記C
rMo系非磁性下地層のbcc(110)面の結晶格子
面間隔を引いた差(d(002) −d(110) )は、0.00
2〜0.032オングストロームの範囲である。(d
(002) −d(110) )が、0.002オングストローム未
満及び0.032オングストロームを超えるとHcが低
下し、かつS/N比も低下してしまう。また、さらに高
いS/N比を得るためには、(d(002) −d(110) )を
0.014オングストローム〜0.030オングストロ
ームの範囲とすることが好ましい。
In the magnetic recording medium of the present invention, the Cp is determined from the crystal lattice spacing of the hcp (002) plane of the magnetic layer.
The difference (d (002) −d (110) ) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the rMo-based nonmagnetic underlayer is 0.00
It is in the range of 2 to 0.032 angstroms. (D
If (002) −d (110) ) is less than 0.002 Å or more than 0.032 Å, Hc decreases and the S / N ratio also decreases. In order to obtain a higher S / N ratio, it is preferable that (d (002) -d (110) ) be in the range of 0.014 Å to 0.030 Å.

【0037】本発明の磁気記録媒体においては、前記C
rMo系非磁性下地層と基板との間にさらに1層又は2
層以上の非磁性下地層を有することができる。そして、
前記CrMo系非磁性下地層と接する非磁性下地層は体
心立方結晶構造を有する金属からなることが好ましい。
体心立方結晶構造を有する金属からなる非磁性下地層と
しては、Cr下地層を挙げることができる。前記CrM
o系非磁性下地層と接する非磁性下地層は、結晶粒径が
均一で且つ結晶性が良い金属膜であることが好ましく、
実験的にCr膜が最も好ましいことが確認された。ま
た、体心立方結晶構造を有する金属としてCr以外にT
i、Ta、Zrを例示することができる。
In the magnetic recording medium of the present invention, the C
One more layer or two between the rMo-based nonmagnetic underlayer and the substrate
It can have more than one non-magnetic underlayer. And
The nonmagnetic underlayer in contact with the CrMo-based nonmagnetic underlayer is preferably made of a metal having a body-centered cubic crystal structure.
An example of the nonmagnetic underlayer made of a metal having a body-centered cubic crystal structure is a Cr underlayer. The CrM
The nonmagnetic underlayer in contact with the o-based nonmagnetic underlayer is preferably a metal film having a uniform crystal grain size and good crystallinity,
It was experimentally confirmed that the Cr film was most preferable. In addition, as a metal having a body-centered cubic crystal structure,
i, Ta, and Zr can be exemplified.

【0038】体心立方結晶構造を有する金属からなる非
磁性下地層の膜厚は、100〜1000Åの範囲とする
ことが適当である。この非磁性下地層の上限と下限は、
結晶粒径が均一で且つ結晶性が良い膜になるように決定
され、特にHcが大きく且つ高いS/N比を有するため
には、上記非磁性下地層の膜厚は100〜800Åの範
囲とすることが適当である。さらに、(CrMo系非磁
性下地層の膜厚)/(体心立方結晶構造を有する金属か
らなる非磁性下地層の膜厚)の比は、0.05〜0.5
の間であることが、Hcが大きく、かつ高いS/N比を
有するという観点から好ましい。
The thickness of the nonmagnetic underlayer made of a metal having a body-centered cubic crystal structure is suitably in the range of 100 to 1000 °. The upper and lower limits of this nonmagnetic underlayer are:
The thickness of the non-magnetic underlayer is in the range of 100 to 800 ° in order to determine a film having a uniform crystal grain size and good crystallinity, and particularly to have a large Hc and a high S / N ratio. It is appropriate to do so. Further, the ratio of (film thickness of CrMo-based nonmagnetic underlayer) / (film thickness of nonmagnetic underlayer made of metal having a body-centered cubic crystal structure) is 0.05 to 0.5.
It is preferable from the viewpoint that Hc is large and the S / N ratio is high.

【0039】本発明の磁気記録媒体においては、前記体
心立方結晶構造を有する金属からなる非磁性下地層と非
磁性基板の間に、さらに別異の非磁性下地層を設けるこ
とができる。そのような非磁性下地層として、Al、T
i、Zr膜等を挙げることができる。この非磁性下地層
の膜厚は、例えば、10〜100Åとすることができ
る。この非磁性下地層の膜厚の上限と下限は、上に積層
される体心立方結晶構造を有する金属からなる膜の結晶
粒径が均一で且つ結晶性の良い膜になる範囲として定め
られる。そして、さらにHcが大きく且つ高いS/N比
を有するためには、膜厚は30〜80Åであることが好
ましい。
In the magnetic recording medium of the present invention, another nonmagnetic underlayer can be further provided between the nonmagnetic underlayer made of the metal having the body-centered cubic crystal structure and the nonmagnetic substrate. As such a nonmagnetic underlayer, Al, T
i, Zr film and the like. The thickness of this nonmagnetic underlayer can be, for example, 10 to 100 °. The upper limit and the lower limit of the thickness of the nonmagnetic underlayer are determined as ranges in which a film made of a metal having a body-centered cubic crystal structure laminated thereon has a uniform crystal grain size and good crystallinity. In order to further increase Hc and have a high S / N ratio, the film thickness is preferably 30 to 80 °.

【0040】本発明の磁気記録媒体は、前記CoPt系
磁性層の上に保護層及び潤滑層を設けることができる。
保護層には、磁性層を湿気等の化学的攻撃から保護する
役割の保護層と、ヘッドの接触摺動による破壊から防護
する目的で磁性層の上(非磁性基板と反対側の面)に設
けられる耐摩耗性を付与する保護層とがある。保護層
は、異なる材質の1層または2層以上から構成されるこ
とができる。本発明の磁気記録媒体においては、保護層
の材質や構造等には特に制限はない。材質としては、例
えば、化学的保護層としてはCr等の金属膜を挙げるこ
とができ、耐摩耗性を付与する保護層としては、酸化珪
素膜、炭素膜、ジルコニア膜、水素化カーボン膜、窒素
珪素膜、SiC膜等を挙げることができる。
In the magnetic recording medium of the present invention, a protective layer and a lubricating layer can be provided on the CoPt-based magnetic layer.
The protective layer has a role of protecting the magnetic layer from chemical attack such as moisture, and a protective layer on the magnetic layer (the surface opposite to the non-magnetic substrate) for the purpose of protecting the magnetic layer from damage caused by sliding contact with the head. There is a protective layer provided to provide abrasion resistance. The protective layer can be composed of one or more layers of different materials. In the magnetic recording medium of the present invention, the material and structure of the protective layer are not particularly limited. Examples of the material include a metal film such as Cr as a chemical protection layer, and a silicon oxide film, a carbon film, a zirconia film, a hydrogenated carbon film, a nitrogen film as a protection layer for imparting wear resistance. Examples include a silicon film and a SiC film.

【0041】潤滑層は、ヘッドとの接触摺動により抵抗
する目的で設けられる膜であり、材質等には特に制限は
ない。例えば、パーフルオロポリエーテル等を挙げるこ
とができる。
The lubricating layer is a film provided for the purpose of resisting sliding by contact with the head, and the material and the like are not particularly limited. For example, perfluoropolyether and the like can be mentioned.

【0042】基板は、非磁性基板であれば、その材質や
形状等に特に制限はない。例えば、ガラス基板、結晶化
ガラス基板、アルミニウム基板、セラミック基板、カー
ボン基板、シリコン基板等を使用することができる。
The material of the substrate is not particularly limited as long as it is a non-magnetic substrate. For example, a glass substrate, a crystallized glass substrate, an aluminum substrate, a ceramic substrate, a carbon substrate, a silicon substrate, or the like can be used.

【0043】本発明の第1の態様の磁気記録媒体は、ス
パッタリング法等の公知の薄膜形成法を利用して製造す
ることができる。特に、CrMo系非磁性中間層の組成
を調整するとともに、CrMo系非磁性中間層及びCo
Pt系磁性層の形成条件を調整することにより、所定の
範囲の結晶格子面間隔の差(d(002) −d(110) )を有
する磁気記録媒体を得ることができる。
The magnetic recording medium according to the first embodiment of the present invention can be manufactured by using a known thin film forming method such as a sputtering method. In particular, while adjusting the composition of the CrMo-based non-magnetic intermediate layer,
By adjusting the conditions for forming the Pt-based magnetic layer, it is possible to obtain a magnetic recording medium having a difference (d (002) -d (110) ) of the crystal lattice spacing in a predetermined range.

【0044】さらに本発明の第2の態様の磁気記録媒体
は、スパッタリング法等の公知の薄膜形成法を利用して
製造することができる。特に、CrMo系非磁性下地層
及びCrMo系非磁性中間層の各組成を調整するととも
に、CrMo系非磁性下地層、CrMo系非磁性中間層
及びCoPt系磁性層の形成条件を調整することによ
り、所定の範囲の結晶格子面間隔の差(d(002) −d
(110) )を有する磁気記録媒体を得ることができる。
Further, the magnetic recording medium according to the second embodiment of the present invention can be manufactured by using a known thin film forming method such as a sputtering method. In particular, by adjusting each composition of the CrMo-based non-magnetic underlayer and the CrMo-based non-magnetic intermediate layer, and by adjusting the formation conditions of the CrMo-based non-magnetic under-layer, CrMo-based non-magnetic intermediate layer, and CoPt-based magnetic layer, The difference in the crystal lattice plane spacing in a predetermined range (d (002) −d
(110) ) can be obtained.

【0045】例えば、少なくともCrMo系非磁性下地
層及び/又はCrMo系非磁性中間層及びCoPt系磁
性層を、基板加熱温度範囲を250℃〜425℃とし、
Arガス圧力範囲を0.5〜10mTorrとして、ス
パッタリング法により形成することにより、所定の範囲
の結晶格子面間隔の差(d(002) −d(110) )を有する
磁気記録媒体を得ることができる。基板加熱温度の範囲
は、好ましくは300℃〜400℃である。また、Ar
ガス圧力の範囲は、好ましくは1〜8mTorrであ
る。
For example, at least the CrMo-based non-magnetic underlayer and / or the CrMo-based non-magnetic intermediate layer and the CoPt-based magnetic layer are heated at a substrate heating temperature range of 250 ° C. to 425 ° C.
A magnetic recording medium having a predetermined range of crystal lattice spacing difference (d (002) -d (110) ) can be obtained by forming the Ar gas pressure range from 0.5 to 10 mTorr by a sputtering method. it can. The range of the substrate heating temperature is preferably from 300C to 400C. Also, Ar
The range of the gas pressure is preferably 1 to 8 mTorr.

【0046】本発明の磁気記録媒体は、低い媒体ノイズ
を有することから、磁気ディスクや磁気テープ等に有用
である。さらに、本発明の磁気記録媒体は、構成によっ
ては、低減した媒体ノイズ、高い保磁力と角形比、さら
に優れた重ね書き特性を有する。さらに、本発明の磁気
記録媒体は、媒体ノイズが小さいことから、MR(磁気
抵抗型)ヘッド対応用の磁気記録媒体として有用であ
る。
Since the magnetic recording medium of the present invention has low medium noise, it is useful for magnetic disks, magnetic tapes and the like. Furthermore, the magnetic recording medium of the present invention has reduced medium noise, high coercive force and squareness, and excellent overwriting characteristics depending on the configuration. Further, the magnetic recording medium of the present invention is useful as a magnetic recording medium for an MR (magnetoresistive) head because the medium noise is small.

【0047】[0047]

【実施例】以下、実施例と比較例により本発明を詳細に
説明する。
The present invention will be described in detail below with reference to examples and comparative examples.

【0048】実施例1 本実施例の磁気記録媒体は図1に示す通り、ガラス基板
1上に下地層2、第1磁性層3、非磁性中間層4、第2
磁性層5、保護層6、潤滑層7を順次積層してなる磁気
ディスクである。
Embodiment 1 As shown in FIG. 1, the magnetic recording medium of this embodiment has a base layer 2, a first magnetic layer 3, a non-magnetic intermediate layer 4,
This is a magnetic disk in which a magnetic layer 5, a protective layer 6, and a lubricating layer 7 are sequentially laminated.

【0049】ガラス基板1はアルミノシリケイトガラス
からなり、その表面はRa=50Å程度に鏡面研磨され
ている。下地層2は、ガラス基板1側からAl薄膜2a
(膜厚50Å)、Cr薄膜2b(厚膜600Å)、Cr
Mo薄膜2c(膜厚50Å)からなる。尚、CrMo薄
膜2cはCrが98原子%、Moが2原子%の組成比で
構成されている。
The glass substrate 1 is made of aluminosilicate glass, and its surface is mirror-polished to Ra = about 50 °. The underlayer 2 is made of an Al thin film 2a from the glass substrate 1 side.
(Thickness 50 mm), Cr thin film 2b (thick 600 mm), Cr
It is composed of the Mo thin film 2c (50 ° in thickness). The CrMo thin film 2c has a composition ratio of 98 atomic% of Cr and 2 atomic% of Mo.

【0050】第1磁性層3及び第2磁性層5は、同一材
料CoPtCr合金(Co:78原子%、Pt:11原
子%、Cr:11原子%)からなり、いずれも膜厚は1
20Åである。第1磁性層3と第2磁性層5の中間に存
在する非磁性中間層4は、膜厚50ÅのCrMo合金
(Cr:98原子%、Mo:2原子%)からなる。
The first magnetic layer 3 and the second magnetic layer 5 are made of the same material CoPtCr alloy (Co: 78 atomic%, Pt: 11 atomic%, Cr: 11 atomic%), and each has a thickness of 1%.
20 °. The non-magnetic intermediate layer 4 existing between the first magnetic layer 3 and the second magnetic layer 5 is made of a 50 .mu.m thick CrMo alloy (Cr: 98 atomic%, Mo: 2 atomic%).

【0051】保護層6は、基板側から第1保護層6a及
び第2保護層6bからなる。第1保護層6aは、膜厚50
ÅのCr膜からなり、磁性層に対して化学的保護膜にな
っている。もう一方の第2保護層6bは硬質微粒子を分
散させた、膜厚160Åの酸化珪素膜からなり、この第
2保護層6bによって耐摩耗性が得られる。潤滑層7
は、パーフルオロポリエーテルからなり、この膜によっ
て磁気ヘッドとの接触を緩和している。
The protective layer 6 comprises a first protective layer 6a and a second protective layer 6b from the substrate side. The first protective layer 6a has a thickness of 50
The Cr film is a chemical protection film for the magnetic layer. The other second protective layer 6b is made of a silicon oxide film having a thickness of 160 ° in which hard fine particles are dispersed, and the second protective layer 6b provides wear resistance. Lubrication layer 7
Is made of perfluoropolyether, and this film alleviates the contact with the magnetic head.

【0052】以下に上記磁気ディスクの製造方法につい
て説明する。上記ガラス基板を基板ホルダ(パレット)
に装着し、図2に示すインライン型スパッタ装置10の
仕込室11にパッレト18を導入した後、仕込室内11
を大気状態からスパッタ室(真空チャンバー)12の真
空度と同等になるまで真空排気する。その後、仕切板1
4を開放してパレット18を第一真空チャンバー12a
内に導入する。この第一真空チャンバー12a内では、
パレット18に装着したガラス基板をランプヒータ19
によって300℃、1分間の加熱条件で加熱した後、パ
レット18を1.2m/minの搬送速度で移動させ、
Arガス圧力5mTorrの条件下で放電状態にあり、
対向して配置されたターゲット15aと16aの間、タ
ーゲット15bと16bの間を順次通過させる。ターゲ
ットはパレット搬送方向に対してAl、Crの順で配置
されており、この配置されたターゲットの順番通りにガ
ラス基板の両面にAl下地膜2a、Cr下地膜2bの順
で積層される。なお、Alターゲットの投入電力は30
0W、Crターゲットの投入電力は1.0kWでスパッ
タを行った。
Hereinafter, a method for manufacturing the magnetic disk will be described. The above glass substrate is used as a substrate holder (pallet)
After the pallet 18 is introduced into the charging chamber 11 of the in-line type sputtering apparatus 10 shown in FIG.
Is evacuated from the atmospheric state until the degree of vacuum in the sputtering chamber (vacuum chamber) 12 becomes equal to that of the vacuum chamber. Then, the partition plate 1
4 and the pallet 18 is moved to the first vacuum chamber 12a.
Introduce within. In the first vacuum chamber 12a,
The glass substrate mounted on the pallet 18 is
After heating at 300 ° C. for 1 minute by heating, the pallet 18 was moved at a transport speed of 1.2 m / min.
In a discharge state under the condition of an Ar gas pressure of 5 mTorr,
The target is sequentially passed between the targets 15a and 16a and the targets 15b and 16b which are arranged to face each other. The targets are arranged in the order of Al and Cr with respect to the pallet transport direction, and the Al underlayer 2a and the Cr underlayer 2b are laminated on both surfaces of the glass substrate in the order of the arranged targets. The input power of the Al target is 30
Sputtering was performed at a power of 1.0 kW with a 0 W, Cr target.

【0053】次に、パレット18をポート21を介して
第2真空チャンバー12bに移動し、この第2真空チャ
ンバー12b内に配置されたヒータ20で基板を再び加
熱する。加熱条件は375℃、1分間とする。その後、
CrMoターゲット15cと16c、CoPtCrター
ゲット15dと16d、CrMoターゲット15eと1
6e、CoPtCrターゲット15fと16f、Crタ
ーゲット15gと16gの順に配置され、且つArガス
圧力1.3mTorrの条件下で放電状態にあるターゲ
ット15c−16c〜15g−16g間を、1.2m/
minの搬送速度でパレット18を順次通過させる。そ
してこの配置されたターゲットの順番通りに、CrMo
下地層2c、CoPtCr第1磁性層3、CrMo非磁
性中間層4、CoPtCr第2磁性層5、Cr第1保護
層6aの順で各層が積層される。なお、CrMoターゲ
ットの投入電力は500W、CoPtCrターゲットの
投入電力は300W、Crターゲットの投入電力は50
0Wでスパッタを行った。さらに、第1真空チャンバー
及び第2真空チャンバー内の到達圧力(真空度)は5×
10-6Torr以下とした。
Next, the pallet 18 is moved to the second vacuum chamber 12b through the port 21, and the substrate is heated again by the heater 20 arranged in the second vacuum chamber 12b. The heating condition is 375 ° C. for 1 minute. afterwards,
CrMo targets 15c and 16c, CoPtCr targets 15d and 16d, CrMo targets 15e and 1
6e, CoPtCr targets 15f and 16f, Cr targets 15g and 16g are arranged in this order, and 1.2 m / g is set between targets 15c-16c to 15g-16g in a discharge state under the condition of Ar gas pressure of 1.3 mTorr.
The pallets 18 are sequentially passed at a transport speed of min. Then, in the order of the arranged targets, the CrMo
Each layer is laminated in the order of the underlayer 2c, the CoPtCr first magnetic layer 3, the CrMo non-magnetic intermediate layer 4, the CoPtCr second magnetic layer 5, and the Cr first protective layer 6a. The input power of the CrMo target was 500 W, the input power of the CoPtCr target was 300 W, and the input power of the Cr target was 50 W.
Sputtering was performed at 0W. Furthermore, the ultimate pressure (degree of vacuum) in the first vacuum chamber and the second vacuum chamber is 5 ×
10 -6 Torr or less.

【0054】上記スパッタによる成膜終了後、第1保護
層6aに対してIPA(イソプロピルアルコール)洗浄
による親水化処理を施した後、基板をシリカ微粒子(粒
径100Å)を分散した有機珪素化合物溶液(水とIP
Aとテトラエトキシシランとの混合液)に浸し、焼成す
ることによってSiO2 からなる第2の保護層6bを形
成した。最後に、この第2保護層6b上にパーフロロポ
リエーテルからなる潤滑剤をディップ処理して潤滑層7
を形成した。
After completion of the film formation by the above-mentioned sputtering, the first protective layer 6a is subjected to a hydrophilization treatment by IPA (isopropyl alcohol) cleaning, and then the substrate is treated with an organic silicon compound solution in which silica fine particles (particle diameter: 100 °) are dispersed. (Water and IP
A mixed solution of A and tetraethoxysilane) and baked to form a second protective layer 6b made of SiO 2 . Finally, a lubricant made of perfluoropolyether is dipped on the second protective layer 6b to form a lubricating layer 7
Was formed.

【0055】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。結果を
表1に示す。さらに、CrMo下地層2cの組成及び膜
厚、CrMo非磁性中間層4の組成及び膜厚、CrMo
下地層2c及びCrMo非磁性中間層4作製時の基板加
熱温度及びArガス圧力、CoPtCr磁性層3の(0
02)面の結晶格子面間隔からそれに接するCrMo下
地層2cの(110)面の結晶格子間隔を引いた差(d
(002) −d(110) )、並びにCoPtCr磁性層5の
(002)面の結晶格子面間隔からそれに接するCrM
o非磁性中間層4の(110)面の結晶格子間隔を引い
た差(d(002) −d(110) )を表1に示す。
The running test of the magnetic disk thus obtained was performed at a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the product of the residual magnetization film thickness (Mrδ), and the S / N ratio were evaluated. Table 1 shows the results. Further, the composition and thickness of the CrMo underlayer 2c, the composition and thickness of the CrMo non-magnetic intermediate layer 4,
The substrate heating temperature and the Ar gas pressure when the underlayer 2c and the CrMo nonmagnetic intermediate layer 4 were formed, and the (0) of the CoPtCr magnetic layer 3
The difference (d) obtained by subtracting the crystal lattice spacing of the (110) plane of the CrMo underlayer 2c in contact therewith from the crystal lattice spacing of the (02) plane.
(002) −d (110) ) and the crystal lattice spacing of the (002) plane of the CoPtCr magnetic layer 5 and the CrM in contact therewith.
Table 1 shows the difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the nonmagnetic intermediate layer 4.

【0056】尚、CoPtCr磁性層3の(002)面
の結晶格子面間隔からそれに接するCrMo下地層2c
の(110)面の結晶格子間隔を引いた差(d(002)
(110) )と、CoPtCr磁性層5の(002)面の
結晶格子面間隔からそれに接するCrMo非磁性中間層
4の(110)面の結晶格子間隔を引いた差(d(002)
−d(110) )とは、下地層2c及び非磁性中間層4の作
製条件並びに磁性層3及び磁性層5の作製条件がそれぞ
れ同一であったことから、同一であったので表1には、
両者をまとめて1つの値のみを示した。表2も同様であ
る。
The CrMo underlayer 2c in contact with the (002) crystal lattice spacing of the CoPtCr magnetic layer 3
Difference (d (002)
d (110) ) and the difference (d (002)) obtained by subtracting the crystal lattice spacing of the (110) plane of the CrMo nonmagnetic intermediate layer 4 in contact with the crystal lattice spacing of the (002) plane of the CoPtCr magnetic layer 5.
−d (110) ) is the same because the manufacturing conditions of the underlayer 2c and the non-magnetic intermediate layer 4 and the manufacturing conditions of the magnetic layer 3 and the magnetic layer 5 were the same. ,
Together, only one value is shown. Table 2 is similar.

【0057】なお、S/Nの評価は次のように行った。
磁気ヘッド浮上量が0.060μmの薄膜ヘッドを用い
て、この薄膜ヘッドとディスクの相対速度を5.0m/
sとし、線記録密度110kfciにおける記録再生出
力を測定した。また、キャリア周波数13.5MHz
で、測定帯域を27MHzとしてスペクトルアナライザ
ーによってこの磁気ディスクについて信号記録再生時に
おけるノイズスペクトラムを測定した。なお、上述の測
定で用いたMR(磁気抵抗型)ヘッドは、記録トラック
幅4.2μm、再生トラック幅3.5μm、記録ギャッ
プ長0.43μm、再生ギャップ長0.31μmであ
る。
The S / N was evaluated as follows.
Using a thin film head having a magnetic head flying height of 0.060 μm, the relative speed between the thin film head and the disk was set to 5.0 m /
The recording / reproducing output at a linear recording density of 110 kfci was measured. In addition, carrier frequency 13.5 MHz
Then, the noise spectrum at the time of signal recording and reproduction was measured for this magnetic disk by a spectrum analyzer with the measurement band set to 27 MHz. The MR (magnetoresistive) head used in the above measurement has a recording track width of 4.2 μm, a reproduction track width of 3.5 μm, a recording gap length of 0.43 μm, and a reproduction gap length of 0.31 μm.

【0058】実施例2〜29 実施例2〜25では、CrMo系下地層2cの組成及び
膜厚、CrMo非磁性中間層4の組成及び膜厚、CrM
o系下地層2c及びCrMo非磁性中間層4の作製時の
基板加熱温度及びArガス圧力を、表1に示すように変
えた以外は実施例1と同様にして磁気ディスクを作製し
た。また、実施例26〜29では、CrMo系下地層2
c及びCrMo非磁性中間層4を膜厚50ÅのCrMo
Zr合金とし、表2に示す組成比とした以外は実施例1
と同様にして磁ディスクを作製した。
Examples 2 to 29 In Examples 2 to 25, the composition and thickness of the CrMo-based underlayer 2c, the composition and thickness of the CrMo nonmagnetic intermediate layer 4,
A magnetic disk was manufactured in the same manner as in Example 1 except that the substrate heating temperature and the Ar gas pressure at the time of manufacturing the o-based underlayer 2c and the CrMo nonmagnetic intermediate layer 4 were changed as shown in Table 1. In Examples 26 to 29, the CrMo-based underlayer 2
c and CrMo nonmagnetic intermediate layer 4 is formed of
Example 1 except that a Zr alloy was used and the composition ratio was as shown in Table 2.
A magnetic disk was produced in the same manner as described above.

【0059】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。尚、S
/N比の測定は実施例1と同様の方法で行った。結果を
表1及び2に示す。さらに、CrMo下地層2cの組成
及び膜厚、CrMo非磁性中間層4の組成及び膜厚、C
rMo下地層2c及びCrMo非磁性中間層4作製時の
基板加熱温度及びArガス圧力、CoPtCr磁性層3
の(002)面の結晶格子面間隔からそれに接するCr
Mo下地層2cの(110)面の結晶格子間隔を引いた
差(d(002) −d(110) )、並びにCoPtCr磁性層
5の(002)面の結晶格子面間隔からそれに接するC
rMo非磁性中間層4の(110)面の結晶格子間隔を
引いた差(d(002) −d(110) )を表1及び表2に示
す。
A running test of the magnetic disk thus obtained was performed at a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the product of the residual magnetization film thickness (Mrδ), and the S / N ratio were evaluated. Note that S
The measurement of the / N ratio was performed in the same manner as in Example 1. The results are shown in Tables 1 and 2. Further, the composition and thickness of the CrMo underlayer 2c, the composition and thickness of the CrMo non-magnetic intermediate layer 4,
Substrate heating temperature and Ar gas pressure during preparation of rMo underlayer 2c and CrMo nonmagnetic intermediate layer 4, CoPtCr magnetic layer 3
Of the (002) plane of the crystal lattice
The difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the Mo underlayer 2c, and the C lattice contacting the crystal lattice plane spacing of the (002) plane of the CoPtCr magnetic layer 5,
Tables 1 and 2 show the difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the rMo nonmagnetic intermediate layer 4.

【0060】比較例1〜6 比較例1は下地層2c及び非磁性中間層4をCrに変え
た以外は実施例1と同様にして磁気ディスクを作製し
た。比較例2はCrMo系下地層2c及びCrMo非磁
性中間層4の組成比以外は実施例1と同様にして磁気デ
ィスクを作製した。比較例3、4は、CrMo系下地層
2c及びCrMo非磁性中間層4作製時の基板加熱温度
及びArガス圧力を変えた以外は実施例1と同様にして
磁気ディスクを作製した。比較例5、6は、CrMo系
下地層2c及びCrMo非磁性中間層4作製時の基板加
熱温度及びArガス圧力を変えた以外は実施例23と同
様にして磁気ディスクを作製した。
Comparative Examples 1 to 6 In Comparative Example 1, a magnetic disk was manufactured in the same manner as in Example 1 except that the underlayer 2c and the nonmagnetic intermediate layer 4 were changed to Cr. In Comparative Example 2, a magnetic disk was manufactured in the same manner as in Example 1 except for the composition ratio of the CrMo base layer 2c and the CrMo nonmagnetic intermediate layer 4. In Comparative Examples 3 and 4, magnetic disks were manufactured in the same manner as in Example 1 except that the substrate heating temperature and the Ar gas pressure during the formation of the CrMo-based underlayer 2c and the CrMo nonmagnetic intermediate layer 4 were changed. In Comparative Examples 5 and 6, magnetic disks were manufactured in the same manner as in Example 23 except that the substrate heating temperature and the Ar gas pressure during the formation of the CrMo-based underlayer 2c and the CrMo nonmagnetic intermediate layer 4 were changed.

【0061】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。尚、S
/N比の測定は実施例1と同様の方法で行った。この結
果を表2に示す。さらに、CrMo下地層2cの組成及
び膜厚、CrMo非磁性中間層4の組成及び膜厚、Cr
Mo下地層2c及びCrMo非磁性中間層4作製時の基
板加熱温度及びArガス圧力、CoPtCr磁性層3の
(002)面の結晶格子面間隔からそれに接するCrM
o下地層2cの(110)面の結晶格子間隔を引いた差
(d(002) −d(110) )、並びにCoPtCr磁性層5
の(002)面の結晶格子面間隔からそれに接するCr
Mo非磁性中間層4の(110)面の結晶格子間隔を引
いた差(d(002) −d(110) )を表2に示す。
A running test of the magnetic disk thus obtained was performed at a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the product of the residual magnetization film thickness (Mrδ), and the S / N ratio were evaluated. Note that S
The measurement of the / N ratio was performed in the same manner as in Example 1. Table 2 shows the results. Further, the composition and thickness of the CrMo underlayer 2c, the composition and thickness of the CrMo non-magnetic intermediate layer 4,
The substrate heating temperature and the Ar gas pressure at the time of manufacturing the Mo underlayer 2c and the CrMo nonmagnetic intermediate layer 4 and the crystal lattice plane spacing of the (002) plane of the CoPtCr magnetic layer 3 indicate that CrM in contact with the MoP.
o The difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the underlayer 2c, and the CoPtCr magnetic layer 5
Of the (002) plane of the crystal lattice
Table 2 shows the difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the Mo nonmagnetic intermediate layer 4.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】表1、表2から分かるように、実施例1〜
25に示した下地層2c及び非磁性中間層4をCrMo
合金とした磁気記録媒体は、比較例1の下地層2c及び
非磁性中間層4をCrとした磁気記録媒体に比べて保磁
力(Hc)、残留磁化膜厚積(Mrδ)、及びS/N比
が大きい。
As can be seen from Tables 1 and 2, Examples 1 to
The underlayer 2c and the nonmagnetic intermediate layer 4 shown in FIG.
The magnetic recording medium made of an alloy has a coercive force (Hc), a remanence film thickness product (Mrδ), and an S / N ratio which are lower than those of the magnetic recording medium of Comparative Example 1 in which the underlayer 2c and the nonmagnetic intermediate layer 4 are Cr. Large ratio.

【0065】さらに、実施例26〜29に示した下地層
2c及び非磁性中間層4をCrMoZr合金とした磁気
記録媒体は、比較例1の下地層2c及び非磁性中間層4
をCrとした磁気記録媒体に比べて保磁力(Hc)、残
留磁化膜厚積(Mrδ)、及びS/N比が大きい。特
に、CrMo合金にZrを添加すると、一層ノイズ低減
効果が増長されるため、S/N比が向上する。このよう
な効果を引き出すためには、Zrの含有量を2〜5at
%の範囲とすることが好ましいことが分かる。
Further, the magnetic recording medium in which the underlayer 2c and the nonmagnetic intermediate layer 4 shown in Examples 26 to 29 were made of a CrMoZr alloy was the same as the underlayer 2c and the nonmagnetic intermediate layer 4 of Comparative Example 1.
Has a larger coercive force (Hc), a product of a residual magnetization film thickness (Mrδ), and an S / N ratio than a magnetic recording medium in which is represented by Cr. In particular, when Zr is added to the CrMo alloy, the noise reduction effect is further enhanced, so that the S / N ratio is improved. In order to obtain such an effect, the content of Zr should be 2 to 5 at.
% Is preferable.

【0066】さらに、第1磁性層3の(002)面の結
晶格子面間隔からそれに接する下地層2cの(110)
面の結晶格子面間隔を引いた差(d(002) −d(110)
及び第2磁性層5の(002)面の結晶格子面間隔から
それに接する非磁性中間層4の(110)面の結晶格子
面間隔を引いた差(d(002) −d(110) )は、下地層2
cの組成、非磁性中間層4の組成、基板加熱温度及びA
rガス圧力により変化することが、実施例1〜29及び
比較例2〜6を比較することにより分かる。例えば、比
較例2の磁気記録媒体は、下地層2c及び非磁性中間層
4のCrMo合金のMo含有量をそれぞれ25at%と
したために、各(d(002) −d(110) )が−0.014
となり、その結果、実施例1〜29の磁気記録媒体に比
べてS/N比が低下してしまった。この結果は、各(d
(002) −d(110) )を本発明の所定の範囲とするために
は、下地層2c及び非磁性中間層4のCrMo合金のM
o含有量を2〜20at%とすることが好ましいことを
示すものである。
Further, based on the crystal lattice spacing of the (002) plane of the first magnetic layer 3, the (110)
Difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the planes
The difference (d (002) −d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the nonmagnetic intermediate layer 4 adjacent thereto from the crystal lattice spacing of the (002) plane of the second magnetic layer 5 is obtained. , Base layer 2
c, composition of the nonmagnetic intermediate layer 4, substrate heating temperature and A
It can be seen from the comparison between Examples 1 to 29 and Comparative Examples 2 to 6 that the pressure varies with the r gas pressure. For example, in the magnetic recording medium of Comparative Example 2, since each of the Mo contents of the CrMo alloy of the underlayer 2c and the nonmagnetic intermediate layer 4 was 25 at%, each (d (002) −d (110) ) was −0. .014
As a result, the S / N ratio decreased as compared with the magnetic recording media of Examples 1 to 29. The result is
(002) -d (110) ) in the predetermined range of the present invention, it is necessary that the underlayer 2c and the nonmagnetic intermediate layer 4 be made of M
This indicates that the o content is preferably 2 to 20 at%.

【0067】さらに、比較例3〜6の結果から、(d
(002) −d(110) )が基板加熱温度及びArガス圧力に
よっても大きく変化することが分かる。これは、膜の作
製条件によって膜内に格子歪が起こり、基板加熱温度及
びArガス圧力の変化によって膜内の格子歪が変化する
ためであると推測される。このことから、(d(002)
(110) )は、CrMo系下地層2c及び非磁性中間層
4のMo含有量とともに、基板加熱温度及びArガス圧
力を調整することで、各(d(002) −d(110) )を本発
明の範囲にすることができることを示す。
Further, from the results of Comparative Examples 3 to 6, (d
It can be seen that (002) −d (110) ) changes greatly depending on the substrate heating temperature and the Ar gas pressure. This is presumably because lattice distortion occurs in the film depending on the film production conditions, and lattice distortion in the film changes due to changes in the substrate heating temperature and the Ar gas pressure. From this, (d (002)
d (110) ) is adjusted by adjusting the substrate heating temperature and the Ar gas pressure together with the Mo content of the CrMo-based underlayer 2 c and the nonmagnetic intermediate layer 4, so that each (d (002) −d (110) ) can be obtained. It shows that it can be within the scope of the present invention.

【0068】比較例3、4は、実施例1と下地層2c及
び非磁性中間層4の組成比及び膜厚は同一であるが、基
板加熱温度、Arガス圧力がそれぞれ異なって作製され
た磁気ディスクである。比較例3では、基板加熱温度の
低下により、(d(002) −d(110) )は0.035とな
り、その結果、Hc及びS/N比が低下した。比較例4
では、Arガス圧力の増加により、(d(002) −d
(110) )は0.037となり、その結果、Mrδ及びS
/N比が低下した。比較例5、6は、実施例23と下地
層2c及び非磁性中間層4の組成比及び膜厚は同一であ
るが、基板加熱温度、Arガス圧力がそれぞれ異なって
作製された磁気ディスクである。比較例5では、基板加
熱温度の増加により、(d(002) −d(110) )はいずれ
も−0.004となり、その結果、Mrδ及びS/N比
が低下した。比較例6では、Arガス圧力の低下によ
り、(d(002) −d(110) )はいずれも−0.006と
なり、その結果、Hc及びS/N比が低下した。
In Comparative Examples 3 and 4, although the composition ratio and the film thickness of the underlayer 2c and the non-magnetic intermediate layer 4 were the same as those in Example 1, the magnetic layers were manufactured with different substrate heating temperatures and different Ar gas pressures. It is a disk. In Comparative Example 3, (d (002) -d (110) ) was 0.035 due to a decrease in the substrate heating temperature, and as a result, Hc and S / N ratio were reduced. Comparative Example 4
Then, due to the increase in the Ar gas pressure, (d (002) -d
(110) ) is 0.037, so that Mrδ and S
/ N ratio decreased. Comparative Examples 5 and 6 are magnetic disks manufactured with the same composition ratio and film thickness of the underlayer 2c and the non-magnetic intermediate layer 4 as in Example 23, but with different substrate heating temperatures and different Ar gas pressures. . In Comparative Example 5, (d (002) -d (110) ) became -0.004 due to the increase in the substrate heating temperature, and as a result, Mr δ and the S / N ratio decreased. In Comparative Example 6, (d (002) -d (110) ) was -0.006 due to the decrease in Ar gas pressure, and as a result, Hc and S / N ratio decreased.

【0069】実施例30〜46 CrMo系下地層2cの組成比とCrMo非磁性中間層
4の組成比の組み合わせを表3に示すように変えた以外
は実施例1と同様にして磁気ディスクを作製した。この
ようにして得た磁気ディスクの走行テストをヘッド浮上
量0.075μm以下で行った。その結果、良好であっ
た。そして、保磁力(Hc)、残留磁化膜厚積(Mr
δ)、及びS/N比を評価した。尚、S/N比の測定は
実施例1と同様の方法で行った。結果を、条件とともに
表3に示す。
Examples 30 to 46 A magnetic disk was manufactured in the same manner as in Example 1 except that the combination of the composition ratio of the CrMo base layer 2c and the composition ratio of the CrMo nonmagnetic intermediate layer 4 was changed as shown in Table 3. did. A running test of the magnetic disk thus obtained was performed at a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc) and the product of the residual magnetization film thickness (Mr
δ) and the S / N ratio were evaluated. The measurement of the S / N ratio was performed in the same manner as in Example 1. The results are shown in Table 3 together with the conditions.

【0070】[0070]

【表3】 [Table 3]

【0071】表3から分かるように、Mo含有量が2〜
20at%のCrMo下地層2cとCrMo非磁性中間
層4の組合せにおいて、Hc、Mrδ、及びS/N比の
大きな値を有していることが分かる。S/N比を大きく
する好ましい組成比の組合せとしてはMo含有量2〜2
0at%のCrMo下地層に対してMo含有量5〜10
at%のCrMo非磁性中間層の組合せ、及びMo含有
量2〜20at%のCrMo非磁性中間層に対してMo
含有量5〜10at%のCrMo下地層の組合せであ
る。そして、S/N比に更に大きく最も好ましい組合せ
は、Mo含有量5〜10at%のCrMo下地層に対し
てMo含有量5〜10at%のCrMo非磁性中間層の
組合せである。
As can be seen from Table 3, the Mo content was 2 to
It can be seen that the combination of the 20 at% CrMo underlayer 2 c and the CrMo nonmagnetic intermediate layer 4 has large values of Hc, Mr δ, and S / N ratio. Preferred combinations of composition ratios for increasing the S / N ratio include Mo content of 2 to 2
Mo content of 5 to 10 relative to 0 at% CrMo underlayer
at% CrMo non-magnetic intermediate layer and Mo content 2-20 at% CrMo non-magnetic intermediate layer
This is a combination of a CrMo underlayer having a content of 5 to 10 at%. The most preferable combination having a larger S / N ratio is a combination of a CrMo nonmagnetic intermediate layer having a Mo content of 5 to 10 at% with a CrMo underlayer having a Mo content of 5 to 10 at%.

【0072】実施例47〜64 実施例47〜56では、磁性層3の組成比、CrMo系
下地層2cの組成比及びCrMo非磁性中間層4の組成
比の組み合わせを表4に示すように変えた以外は実施例
1と同様にして磁気ディスクを作製した。実施例57〜
64では、磁性層3の材料及び組成比、CrMo下地層
2cの組成比及びCrMo非磁性中間層4の組成比を表
4に示すように変えた以外は実施例1と同様にして磁気
ディスクを作製した。
Examples 47 to 64 In Examples 47 to 56, the combinations of the composition ratio of the magnetic layer 3, the composition ratio of the CrMo base layer 2c, and the composition ratio of the CrMo nonmagnetic intermediate layer 4 were changed as shown in Table 4. A magnetic disk was produced in the same manner as in Example 1 except for the above. Example 57-
In No. 64, a magnetic disk was prepared in the same manner as in Example 1 except that the material and composition ratio of the magnetic layer 3, the composition ratio of the CrMo underlayer 2c, and the composition ratio of the CrMo non-magnetic intermediate layer 4 were changed as shown in Table 4. Produced.

【0073】このようにして得た磁気ディスクの走行テ
ストをヘッド浮上量0.075μm以下で行った。その
結果、良好であった。そして、保磁力(Hc)、残留磁
化膜厚積(Mrδ)、及びS/N比を評価した。結果
を、条件とともに表4に示す。尚、表1と同様に、Co
PtCr磁性層3の(002)面の結晶格子面間隔から
それに接するCrMo下地層2cの(110)面の結晶
格子間隔を引いた差(d(002) −d(110) )と、CoP
tCr磁性層5の(002)面の結晶格子面間隔からそ
れに接するCrMo非磁性中間層4の(110)面の結
晶格子間隔を引いた差(d(002) −d(110) )とは、下
地層2c及び非磁性中間層4の作製条件並びに磁性層3
及び磁性層5の作製条件がそれぞれ同一であったことか
ら、同一であったので表4には、両者をまとめて1つの
値のみを示した。
The running test of the magnetic disk thus obtained was performed at a head flying height of 0.075 μm or less. As a result, it was good. Then, the coercive force (Hc), the product of the residual magnetization film thickness (Mrδ), and the S / N ratio were evaluated. The results are shown in Table 4 together with the conditions. Note that, as in Table 1, Co
The difference (d (002) −d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the CrMo underlayer 2c in contact with the crystal lattice spacing of the (002) plane of the PtCr magnetic layer 3 and the CoP
The difference (d (002) -d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane of the CrMo nonmagnetic intermediate layer 4 adjacent to the (002) crystal lattice spacing of the tCr magnetic layer 5 is Manufacturing conditions of underlayer 2c and nonmagnetic intermediate layer 4 and magnetic layer 3
Since the manufacturing conditions of the magnetic layer 5 and the magnetic layer 5 were the same, they were the same, and Table 4 shows only one value for both.

【0074】[0074]

【表4】 [Table 4]

【0075】表4からわかるように、下地層2c及び非
磁性中間層4のMo含有量が5〜10at%のCrMo
合金を用い、かつ磁性層をCoPtCr合金とする場合
(実施例47〜56参照)、Co含有量を60〜90a
t%、Pt含有量を4〜20at%、Cr含有量を3〜
30at%とすることで、高Hc、高S/N比を得るこ
とができる。さらに、高Hc、高S/N比を得るために
は、CoPtCr合金磁性層のCo含有量は64〜84
at%とし、Pt含有量は5〜18at%とし、Cr含
有量は5〜25at%とすることが適当である。
As can be seen from Table 4, the underlayer 2c and the non-magnetic intermediate layer 4 have a CrMo content of 5 to 10 at%.
When an alloy is used and the magnetic layer is a CoPtCr alloy (see Examples 47 to 56), the Co content is 60 to 90a.
t%, Pt content 4 to 20 at%, Cr content 3 to
By setting the content to 30 at%, a high Hc and a high S / N ratio can be obtained. Further, in order to obtain a high Hc and a high S / N ratio, the Co content of the CoPtCr alloy magnetic layer is 64 to 84%.
It is appropriate to set the Pt content to 5 to 18 at% and the Cr content to 5 to 25 at%.

【0076】磁性層がCoPtTa合金の場合(実施例
57〜60参照)には、Co含有量を80〜90at
%、Pt含有量を5〜15at%、Ta含有量を1〜7
at%とすることで高Hc、高S/N比を得ることがで
きる。磁性層がCoPtCrTa合金の場合(実施例6
1〜64参照)、Co含有量70〜80at%、Pt含
有量5〜15at%、Cr含有量5〜25at%、Ta
含有量1〜7at%とすることで高Hc、高S/N比を
得ることができる。
When the magnetic layer is a CoPtTa alloy (see Examples 57 to 60), the Co content is 80 to 90 at.
%, Pt content 5-15 at%, Ta content 1-7.
By setting at%, a high Hc and a high S / N ratio can be obtained. When the magnetic layer is a CoPtCrTa alloy (Example 6)
1 to 64), Co content 70 to 80 at%, Pt content 5 to 15 at%, Cr content 5 to 25 at%, Ta
By setting the content to 1 to 7 at%, a high Hc and a high S / N ratio can be obtained.

【0077】試験例 (重ね書き評価試験) 磁気ディスクの重ね書き特性(OW(dB))の評価を
行った。評価方法は以下に示す通りである。 (重ね書き評価方法) 3.4MHzで書き込み。出力をV1 とする。 13.5MHzで重ね書き。 重ね書き後、3.4MHzで書き込んだ信号の出力
2 を求める。 OW(dB)を以下の式にて求めた。 OW(dB)=20log(V2 /V1 ) なお、磁気ヘッド浮上量及び使用したMR(磁気抵抗
型)ヘッドは実施例1で用いたものと同じである。
Test Example (Overwriting Evaluation Test) The overwriting characteristics (OW (dB)) of the magnetic disk were evaluated. The evaluation method is as follows. (Overwriting evaluation method) Writing at 3.4 MHz. The output and V 1. Overwritten at 13.5 MHz. After overwriting, obtaining the output V 2 of the written signal at 3.4MHz. OW (dB) was determined by the following equation. OW (dB) = 20 log (V 2 / V 1 ) The flying height of the magnetic head and the MR (magnetoresistive) head used are the same as those used in the first embodiment.

【0078】実施例の5、11、65〜70及び比較例
の1、7〜12では、磁性層の膜厚、下地層及び非磁性
中間層の組成比及び膜厚を変えた以外は実施例1と同様
にして磁気ディスクを作製した。得られた各磁気ディス
クについて重ね書き特性(OW)を評価した。尚、一般
的に重ね書き特性(OW)は、書き込み電流の増加によ
ってその絶対値が増加し飽和する傾向を示すため、今回
のOW値は飽和値とした。この結果を、磁性層の組成及
び膜厚、下地層の組成及び膜厚、非磁性中間層の組成及
び膜厚と共に表5に示す。
In Examples 5, 11, and 65 to 70 and Comparative Examples 1 and 7 to 12, the film thickness of the magnetic layer, the composition ratio of the underlayer and the non-magnetic intermediate layer, and the film thickness were changed. In the same manner as in Example 1, a magnetic disk was produced. The overwriting characteristics (OW) of each of the obtained magnetic disks were evaluated. In general, the overwrite characteristic (OW) shows a tendency that its absolute value increases and saturates as the write current increases, so the OW value this time is a saturated value. Table 5 shows the results together with the composition and thickness of the magnetic layer, the composition and thickness of the underlayer, and the composition and thickness of the non-magnetic intermediate layer.

【0079】[0079]

【表5】 [Table 5]

【0080】表5から分かるように、実施例5、11及
び65〜70に示した下地層及び非磁性中間層にCrM
o合金を用いたものは比較例1のCrを用いたものに比
べて重ね書き特性が非常に優れていることが分かる。ま
た、磁性層、下地層及び非磁性中間層の膜厚によっても
重ね書き特性は大きく変化することが分かる。−38
(dB)以上の重ね書き特性を有するためには、磁性層
の膜厚は230Å以下、下地層の膜厚は150Å以下、
非磁性中間層の膜厚は100Å以下とすることが好まし
い。更に好ましくは磁性層の膜厚は150Å以下、下地
層の膜厚は100Å以下、非磁性中間層の膜厚は80Å
以下とすることが適当である。
As can be seen from Table 5, the underlayer and the nonmagnetic intermediate layer shown in Examples 5, 11 and 65 to 70 were formed of CrM.
It can be seen that the one using the o-alloy has much better overwriting characteristics than the one using Cr of Comparative Example 1. It can also be seen that the overwriting characteristics vary greatly depending on the thicknesses of the magnetic layer, the underlayer and the non-magnetic intermediate layer. −38
In order to have the overwriting characteristic of (dB) or more, the thickness of the magnetic layer is 230 ° or less, the thickness of the underlayer is 150 ° or less,
The thickness of the non-magnetic intermediate layer is preferably set to 100 ° or less. More preferably, the thickness of the magnetic layer is 150 ° or less, the thickness of the underlayer is 100 ° or less, and the thickness of the nonmagnetic intermediate layer is 80 ° or less.
The following is appropriate.

【0081】[0081]

【発明の効果】本発明によれば、従来のCr下地膜、C
r非磁性中間層とCoPt系合金磁性膜との組合せで構
成された磁気ディスクに比べ、優れた静磁気特性(保磁
力、残留磁化膜厚積)及び記録再生特性(S/N比、O
W)を有しており600Mb/in2 以上の面記録密度
での記録再生においても大きな出力、小さな媒体ノイズ
及び優れた重ね書き特性を有する磁気ディスクを提供す
ることができる。
According to the present invention, the conventional Cr underlayer, C
r Excellent magnetostatic characteristics (coercive force, residual magnetization film thickness product) and recording / reproducing characteristics (S / N ratio, O / O ratio) as compared to a magnetic disk composed of a combination of a r non-magnetic intermediate layer and a CoPt-based alloy magnetic film.
W), it is possible to provide a magnetic disk having a large output, a small medium noise and an excellent overwriting characteristic even in recording and reproduction at a surface recording density of 600 Mb / in 2 or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の磁気ディスクの断面説明図。FIG. 1 is an explanatory sectional view of a magnetic disk according to the present invention.

【図2】 本実施例に用いたインライン型スパッタ装置
の概略図。
FIG. 2 is a schematic diagram of an in-line type sputtering apparatus used in the present embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野澤 順 東京都新宿区中落合2丁目7番5号 ホ ーヤ株式会社内 (56)参考文献 特開 平5−325163(JP,A) 特開 平7−21523(JP,A) 特開 平7−134820(JP,A) 特開 平8−227525(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/66 G11B 5/85 H01F 10/16 H01F 10/30 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Jun Nozawa 2-7-5 Nakaochiai, Shinjuku-ku, Tokyo Inside Hoya Co., Ltd. (56) References JP 5-325163 (JP, A) JP JP-A-7-21523 (JP, A) JP-A-7-134820 (JP, A) JP-A-8-227525 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5 / 66 G11B 5/85 H01F 10/16 H01F 10/30

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に非磁性下地層及びCoPt系磁
性層群をこの順に有する磁気記録媒体であって、 前記CoPt系磁性層群は、2層以上の磁性層からな
り、各磁性層の間にCrとMoを主成分とする材料から
なる非磁性中間層を有し、 前記磁性層のhcp(002)面の結晶格子面間隔か
ら、該磁性層の直下のCrとMoを主成分とする材料か
らなる非磁性中間層のbcc(110)面の結晶格子面
間隔を引いた差(d(002)−d(110))が、0.002〜
0.032オングストロームの範囲であることを特徴と
する磁気記録媒体。
1. A magnetic recording medium having a non-magnetic underlayer and a CoPt-based magnetic layer group in this order on a substrate, wherein the CoPt-based magnetic layer group is composed of two or more magnetic layers. A nonmagnetic intermediate layer made of a material containing Cr and Mo as main components, and based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer, Cr and Mo immediately below the magnetic layer are used as main components. The difference (d (002) −d (110) ) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the nonmagnetic intermediate layer made of
A magnetic recording medium having a range of 0.032 angstroms.
【請求項2】 2層以上の非磁性中間層を有し、各非磁
性中間層について独立に、磁性層のhcp(002)面
の結晶格子面間隔から、該磁性層の直下のCrとMoを
主成分とする材料からなる非磁性中間層のbcc(11
0)面の結晶格子面間隔を引いた差(d(002)
(110))が0.002〜0.032オングストローム
の範囲である請求項1記載の磁気記録媒体。
2. The method according to claim 1, wherein the magnetic layer has two or more non-magnetic intermediate layers, and each non-magnetic intermediate layer has Cr and Mo immediately below the magnetic layer based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer. Bcc (11
Difference obtained by subtracting the crystal lattice spacing of the (0) plane (d (002)
2. The magnetic recording medium according to claim 1, wherein d (110) ) is in the range of 0.002 to 0.032 angstroms.
【請求項3】 磁性層のhcp(002)面の結晶格子
面間隔から、該磁性層の直下のCrとMoを主成分とす
る材料からなる非磁性中間層のbcc(110)面の結
晶格子面間隔を引いた差(d(002)−d(110))が、0.
014〜0.030オングストロームの範囲である請求
項1記載の磁気記録媒体。
3. A crystal lattice of a bcc (110) plane of a nonmagnetic intermediate layer made of a material containing Cr and Mo as a main component immediately below the magnetic layer from a crystal lattice plane spacing of an hcp (002) plane of the magnetic layer. The difference (d (002) −d (110) ) obtained by subtracting the plane distance is equal to 0.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a range of 014 to 0.030 angstroms.
【請求項4】 2層以上の非磁性中間層を有し、各非磁
性中間層について独立に、磁性層のhcp(002)面
の結晶格子面間隔から、該磁性層の直下のCrとMoを
主成分とする材料からなる非磁性中間層のbcc(11
0)面の結晶格子面間隔を引いた差(d(002)
(110))が、0.014〜0.030オングストロー
ムの範囲である請求項1記載の磁気記録媒体。
4. A non-magnetic intermediate layer comprising two or more non-magnetic intermediate layers, wherein each of the non-magnetic intermediate layers is independently formed of Cr and Mo immediately below the magnetic layer based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer. Bcc (11
Difference obtained by subtracting the crystal lattice spacing of the (0) plane (d (002)
2. The magnetic recording medium according to claim 1, wherein d (110) ) is in the range of 0.014 to 0.030 angstroms.
【請求項5】 基板上に非磁性下地層及びCoPt系磁
性層群をこの順に有する磁気記録媒体であって、 前記CoPt系磁性層群は、2層以上の磁性層からな
り、各磁性層の間にCrとMoを主成分とする材料から
なる非磁性中間層を有し、 前記磁性層のhcp(002)面の結晶格子面間隔か
ら、該磁性層の直下のCrとMoを主成分とする材料か
らなる非磁性中間層のbcc(110)面の結晶格子面
間隔を引いた差(d(002)−d(110))が、0.002〜
0.032オングストロームの範囲であり、 前記非磁性下地層は1層又は2層以上の層からなり、前
記CoPt系磁性層群の最下層の磁性層の直下の非磁性
下地層がCrとMoを主成分とする材料からなり、 前記磁性層群の最下層の磁性層のhcp(002)面の
結晶格子面間隔から、前記CrとMoを主成分とする材
料からなる非磁性下地層のbcc(110)面の結晶格
子面間隔を引いた差(d(002)−d(110))が、0.00
2〜0.032オングストロームの範囲であることを特
徴とする磁気記録媒体。
5. A magnetic recording medium having a non-magnetic underlayer and a CoPt-based magnetic layer group in this order on a substrate, wherein the CoPt-based magnetic layer group is composed of two or more magnetic layers. A nonmagnetic intermediate layer made of a material containing Cr and Mo as main components, and based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer, Cr and Mo immediately below the magnetic layer are used as main components. The difference (d (002) −d (110) ) obtained by subtracting the crystal lattice spacing of the bcc (110) plane of the nonmagnetic intermediate layer made of
0.032 angstroms, wherein the nonmagnetic underlayer is composed of one or more layers, and the nonmagnetic underlayer immediately below the lowermost magnetic layer of the CoPt-based magnetic layer group contains Cr and Mo. From the crystal lattice spacing of the hcp (002) plane of the lowermost magnetic layer of the magnetic layer group, the nonmagnetic underlayer bcc ( The difference (d (002) −d (110) ) obtained by subtracting the crystal lattice spacing of the (110) plane is 0.00
A magnetic recording medium having a range of 2 to 0.032 angstroms.
【請求項6】 2層以上の非磁性中間層を有し、各非磁
性中間層について独立に、磁性層のhcp(002)面
の結晶格子面間隔から、該磁性層の直下のCrとMoを
主成分とする材料からなる非磁性中間層のbcc(11
0)面の結晶格子面間隔を引いた差(d(002)
(110))が0.002〜0.032オングストローム
の範囲である請求項5記載の磁気記録媒体。
6. A non-magnetic intermediate layer comprising two or more non-magnetic intermediate layers, wherein each of the non-magnetic intermediate layers is independently formed of Cr and Mo immediately below the magnetic layer based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer. Bcc (11
Difference obtained by subtracting the crystal lattice spacing of the (0) plane (d (002)
6. The magnetic recording medium according to claim 5, wherein d (110) ) is in the range of 0.002 to 0.032 angstroms.
【請求項7】 磁性層のhcp(002)面の結晶格子
面間隔から、該磁性層の直下のCrとMoを主成分とす
る材料からなる非磁性中間層のbcc(110)面の結
晶格子面間隔を引いた差(d(002)−d(110))が、0.
014〜0.030オングストロームの範囲である請求
項5記載の磁気記録媒体。
7. A crystal lattice of a bcc (110) plane of a nonmagnetic intermediate layer made of a material mainly composed of Cr and Mo immediately below the magnetic layer based on a crystal lattice plane spacing of an hcp (002) plane of the magnetic layer. The difference (d (002) −d (110) ) obtained by subtracting the plane distance is equal to 0.
6. The magnetic recording medium according to claim 5, wherein the range is from 014 to 0.030 angstroms.
【請求項8】 2層以上の非磁性中間層を有し、各非磁
性中間層について独立に、磁性層のhcp(002)面
の結晶格子面間隔から、該磁性層の直下のCrとMoを
主成分とする材料からなる非磁性中間層のbcc(11
0)面の結晶格子面間隔を引いた差(d(002)
(110))が、0.014〜0.030オングストロー
ムの範囲である請求項5記載の磁気記録媒体。
8. A non-magnetic intermediate layer comprising at least two non-magnetic intermediate layers, wherein each of the non-magnetic intermediate layers is independently formed of Cr and Mo immediately below the magnetic layer based on the crystal lattice spacing of the hcp (002) plane of the magnetic layer. Bcc (11
Difference obtained by subtracting the crystal lattice spacing of the (0) plane (d (002)
6. The magnetic recording medium according to claim 5, wherein d (110) ) is in the range of 0.014 to 0.030 angstroms.
【請求項9】 磁性層のhcp(002)面の結晶格子
面間隔からCrとMoを主成分とする材料からなる非磁
性下地層のbcc(110)面の結晶格子面間隔を引い
た差結晶格子面間隔の差(d(002)−d(110))が、0.
014〜0.030オングストロームの範囲である請求
項5〜8のいずれか1項に記載の磁気記録媒体。
9. A difference crystal obtained by subtracting a crystal lattice spacing of a bcc (110) plane of a nonmagnetic underlayer made of a material mainly composed of Cr and Mo from a crystal lattice spacing of an hcp (002) plane of a magnetic layer. The difference (d (002) −d (110) ) in the lattice spacing is 0.
9. The magnetic recording medium according to claim 5, wherein the magnetic recording medium has a range of 014 to 0.030 angstroms.
【請求項10】 CrとMoを主成分とする材料からな
る非磁性下地層と基板との間に1層又は2層以上の非磁
性下地層を有し、前記CrとMoを主成分とする材料か
らなる非磁性下地層と接する非磁性下地層が体心立方結
晶構造を有する金属からなる、請求項5〜9のいずれか
1項に記載の磁気記録媒体。
10. A non-magnetic underlayer made of a material mainly composed of Cr and Mo and one or more non-magnetic underlayers between a substrate and said non-magnetic underlayer mainly composed of Cr and Mo. 10. The magnetic recording medium according to claim 5, wherein the nonmagnetic underlayer in contact with the nonmagnetic underlayer made of a material is made of a metal having a body-centered cubic crystal structure.
【請求項11】 体心立方結晶構造を有する金属からな
る非磁性下地層がCr層である請求項10記載の磁気記
録媒体。
11. The magnetic recording medium according to claim 10, wherein the nonmagnetic underlayer made of a metal having a body-centered cubic crystal structure is a Cr layer.
【請求項12】 CoPt系磁性層がCoPtCr合金
磁性層である請求項1〜11のいずれか1項に記載の磁
気記録媒体。
12. The magnetic recording medium according to claim 1, wherein the CoPt-based magnetic layer is a CoPtCr alloy magnetic layer.
【請求項13】 CoPtCr合金は、Coの含有量が
60〜90at%、Ptの含有量が4〜20at%、C
rの含有量が3〜30at%である請求項12記載の磁
気記録媒体。
13. The CoPtCr alloy has a Co content of 60 to 90 at%, a Pt content of 4 to 20 at%, and C
The magnetic recording medium according to claim 12, wherein the content of r is 3 to 30 at%.
【請求項14】 請求項1〜4、12及び13のいずれ
か1項に記載の磁気記録媒体の製造方法であって、 CoPt系磁性層群及びCrとMoを主成分とする材料
からなる非磁性中間層を、基板加熱温度範囲を250℃
〜425℃とし、Arガス圧力範囲を0.5〜10mT
orrとして、スパッタリング法により形成することを
特徴とする磁気記録媒体の製造方法。
14. The method for manufacturing a magnetic recording medium according to claim 1, wherein the CoPt-based magnetic layer group and a non-magnetic layer composed of a material containing Cr and Mo as main components. The magnetic intermediate layer is heated at a substrate heating temperature range of 250 ° C.
To 425 ° C, and the Ar gas pressure range is 0.5 to 10 mT
A method for manufacturing a magnetic recording medium, wherein orr is formed by a sputtering method.
【請求項15】 請求項5〜13のいずれか1項に記載
の磁気記録媒体の製造方法であって、 少なくともCrとMoを主成分とする材料からなる非磁
性下地層、CoPt系磁性層群及びCrとMoを主成分
とする材料からなる非磁性中間層を、基板加熱温度範囲
を250℃〜425℃とし、Arガス圧力範囲を0.5
〜10mTorrとして、スパッタリング法により形成
することを特徴とする磁気記録媒体の製造方法。
15. The method for manufacturing a magnetic recording medium according to claim 5, wherein a nonmagnetic underlayer made of a material containing at least Cr and Mo as a main component, and a CoPt-based magnetic layer group. And a non-magnetic intermediate layer made of a material containing Cr and Mo as main components, the substrate heating temperature range is set to 250 ° C. to 425 ° C., and the Ar gas pressure range is set to 0.5.
A method for manufacturing a magnetic recording medium, wherein the magnetic recording medium is formed by sputtering at a pressure of 10 to 10 mTorr.
JP16194295A 1994-10-27 1995-06-28 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2911783B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP16194295A JP2911783B2 (en) 1995-06-28 1995-06-28 Magnetic recording medium and method of manufacturing the same
US08/548,863 US5900324A (en) 1994-10-27 1995-10-26 Magnetic recording media, methods for producing the same and magnetic recorders
EP95116983A EP0709830A2 (en) 1994-10-27 1995-10-27 Magnetic recording media, methods for producing the same and magnetic recorders
US08/575,019 US5746893A (en) 1994-12-19 1995-12-19 Method of manufacturing magnetic recording medium
EP95309234A EP0718829A3 (en) 1994-12-19 1995-12-19 Method of manufacturing magnetic recording medium
SG1995002234A SG38900A1 (en) 1994-12-19 1995-12-19 Method of manufacturing magnetic recording medium
US08/917,112 US5954927A (en) 1994-12-19 1997-08-25 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16194295A JP2911783B2 (en) 1995-06-28 1995-06-28 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0916938A JPH0916938A (en) 1997-01-17
JP2911783B2 true JP2911783B2 (en) 1999-06-23

Family

ID=15744976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16194295A Expired - Lifetime JP2911783B2 (en) 1994-10-27 1995-06-28 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2911783B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6537684B1 (en) * 2000-08-04 2003-03-25 International Business Machines Corporation Antiferromagnetically coupled magnetic recording media with boron-free first ferromagnetic film as nucleation layer

Also Published As

Publication number Publication date
JPH0916938A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
US5900324A (en) Magnetic recording media, methods for producing the same and magnetic recorders
US5922442A (en) Magnetic recording medium having a CoCr alloy interlayer of a low saturation magnetization
US6670055B2 (en) Magnetic recording medium and manufacturing method therefor
US5968679A (en) Magnetic recording medium and method of manufacturing the same
JPH0714142A (en) Thin film magnetic recording medium
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JP2911798B2 (en) Magnetic recording medium and method of manufacturing the same
US5954927A (en) Method of manufacturing magnetic recording medium
US20140178714A1 (en) Method and Manufacture Process for Exchange Decoupled First Magnetic Layer
JP2911783B2 (en) Magnetic recording medium and method of manufacturing the same
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
US6045931A (en) Magnetic recording medium comprising a cobalt-samarium magnetic alloy layer and method
JP2989820B2 (en) Magnetic recording medium and method of manufacturing the same
JP2989821B2 (en) Magnetic recording medium and method of manufacturing the same
JP3200787B2 (en) Manufacturing method of magnetic recording medium
JP2920723B2 (en) Magnetic recording media
JP3657344B2 (en) Method for manufacturing magnetic recording medium
JP3195898B2 (en) Manufacturing method of magnetic recording medium
JP4589478B2 (en) Magnetic recording medium
JP2000163732A (en) Magnetic recording medium and its production
JP3894343B2 (en) Magnetic recording medium
JPH05197942A (en) Magnetic recording medium and magnetic recorder
JPH05205239A (en) Magnetic recording medium
JPH08227516A (en) Magnetic recording medium and magnetic recorder
JPH0258723A (en) Magnetic recording medium and magnetic memory medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term