JPH09145669A - Manufacture of oxygen sensor element - Google Patents

Manufacture of oxygen sensor element

Info

Publication number
JPH09145669A
JPH09145669A JP7334007A JP33400795A JPH09145669A JP H09145669 A JPH09145669 A JP H09145669A JP 7334007 A JP7334007 A JP 7334007A JP 33400795 A JP33400795 A JP 33400795A JP H09145669 A JPH09145669 A JP H09145669A
Authority
JP
Japan
Prior art keywords
inner chamber
electrode
solid electrolyte
conductive coating
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7334007A
Other languages
Japanese (ja)
Other versions
JP3577816B2 (en
Inventor
Akio Tanaka
章夫 田中
Toshitaka Saito
利孝 斎藤
Naoto Miwa
直人 三輪
Hiromi Sano
博美 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP33400795A priority Critical patent/JP3577816B2/en
Publication of JPH09145669A publication Critical patent/JPH09145669A/en
Application granted granted Critical
Publication of JP3577816B2 publication Critical patent/JP3577816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of an oxygen sensor element, which can largely save the material for forming an inner electrode, does not require masking in forming the inner electrode and can shorten the forming time of the inner electrode. SOLUTION: An injector 20, wherein an injection needle 21 is provided and conductive applying liquid 100 for forming an electrode is filled, is prepared. Then, the tip of the injection needle 21 is arranged at an upper edge part 150 of an inner chamber 15 of solid electrolyte. The conductive applying liquid 100 is injected into the inner chamber 15 along an inner surface 152. A lead applied part 102 is formed on the inner surface 152, and an electrode applied part 101 is formed on all-around surface of a bottom part 151 of the inner chamber 15. Then, an ejector 20 having an exhaust needle 21 is used, and the remaining conductive applying liquid 100 is exhausted. Then, the solid electrolyte 10 is dried. Thereafter, the conductive applying liquid 100 is heated and baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,自動車用内燃機関等の燃焼制御
に用いられる酸素センサ素子の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing an oxygen sensor element used for combustion control of an internal combustion engine for an automobile or the like.

【0002】[0002]

【従来技術】従来,自動車用内燃機関の排気ガス中の酸
素濃度を検出するためのガス検出器として,ZrO2
体電解質を用いた,例えば,酸素濃淡起電力式のものが
よく知られており,実用化されている。このようなガス
検出器としては,図6に示す酸素濃度検出器9が挙げら
れる。
2. Description of the Related Art Heretofore, as a gas detector for detecting the oxygen concentration in the exhaust gas of an automobile internal combustion engine, for example, an oxygen concentration electromotive force type device using a ZrO 2 solid electrolyte is well known. , Practical application An oxygen concentration detector 9 shown in FIG. 6 is an example of such a gas detector.

【0003】上記酸素濃度検出器9の先端には,酸素濃
度検出のための酸素センサ素子1が設けてあり,該酸素
センサ素子1の周囲はハウジング91及び窓付きケース
92によりカバーされている。また,上記酸素濃度検出
器9には,上記酸素センサ素子1を酸素濃度測定可能な
温度に加熱するためのヒータ95が設けてある。また,
上記酸素濃度検出器9は,その使用時には,ハウジング
91に取付けられたフランジ93により自動車用内燃機
関の排気ガス経路等に取付けられる。なお,同図におけ
る符号99は,酸素センサ素子1のセンサ出力信号取出
用のコネクタである。
An oxygen sensor element 1 for detecting oxygen concentration is provided at the tip of the oxygen concentration detector 9, and the periphery of the oxygen sensor element 1 is covered by a housing 91 and a case 92 with a window. Further, the oxygen concentration detector 9 is provided with a heater 95 for heating the oxygen sensor element 1 to a temperature at which the oxygen concentration can be measured. Also,
When the oxygen concentration detector 9 is used, the flange 93 is attached to the housing 91 to attach the oxygen concentration detector 9 to an exhaust gas passage of an internal combustion engine for an automobile. Reference numeral 99 in the figure is a connector for extracting the sensor output signal of the oxygen sensor element 1.

【0004】図7に示すごとく,上記酸素センサ素子1
は,一端を閉塞し,他端を開放した内室15を有するコ
ップ型の固体電解質10よりなり,該固体電解質10の
外側面には外側電極12を,一方,上記内室15の内側
面にはリード部112と反応電極111とよりなる内側
電極11を設けてある。また,上記外側電極12の外側
には,該外側電極12を保護するための保護層19を設
けてある。
As shown in FIG. 7, the oxygen sensor element 1 described above is used.
Consists of a cup-type solid electrolyte 10 having an inner chamber 15 closed at one end and open at the other end, and an outer electrode 12 on the outer surface of the solid electrolyte 10 and an inner electrode 15 on the inner surface of the inner chamber 15. Is provided with an inner electrode 11 including a lead portion 112 and a reaction electrode 111. A protective layer 19 for protecting the outer electrode 12 is provided outside the outer electrode 12.

【0005】なお,上記内側電極11における反応電極
111は,酸素濃度に応じたセンサ出力を,外側電極1
2等と共に生成する部分である。また,上記内側電極1
1におけるリード部112は,反応電極111にて生じ
たセンサ出力を外部へ送出するための部分である。そし
て,上記反応電極111とリード部112との間は導通
状態にあり,一般には,一体の電極として形成されてい
る。
The reaction electrode 111 in the inner electrode 11 outputs the sensor output according to the oxygen concentration to the outer electrode 1.
This is a part that is generated together with 2. Also, the inner electrode 1
The lead portion 112 in 1 is a portion for sending the sensor output generated in the reaction electrode 111 to the outside. The reaction electrode 111 and the lead portion 112 are electrically connected and are generally formed as an integral electrode.

【0006】ところで,上記内側電極11を形成する電
極形成方法としては,ペースト,インク,スラリー状の
導電性塗布液の塗布,化学メッキ及びスパッタリング等
が挙げられる。いずれの方法も,高い電子伝導率,高い
触媒活性及び高い化学的安定性を有するPt,Rh,P
d等の貴金属を,固体電解質10の内側面に付着させる
ことにより,内側電極11を形成する方法である。
By the way, examples of the electrode forming method for forming the inner electrode 11 include paste, ink, application of a slurry-like conductive coating solution, chemical plating and sputtering. Both methods have Pt, Rh, P having high electronic conductivity, high catalytic activity and high chemical stability.
This is a method of forming the inner electrode 11 by attaching a noble metal such as d to the inner surface of the solid electrolyte 10.

【0007】しかし,上記貴金属は高価である。よっ
て,従来,上記酸素センサ素子1の製造コストを削減す
るために,上記貴金属の使用量を節約可能な内側電極1
1の形成方法がいくつか考えられている。その一つとし
て,固体電解質10における内室15の内側面に対し,
部分的にマスキングを施し,その後上記貴金属を含む化
学メッキ液を,後述の図5に示すごとく,上記内室15
にて循環させる方法がある(特公平3−35621
号)。なお,上記マスキングは,上記内側面における内
側電極11の形成予定部分以外の領域に施す。この方法
によれば,内側電極11の形成に必要な部分にのみメッ
キ液を付着させることができる。
However, the above precious metals are expensive. Therefore, conventionally, in order to reduce the manufacturing cost of the oxygen sensor element 1, the inner electrode 1 capable of saving the amount of the precious metal used.
Several methods of forming No. 1 are considered. As one of them, for the inner surface of the inner chamber 15 in the solid electrolyte 10,
After partially masking, the chemical plating solution containing the noble metal is then applied to the inner chamber 15 as shown in FIG.
There is a method to circulate in (Japanese Patent Publication No. 3-35621)
issue). The masking is applied to a region other than the portion where the inner electrode 11 is to be formed on the inner surface. According to this method, the plating liquid can be attached only to the portion necessary for forming the inner electrode 11.

【0008】また,他の内側電極の形成方法で,特に内
室にテーパーを有する酸素センサ素子の内側電極形成の
際に適用される方法がある(特公昭62−10383
号)。即ち,上記方法においては,まず,固体電解質1
0の内室15の内側面全体に予め上記貴金属を含有した
導電性塗布液を付着させる。次いで,得ようとする内側
電極11と同形状となるよう上記内側面にマスキングを
施す。その後,上記内室内に流体圧力を加え,マスキン
グを施した部分以外の内側面から余分の導電性塗布液を
除去する。以上により,内側電極11の形成に必要な部
分にのみ導電性塗布液を残留させることができる。
Further, there is another method of forming the inner electrode, particularly a method applied when forming the inner electrode of the oxygen sensor element having a taper in the inner chamber (Japanese Patent Publication No. 62-10383).
issue). That is, in the above method, first, the solid electrolyte 1
The conductive coating liquid containing the above-mentioned noble metal is previously attached to the entire inner surface of the inner chamber 15 of No. 0. Next, the inner surface is masked so as to have the same shape as the inner electrode 11 to be obtained. After that, fluid pressure is applied to the inner chamber to remove the excess conductive coating liquid from the inner surface other than the masked portion. As described above, the conductive coating liquid can be left only in the portion necessary for forming the inner electrode 11.

【0009】[0009]

【解決しようとする課題】しかしながら,上記特公平3
−35621号,特公昭62−10383号の方法にお
いては,マスキングを行うためのマスキング治具等が必
要である。また,上記マスキング治具を内室に挿入する
工程が要求される。このため,マスキング治具を準備す
るためのコストがかかり,マスキング治具を挿入するた
めの手間がかかる。
[Problems to be Solved] However, the above-mentioned Japanese Patent Publication No. 3
In the methods of No. 35621 and Japanese Patent Publication No. 62-10383, a masking jig or the like is required for masking. Further, a step of inserting the masking jig into the inner chamber is required. For this reason, the cost for preparing the masking jig is high, and the labor for inserting the masking jig is required.

【0010】本発明は,かかる問題点に鑑み,電極形成
用の材料を大きく節約することができ,内側電極形成に
当たりマスキングが不要であり,また,内側電極形成時
間を短縮することができる,酸素センサ素子の製造方法
を提供しようとするものである。
In view of the above problems, the present invention can greatly save the material for forming the electrode, does not require masking for forming the inner electrode, and can shorten the time for forming the inner electrode. It is intended to provide a method for manufacturing a sensor element.

【0011】[0011]

【課題の解決手段】請求項1の発明は,一端を閉塞し,
他端を開放した内室を有するコップ型固体電解質を有
し,該固体電解質の外側面には外側電極を,一方,上記
内室の内側面にはリード部と反応電極とよりなる内側電
極を有する酸素センサ素子を製造する方法において,上
記内側電極を形成するに当たり,まず,注入針を有し,
電極形成用の導電性塗布液を充填した注入器を準備し,
次いで,上記注入針の先端を固体電解質の内室における
上端部に配置して,上記導電性塗布液を内側面づたいに
内室に注入して,上記内側面にリード部形成用のリード
塗布部を,また内室の底部全周に電極塗布部を形成し,
次いで,先端に吸出針を有する排出器を用いて,上記吸
出針の先端を上記内室の底部に挿入して,該内室内に残
留した導電性塗布液を吸出し,次いで,上記固体電解質
を乾燥し,その後上記導電性塗布液を加熱焼成すること
を特徴とする酸素センサ素子の製造方法にある。
According to the first aspect of the present invention, one end is closed,
A cup-type solid electrolyte having an inner chamber with the other end open, an outer electrode on the outer surface of the solid electrolyte, and an inner electrode consisting of a lead portion and a reaction electrode on the inner surface of the inner chamber. In the method of manufacturing the oxygen sensor element having, in forming the inner electrode, first, an injection needle is provided,
Prepare an injector filled with conductive coating liquid for electrode formation,
Next, the tip of the injection needle is placed at the upper end of the inner chamber of the solid electrolyte, and the conductive coating solution is injected into the inner chamber so that the inner surface of the solid electrolyte is filled with a lead coating portion for forming a lead portion. , In addition, the electrode coating part is formed all around the bottom of the inner chamber,
Then, using a discharger having a suction needle at the tip, the tip of the suction needle is inserted into the bottom of the inner chamber to suck out the conductive coating liquid remaining in the inner chamber, and then dry the solid electrolyte. Then, the method of manufacturing an oxygen sensor element is characterized by heating and baking the conductive coating solution.

【0012】本発明の作用につき,以下に説明する。本
発明において上記導電性塗布液の内室への注入は,該導
電性塗布液を内室の上端部より底部へ向けて,該内室の
内側面をつたわせることにより行う。このため,上記注
入の際,導電性塗布液と直接接触した部分の内側面に
は,上記導電性塗布液が自らの粘性によって付着する。
また,上記注入は注入針を用いて行なわれるため,上記
導電性塗布液の付着した部分の形状が,内室上端部より
底部へと伸びる帯となる(図1参照)。
The operation of the present invention will be described below. In the present invention, the injection of the conductive coating solution into the inner chamber is performed by directing the conductive coating solution from the upper end of the inner chamber toward the bottom of the inner chamber and connecting the inner side surface of the inner chamber. Therefore, during the injection, the conductive coating liquid adheres to the inner surface of the portion that is in direct contact with the conductive coating liquid due to its own viscosity.
Further, since the injection is performed by using an injection needle, the shape of the portion to which the conductive coating liquid adheres becomes a band extending from the upper end of the inner chamber to the bottom (see FIG. 1).

【0013】また,上記注入により,上記内室の底部に
は上記導電性塗布液が停留する。これにより,上記導電
性塗布液が内室の底部全周に付着し,該底部全周に電極
塗布部が自然と形成される。そして,上記電極塗布部及
びリード塗布部を固体電解質ごと加熱焼成することによ
り,反応電極とリード部とよりなる内側電極を形成する
ことができる。
By the injection, the conductive coating solution is retained at the bottom of the inner chamber. As a result, the conductive coating liquid adheres to the entire circumference of the bottom of the inner chamber, and the electrode coating portion is naturally formed on the entire circumference of the bottom. Then, the inner electrode composed of the reaction electrode and the lead portion can be formed by heating and baking the electrode coating portion and the lead coating portion together with the solid electrolyte.

【0014】これにより,本発明においては,導電性塗
布液を内室に注入するだけで,マスキングを行うことな
く,電極塗布部とこれと連結したリード塗布部とを同時
に形成することができる(図1参照)。また,上述のご
とく,マスキングを行わない分,内側電極形成にかかる
時間を短縮することができる。
Thus, in the present invention, the electrode coating portion and the lead coating portion connected to the electrode coating portion can be simultaneously formed by only injecting the conductive coating liquid into the inner chamber without masking. (See FIG. 1). In addition, as described above, since masking is not performed, the time required to form the inner electrode can be shortened.

【0015】更に,上記電極塗布部形成後においても,
上記内室には内側面及び内室の底部に付着しなかった導
電性塗布液がそのまま残留している。本発明において
は,上記残留した導電性塗布液を,先端に吸出針を有す
る排出器を用いることで,吸出,回収することができ
る。そして,上記回収した導電性塗布液は再び注入器に
戻し,新たな内側電極形成のために使用する。そのた
め,本発明においては,内側電極形成用の材料である導
電性塗布液を大きく節約することができる。
Further, even after the formation of the electrode coating portion,
The conductive coating liquid that has not adhered to the inner surface and the bottom of the inner chamber remains in the inner chamber as it is. In the present invention, the remaining conductive coating liquid can be sucked and collected by using the discharger having the suction needle at the tip. Then, the collected conductive coating solution is returned to the injector and used for forming a new inner electrode. Therefore, in the present invention, the conductive coating liquid, which is a material for forming the inner electrode, can be largely saved.

【0016】また,上記吸出針を有する排出器を上記注
入針を有する注入器にて兼用することができる(図1参
照)。この場合には,回収された導電性塗布液を注入器
に戻す手間を省くことができる。よって,効率的な内側
電極形成を行うことができる。なお,上記注入器及び排
出器としては,ディスペンサーを使用することができ
る。
The ejector having the suction needle can also be used as the injector having the injection needle (see FIG. 1). In this case, it is possible to save the trouble of returning the recovered conductive coating solution to the injector. Therefore, the inner electrode can be efficiently formed. A dispenser can be used as the injector and the ejector.

【0017】次に,上記導電性塗布液の粘度は,20〜
1000mPa・Sであることが好ましい。上記粘度が
20mPa・S未満である場合には,導電性塗布液が内
室のリード塗布部及び電極塗布部に付着しないおそれが
ある。一方,上記粘度が1000mPa・Sより大きい
場合には,塗布膜厚のバラツキが大きくなるおそれがあ
る。また,上記導電性塗布液の粘度を違えることによ
り,内側電極の厚みを調節することができる。
Next, the viscosity of the conductive coating solution is 20 to
It is preferably 1000 mPa · S. When the viscosity is less than 20 mPa · S, the conductive coating liquid may not adhere to the lead coating portion and the electrode coating portion of the inner chamber. On the other hand, when the viscosity is more than 1000 mPa · S, the variation in the coating film thickness may be large. Further, the thickness of the inner electrode can be adjusted by changing the viscosity of the conductive coating solution.

【0018】次に,上記導電性塗布液の内室への注入量
(体積)は,上記内室の容積の1/5以上であることが
好ましい。上記注入量が,1/5未満である場合には,
素子の内部抵抗が大きくなり必要面積の反応電極を形成
することができないおそれがある。
Next, the injection amount (volume) of the conductive coating liquid into the inner chamber is preferably 1/5 or more of the volume of the inner chamber. When the injection amount is less than 1/5,
There is a possibility that the internal resistance of the element becomes large and the reaction electrode having a required area cannot be formed.

【0019】次に,上記導電性塗布液の注入速度は,1
0cm3 /S以下で注入することが好ましい。上記注入
速度が10cm3 /Sよりも大きい場合には,リード塗
布部の塗布幅及び膜厚のバラツキが大きくなる。
Next, the injection speed of the conductive coating solution is 1
It is preferable to inject at 0 cm 3 / S or less. When the injection speed is higher than 10 cm 3 / S, the variation of the coating width and the film thickness of the lead coating portion becomes large.

【0020】次に,請求項2の発明のように,上記注入
針は,内径が0.1〜3mmであることが好ましい。上
記内径が0.1mm未満である場合には,リード塗布部
が細線状になり過ぎるおそれがある。また,導電性塗布
液の注入に時間がかかり過ぎ,内側電極形成の効率が悪
化するおそれがある。一方,上記内径が3mmよりも大
きい場合には,リード塗布部の塗布幅及び膜厚のバラツ
キが大きくなる。
Next, as in the invention of claim 2, it is preferable that the inner diameter of the injection needle is 0.1 to 3 mm. If the inner diameter is less than 0.1 mm, the lead coating portion may become too fine. Further, it takes too much time to inject the conductive coating liquid, which may deteriorate the efficiency of forming the inner electrode. On the other hand, when the inner diameter is larger than 3 mm, the dispersion of the coating width and the film thickness of the lead coating portion becomes large.

【0021】次に,請求項3の発明のように,上記導電
性塗布液は,貴金属粉末,無機バインダ,樹脂,溶剤及
び安定剤とを含有してなることが好ましい。上記貴金属
粉末としては,Pt,Rh,Pd等を使用することがで
きる。上記無機バインダとしては,Al2 3 ,ZrO
2 を使用することができる。上記樹脂としては,例えば
エチルセルロース,アクリル系バインダー,ワックス系
バインダー等を使用することができる。上記溶剤として
は,テレピネオール,トルエン,キシレン等を使用する
ことができる。上記安定剤としては,DBP(ジブチル
フタレート),DOP(ジオクチルフタレート)等を使
用することができる。
Next, as in the third aspect of the invention, it is preferable that the conductive coating liquid contains a noble metal powder, an inorganic binder, a resin, a solvent and a stabilizer. As the noble metal powder, Pt, Rh, Pd, etc. can be used. Examples of the inorganic binder include Al 2 O 3 and ZrO.
Two can be used. As the resin, for example, ethyl cellulose, an acrylic binder, a wax binder, or the like can be used. As the solvent, terpineol, toluene, xylene or the like can be used. As the stabilizer, DBP (dibutyl phthalate), DOP (dioctyl phthalate) or the like can be used.

【0022】また,請求項4の発明は,一端を閉塞し,
他端を開放した内室を有するコップ型固体電解質を有
し,該固体電解質の外側面には外側電極を,一方,上記
内室の内側面にはリード部と反応電極とよりなる内側電
極を有する酸素センサ素子を製造する方法において,上
記内側電極を形成するに当たり,まず,注入針を有し,
活性化液を充填した注入器を準備し,次いで,上記注入
針の先端を固体電解質の内室における上端部に配置し
て,上記活性化液を内側面づたいに内室に注入して,上
記内側面にリード部形成用のリード塗布部を,また内室
の底部全周に電極塗布部を形成し,次いで,先端に吸出
針を有する排出器を用いて,上記吸出針の先端を上記内
室の底部に挿入して,該内室内に残留した活性化液を吸
出し,次いで,上記内室に付着させた活性化液を熱処理
し活性化部となし,その後,上記内室内にメッキ液を注
入して上記活性化部に内側電極用のメッキ膜を形成する
ことを特徴とする酸素センサ素子の製造方法にある。
In the invention of claim 4, one end is closed,
A cup-type solid electrolyte having an inner chamber with the other end open, an outer electrode on the outer surface of the solid electrolyte, and an inner electrode consisting of a lead portion and a reaction electrode on the inner surface of the inner chamber. In the method of manufacturing the oxygen sensor element having, in forming the inner electrode, first, an injection needle is provided,
An injector filled with the activation liquid is prepared, and then the tip of the injection needle is placed at the upper end of the inner chamber of the solid electrolyte, and the activation liquid is injected into the inner chamber so that the inner surface of the solid electrolyte is filled. A lead coating portion for forming a lead portion is formed on the side surface, and an electrode coating portion is formed on the entire circumference of the bottom of the inner chamber. Then, using a discharger having a suction needle at the tip, the tip of the suction needle is moved to Is inserted into the bottom of the inner chamber to suck out the activating liquid remaining in the inner chamber, and then the activating liquid attached to the inner chamber is heat-treated to form an activating portion, and then the plating liquid is injected into the inner chamber. Then, a method of manufacturing an oxygen sensor element is characterized in that a plating film for an inner electrode is formed on the activated portion.

【0023】上記の方法において,メッキにより酸素セ
ンサ素子の内側電極を形成する場合には,メッキ液が内
室内のリード塗布部,電極塗布部に付着するよう,メッ
キ液の注入に先立って,活性化液を該当部分に付着させ
る必要がある。そこで,請求項4の発明においては,上
述の請求項1の発明と同様の方法を利用して,上記活性
化液を内室の内側面等に付着させるものである。その他
詳細は上述の請求項1の発明と同様である。
In the above method, when the inner electrode of the oxygen sensor element is formed by plating, the plating solution is activated prior to the injection of the plating solution so that the plating solution adheres to the lead coating section and the electrode coating section in the inner chamber. It is necessary to attach the chemical liquid to the relevant part. Therefore, in the invention of claim 4, the same method as that of the invention of claim 1 is utilized to deposit the activation liquid on the inner surface of the inner chamber or the like. Other details are the same as the invention of claim 1 described above.

【0024】次に,上記活性化液は,貴金属塩または錯
化合物を含有してなることが好ましい。上記貴金属塩及
び錯化合金としては,塩化白金酸,塩化白金ジニトロジ
アミン白金等を使用することができる。
Next, the activation liquid preferably contains a noble metal salt or a complex compound. As the above-mentioned noble metal salt and complexing alloy, chloroplatinic acid, platinum chloride dinitrodiamine platinum or the like can be used.

【0025】なお,本発明にかかる製造方法において
は,酸素濃淡起電力式の酸素センサ素子の他,限界電流
式の酸素センサ素子も製造することもできる。
In the manufacturing method according to the present invention, not only the oxygen concentration electromotive force type oxygen sensor element but also the limiting current type oxygen sensor element can be manufactured.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかる酸素センサ素子の製造方法
につき,図1〜図4を用いて説明する。なお,本例によ
って得られる酸素センサ素子は,前述の図7に示す,一
端を閉塞し,他端を開放した内室15を有するコップ型
固体電解質10を有し,該固体電解質10の外側面には
外側電極12を,一方,上記内室15の内側面にはリー
ド部112と反応電極111とよりなる内側電極11を
有する酸素センサ素子1である。
Embodiment 1 A method for manufacturing an oxygen sensor element according to an embodiment of the present invention will be described with reference to FIGS. The oxygen sensor element obtained by this example has a cup-type solid electrolyte 10 having an inner chamber 15 with one end closed and the other end open as shown in FIG. The oxygen sensor element 1 has an outer electrode 12 on the other hand, and an inner electrode 11 composed of a lead portion 112 and a reaction electrode 111 on the inner surface of the inner chamber 15.

【0027】本例にかかる酸素センサ素子の製造方法に
おいて,内側電極11を形成するに当たり,図1(a)
〜(c)に示すごとく,まず,注入兼吸出針21を有
し,内側電極形成用の導電性塗布液100を充填した注
入兼排出器20を準備する。そして,図1(a),図2
に示すごとく,上記注入兼吸出針21の先端を固体電解
質10の内室15における上端部150に配置して,上
記導電性塗布液100を内側面152づたいに内室15
に注入する。これにより,図1(b),図3に示すごと
く,上記内側面152にリード部形成用のリード塗布部
102を,また内室15の底部全周に電極塗布部101
を形成する。
In forming the inner electrode 11 in the method of manufacturing the oxygen sensor element according to the present embodiment, as shown in FIG.
As shown in (c), first, an injection / discharger 20 having an injection / extraction needle 21 and filled with the conductive coating liquid 100 for forming the inner electrode is prepared. Then, FIG. 1 (a) and FIG.
As shown in FIG. 5, the tip of the injection / extraction needle 21 is arranged at the upper end portion 150 of the inner chamber 15 of the solid electrolyte 10, and the conductive coating liquid 100 is placed on the inner surface 15 of the inner chamber 15
Inject into As a result, as shown in FIGS. 1B and 3, the lead coating portion 102 for forming the lead portion is formed on the inner side surface 152, and the electrode coating portion 101 is formed on the entire circumference of the bottom of the inner chamber 15.
To form

【0028】次いで,図1(c)に示すごとく,上記注
入兼排出器20を用いて,上記注入兼吸出針21の先端
を上記内室15の底部151に挿入して,該内室15内
に残留した導電性塗布液100を吸出する。次いで,上
記固体電解質10を乾燥し,その後,リード塗布部10
2,電極塗布部101に塗布した導電性塗布液100を
加熱焼成する。以上により,上記導電性塗布液100が
内側電極11となる(図7参照)。
Then, as shown in FIG. 1C, the tip of the injection / extraction needle 21 is inserted into the bottom 151 of the inner chamber 15 by using the injection / exhaust device 20, and the inside of the inner chamber 15 is inserted. The conductive coating liquid 100 remaining in the above is sucked out. Next, the solid electrolyte 10 is dried, and then the lead coating unit 10
2. The conductive coating solution 100 applied to the electrode application section 101 is heated and baked. As described above, the conductive coating liquid 100 becomes the inner electrode 11 (see FIG. 7).

【0029】以下,上記製造方法につき詳細に説明す
る。まず,ZrO2 等の原料粉末を,一端を閉塞し他端
を開放した内室を有するコップ型(図1(a))に加圧
成形し,その後1200℃にて焼成する。これにより,
仮焼されたコップ型の固体電解質10を得る(図1
(a))。次いで,図2に示すごとく,上記固体電解質
10を支持台3の天板31に設けた多数の固定穴30
に,それぞれ挿入固定する。
The above manufacturing method will be described in detail below. First, a raw material powder such as ZrO 2 is pressure-molded into a cup mold (FIG. 1A) having an inner chamber having one end closed and the other end open, and then fired at 1200 ° C. This gives
A calcinated cup type solid electrolyte 10 is obtained (FIG. 1).
(A)). Next, as shown in FIG. 2, a large number of fixing holes 30 provided with the solid electrolyte 10 on the top plate 31 of the support base 3
, And fix each of them.

【0030】次いで,貴金属粉末である粒径1〜3μm
の白金粉末,無機バインダであるAl2 3 粉末,樹脂
であるエチルセルロース,溶剤であるテレピネオールと
を混合することにより,粘度400mPa・Sである導
電性塗布液100を作成する。次いで,注入兼吸出針2
1を有する注入器20を2本装着した,ディスペンサー
2を準備する。そして,この注入兼排出器20の内部に
上記導電性塗布液100を充填する。なお,上記注入兼
吸出針21の内径は,1.0mmである。
Next, the particle size of precious metal powder is 1 to 3 μm.
The platinum coating powder, the Al 2 O 3 powder as the inorganic binder, the ethyl cellulose as the resin, and the terpineol as the solvent are mixed to prepare a conductive coating liquid 100 having a viscosity of 400 mPa · S. Then, the injection and suction needle 2
Prepare a dispenser 2 in which two injectors 20 each having No. 1 are attached. Then, the inside of the pouring / discharging device 20 is filled with the conductive coating liquid 100. The inner diameter of the injection / extraction needle 21 is 1.0 mm.

【0031】次に,図2に示すごとく,上記ディスペン
サー2を用い,上記導電性塗布液100を2本の固体電
解質10の内室15に対し同時注入する。上記注入に当
たっては,図1(a)に示すごとく,上記注入兼吸出針
21の先端を上記内室15における上端部150に配置
する。
Next, as shown in FIG. 2, the conductive coating solution 100 is simultaneously injected into the inner chambers 15 of the two solid electrolytes 10 by using the dispenser 2. In the injection, as shown in FIG. 1A, the tip of the injection / suction needle 21 is arranged at the upper end 150 of the inner chamber 15.

【0032】次いで,上記導電性塗布液100を内室1
5の内側面152づたいに注入する。なお,上記導電性
塗布液100の注入は,上記注入兼排出器20の内部に
設けた押圧棒203(図2)を押すことにより行う。ま
た,上記注入における注入速度は0.1cm3 /Sであ
る。
Then, the conductive coating liquid 100 is added to the inner chamber 1
5 is injected into the inner surface 152. The conductive coating liquid 100 is injected by pressing the pressing rod 203 (FIG. 2) provided inside the injecting / discharging device 20. The injection rate in the above injection is 0.1 cm 3 / S.

【0033】上記導電性塗布液100の注入量が内室容
積の2/5に達した時,該導電性塗布液100の注入を
止める。そして,内室15に導電性塗布液100が注入
された状態のまま,上記固体電解質10及び導電性塗布
液100を1.0分間放置する。その後,図1(c)に
示すごとく,上記注入兼吸出針21を内室15の底部1
51に挿入し,該内室15内に残留した導電性塗布液1
00を吸出する。
When the injection amount of the conductive coating liquid 100 reaches 2/5 of the inner chamber volume, the injection of the conductive coating liquid 100 is stopped. Then, the solid electrolyte 10 and the conductive coating liquid 100 are allowed to stand for 1.0 minute while the conductive coating liquid 100 is being injected into the inner chamber 15. Then, as shown in FIG. 1C, the injection / extraction needle 21 is attached to the bottom portion 1 of the inner chamber 15.
The conductive coating liquid 1 inserted in the inner chamber 15 and remaining in the inner chamber 15
Suck out 00.

【0034】以上の操作により,図3に示すごとく,上
記導電性塗布液100の一部が内室15の内側面152
に付着し,ここがリード塗布部102となる。また,上
記内室15の底部151に上記導電性塗布液100の一
部が付着し,ここが電極塗布部101となる。次いで,
上記固体電解質10の内室15を温度120℃で加熱乾
燥する。
As a result of the above operation, as shown in FIG. 3, a part of the conductive coating liquid 100 is transferred to the inner surface 152 of the inner chamber 15.
To the lead coating section 102. Further, part of the conductive coating liquid 100 adheres to the bottom portion 151 of the inner chamber 15, and this becomes the electrode coating portion 101. Then,
The inner chamber 15 of the solid electrolyte 10 is heated and dried at a temperature of 120 ° C.

【0035】次に,上記固体電解質10の外側面に,P
tペーストのパット印刷,ロール転写等により,外側電
極形成用の導電性塗布液を付着,乾燥させる。以上の操
作により得られた,内側面に内側電極形成用の導電性塗
布液100を,外側面に外側電極形成用の導電性塗布液
をそれぞれ付着させた固体電解質10を,温度1400
〜1600℃にて加熱焼成し,内側電極12,外側電極
11を有する固体電解質10となす。そして,前述の図
7に示すごとく,上記外側電極11の外周にプラズマ溶
射により保護層19を設け,酸素センサ素子1となす。
Next, on the outer surface of the solid electrolyte 10, P
The conductive coating liquid for forming the outer electrode is attached and dried by pad printing of the t paste, roll transfer, or the like. The solid electrolyte 10 obtained by the above-mentioned operation and having the inner surface formed with the conductive coating liquid 100 for forming the inner electrode and the outer surface formed with the conductive coating liquid for forming the outer electrode, respectively, at a temperature of 1400.
A solid electrolyte 10 having an inner electrode 12 and an outer electrode 11 is formed by heating and firing at ˜1600 ° C. Then, as shown in FIG. 7 described above, a protective layer 19 is provided on the outer periphery of the outer electrode 11 by plasma spraying to form the oxygen sensor element 1.

【0036】次に,本例における作用効果につき説明す
る。本例の酸素センサ素子の製造方法においては,リー
ド塗布部102及び電極塗布部101に付着せず,内室
15に残留した導電性塗布液100を,上記吸入兼吸出
針21を使用することで,回収し,再利用することがで
きる。従って,導電性塗布液100の使用量を大きく節
約することができる。
Next, the operation and effect of this embodiment will be described. In the method of manufacturing the oxygen sensor element of the present example, the conductive coating liquid 100 that does not adhere to the lead coating portion 102 and the electrode coating portion 101 and remains in the inner chamber 15 is used by using the suction / suction needle 21. , Can be collected and reused. Therefore, the amount of the conductive coating liquid 100 used can be greatly saved.

【0037】また,本例においては,上記導電性塗布液
100の注入を,上端部150より底部151へ向け
て,内側面152をつたわせることにより行う。また,
上記注入は,内径が1.0mmである上記注入兼吸出針
21を用いて行う。このため,上記注入の際,導電性塗
布液100と直接接触した部分の内側面152には,上
記導電性塗布液100が自らの粘性によって付着し,そ
の付着部分の形状は,図3に示すごとく,上端部150
より底部151へと伸びる帯となる。そして,この付着
部分がリード塗布部102となる。
In this example, the conductive coating solution 100 is injected by connecting the inner side surface 152 from the upper end 150 toward the bottom 151. Also,
The injection is performed using the injection / extraction needle 21 having an inner diameter of 1.0 mm. Therefore, during the injection, the conductive coating liquid 100 adheres to the inner surface 152 of the portion which is in direct contact with the conductive coating liquid 100 due to its own viscosity, and the shape of the adhered portion is shown in FIG. Like, the upper end 150
It becomes a band extending further to the bottom portion 151. Then, this attached portion becomes the lead coating portion 102.

【0038】また,上記注入により,上記内室15の底
部152には,導電性塗布液100が停留する(図1
(b))。これにより,図3に示すごとく,導電性塗布
液100は底部152の全周に付着し,ここに電極塗布
部101が自然と形成される。これにより,本例におい
ては,導電性塗布液100を内室15に注入するだけ
で,マスキングを行うことなく,電極塗布部101とこ
れと連結したリード塗布部102を同時に形成すること
ができる(図1参照)。また,上述のごとく,マスキン
グを行わない分,内側電極11の形成にかかる時間を短
縮することができる。
By the injection, the conductive coating liquid 100 stays at the bottom portion 152 of the inner chamber 15 (FIG. 1).
(B)). As a result, as shown in FIG. 3, the conductive coating liquid 100 adheres to the entire circumference of the bottom portion 152, and the electrode coating portion 101 is naturally formed there. As a result, in this example, the electrode coating portion 101 and the lead coating portion 102 connected to the electrode coating portion 101 can be simultaneously formed by only injecting the conductive coating liquid 100 into the inner chamber 15 without masking. (See FIG. 1). Further, as described above, the time required to form the inner electrode 11 can be shortened because masking is not performed.

【0039】次に,本例の製造方法により得られた酸素
センサ素子の起電力と空燃比との間の関係を,2000
cc6気筒エンジンで1100rpmにおけるインジェ
クタ噴射時間を変えて,λ=0.9〜1.1の特性を測
定した(λは空気過剰率)。
Next, the relationship between the electromotive force and the air-fuel ratio of the oxygen sensor element obtained by the manufacturing method of this example was calculated as 2000
The characteristics of λ = 0.9 to 1.1 were measured by changing the injector injection time at 1100 rpm in a cc6 cylinder engine (λ is the excess air ratio).

【0040】また,従来の,特公平3−35621号に
示されるマスキングを施し,内側電極を形成するという
製造方法により得られた酸素センサ素子の起電力と空燃
比との間の関係を上記と同様に測定した。そして,これ
らの結果を図4に示した。同図より知れるごとく,両酸
素センサ素子の間には,顕著な違いを認めることができ
なかった。よって,本例にかかる製造方法により,従来
と同程度の優れた性能の酸素センサ素子を製造すること
ができることが分かった。
Further, the relationship between the electromotive force and the air-fuel ratio of the oxygen sensor element obtained by the conventional manufacturing method in which the inner electrode is formed by masking shown in Japanese Patent Publication No. 3-35621 is as follows. It measured similarly. The results are shown in FIG. As can be seen from the figure, no significant difference could be recognized between the oxygen sensor elements. Therefore, it was found that the manufacturing method according to the present example can manufacture an oxygen sensor element having the same excellent performance as the conventional one.

【0041】なお,導電性塗布液100を注入する前に
行う固体電解質の仮焼成は,温度1400〜1600℃
にて行うこともできる。また,その後の導電性塗布液を
塗布した固体電解質の加熱焼成は,温度1000℃〜1
600℃にて行うこともできる。この場合には,加熱焼
成の温度が低いため,固体電解質と内側電極との間の付
着力が不足しないようにするために,導電性塗布液の貴
金属粉末として,上記加熱焼成温度未満にてガラス質を
形成する酸化物を使用することが好ましい。
The calcination of the solid electrolyte before the injection of the conductive coating liquid 100 is performed at a temperature of 1400 to 1600 ° C.
It can also be done at. Further, the subsequent heating and firing of the solid electrolyte coated with the conductive coating liquid is performed at a temperature of 1000 ° C to 1 ° C.
It can also be performed at 600 ° C. In this case, since the heating and firing temperature is low, in order to prevent the adhesive force between the solid electrolyte and the inner electrode from becoming insufficient, as the precious metal powder of the conductive coating liquid, glass below the above heating and firing temperature is used. Preference is given to using quality-forming oxides.

【0042】なお,上記酸化物としては,ホウケイ酸ガ
ラス,リン酸ガラス等が挙げられる。また,上記貴金属
粉末として特に白金粉末を使用する場合には,上記加熱
焼成温度未満にて凝集することができる,粒径0.1〜
10μmの白金粉末を使用する。これにより,導電性塗
布液の焼付温度を低温(1600℃以下)とすることが
できるため,耐熱性の低い導電性塗布液(貴金属粉末)
を使用することができる。
Examples of the oxides include borosilicate glass and phosphate glass. When platinum powder is used as the precious metal powder, it can be aggregated at a temperature lower than the above-mentioned heating and firing temperature.
10 μm platinum powder is used. As a result, the baking temperature of the conductive coating liquid can be set to a low temperature (1600 ° C. or lower), so that the conductive coating liquid with low heat resistance (precious metal powder)
Can be used.

【0043】実施形態例2 本例は,図5に示すごとく,メッキにより内側電極を形
成する方法につき説明する。即ち,本例においては,固
体電解質に対し活性化液を付着させ,活性化部を形成す
る。その後,上記活性化部にメッキ液を付着させること
により内側電極を形成する。
Embodiment 2 In this embodiment, as shown in FIG. 5, a method of forming an inner electrode by plating will be described. That is, in this example, the activation liquid is attached to the solid electrolyte to form the activation portion. Then, an inner electrode is formed by depositing a plating solution on the activated portion.

【0044】まず,実施形態例1と同様の仮焼されたコ
ップ型の固体電解質10を準備する。次いで,実施形態
例1と同様の方法にて,活性化液を内側面づたいに内室
に注入する。次いで,上記内室内に残留した活性化液を
吸出することにより,該活性化液を固体電解質10の内
側面に付着させ,リード部形成用のリード塗布部,電極
塗布部を形成する(図1(a)〜(c)参照)。なお,
上記活性化液は,貴金属塩である塩化白金酸,塩化白
金,有機白金塩等とよりなる。
First, a calcined cup type solid electrolyte 10 similar to that of the first embodiment is prepared. Then, the activation liquid is injected into the inner chamber along the inner surface in the same manner as in the first embodiment. Then, the activation liquid remaining in the inner chamber is sucked out to adhere the activation liquid to the inner surface of the solid electrolyte 10 to form a lead coating portion and an electrode coating portion for forming the lead portion (FIG. 1). (See (a) to (c)). In addition,
The activation liquid is composed of a noble metal salt such as chloroplatinic acid, platinum chloride, or an organic platinum salt.

【0045】次いで,上記付着させた活性化液に,還元
剤(水素化ホウ素ナトリウム)を内室いっぱいまで注入
し,全量吸い出した後,温度120℃で乾燥するという
方法により処理する。これにより,上記活性化液の付着
した部分は還元,金属化され,活性化部となる。
Then, a reducing agent (sodium borohydride) is injected into the adhering activation liquid to fill the inner chamber, and the whole amount is sucked out, followed by drying at a temperature of 120 ° C. As a result, the portion to which the activation liquid is attached is reduced and metallized to become an activation portion.

【0046】その後,上記固体電解質の内室内にメッキ
液を注入する。上記注入に当たっては,まず,図5に示
すごとく,図示を略したメッキ治具に設けたホルダ40
の下端41に,固体電解質10を挿入固定する。この
時,ホルダ40に設けた注入針42を,上記固体電解質
10の内室15の底部に到達するよう挿入する。
Then, a plating solution is injected into the inner chamber of the solid electrolyte. In the injection, first, as shown in FIG. 5, a holder 40 provided on a plating jig (not shown) is provided.
The solid electrolyte 10 is inserted and fixed to the lower end 41 of the. At this time, the injection needle 42 provided in the holder 40 is inserted so as to reach the bottom of the inner chamber 15 of the solid electrolyte 10.

【0047】次いで,上記固体電解質10をメッキ液4
9で充填したメッキ槽(図示略)に浸漬する。そして,
上記ホルダ40内の空気を吸引する。これにより,上記
吸入針42よりメッキ液49が吸い出される。これに伴
い,上記ホルダ40に設けた細孔410より,メッキ液
49が内室15に吸い込まれる。よって,内室15にメ
ッキ液49を充填し,該内室15の上記活性化部109
にメッキ液49が付着する。
Next, the solid electrolyte 10 is added to the plating solution 4
It is immersed in a plating tank (not shown) filled with 9. And
The air in the holder 40 is sucked. As a result, the plating liquid 49 is sucked out from the suction needle 42. Along with this, the plating solution 49 is sucked into the inner chamber 15 through the pores 410 provided in the holder 40. Therefore, the inner chamber 15 is filled with the plating solution 49, and the activation part 109 of the inner chamber 15 is filled.
The plating solution 49 adheres to the.

【0048】その後,上記パイプ40内に空気に送入す
る。これにより,上記吸入針42より,メッキ液49が
送り出される。これに伴い,上記細孔410よりメッキ
液49を内室15の外へ排出する。以上の操作を数回繰
返し,上記活性化部109に所望の厚みを有するメッキ
膜を得る。上記メッキ膜がリード部と反応電極からなる
内側電極となる。その他は,実施形態例1と同様であ
る。
Then, the air is fed into the pipe 40. As a result, the plating liquid 49 is delivered from the suction needle 42. Along with this, the plating solution 49 is discharged from the pores 410 to the outside of the inner chamber 15. The above operation is repeated several times to obtain a plating film having a desired thickness on the activation section 109. The plating film serves as an inner electrode including a lead portion and a reaction electrode. Others are the same as those in the first embodiment.

【0049】本例によれば,密着性に優れたメッキ膜か
らなる内側電極を有する酸素センサ素子を製造すること
ができる。また,実施形態例1と同様の効果を得ること
ができる。
According to this example, it is possible to manufacture an oxygen sensor element having an inner electrode made of a plated film having excellent adhesion. Further, the same effect as that of the first embodiment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,(a)〜(c)固体電
解質に内側電極形成用の導電性塗布液を付着させる工程
の説明図。
FIG. 1 is an explanatory view of a step of adhering a conductive coating liquid for forming an inner electrode to a solid electrolyte (a) to (c) in the first embodiment.

【図2】実施形態例1における,固体電解質に内側電極
形成用の導電性塗布液を付着させる操作の説明図。
FIG. 2 is an explanatory view of an operation of adhering a conductive coating liquid for forming an inner electrode to a solid electrolyte in the first embodiment.

【図3】実施形態例1における,(a),(b)リード
塗布部と電極塗布部とを有する固体電解質の断面図。
FIG. 3 is a cross-sectional view of a solid electrolyte having lead coating portions and electrode coating portions of (a) and (b) in the first embodiment.

【図4】実施形態例1における,本発明にかかる酸素セ
ンサ素子,従来の酸素センサ素子における空燃比と起電
力との間の関係を示す線図。
FIG. 4 is a diagram showing a relationship between an air-fuel ratio and an electromotive force in the oxygen sensor element according to the present invention and the conventional oxygen sensor element in the first embodiment.

【図5】実施形態例2における,固体電解質にメッキ液
を付着させる操作の説明図。
FIG. 5 is an explanatory view of an operation of attaching a plating solution to a solid electrolyte in the second embodiment.

【図6】従来例における,酸素濃度検出器の断面説明
図。
FIG. 6 is a cross-sectional explanatory view of an oxygen concentration detector in a conventional example.

【図7】従来例における,酸素センサ素子の断面図。FIG. 7 is a sectional view of an oxygen sensor element in a conventional example.

【符号の説明】[Explanation of symbols]

1...酸素センサ素子, 10...固体電解質, 100...導電性塗布液, 101...電極塗布部, 102...リード塗布部, 109...活性化部, 11...内側電極, 111...リード部, 112...反応電極, 12...外側電極, 15...内室, 150...上端部, 151...底部, 152...内側面, 49...メッキ液, 1. . . Oxygen sensor element, 10. . . Solid electrolyte, 100. . . Conductive coating solution, 101. . . Electrode application section, 102. . . Lead coating section, 109. . . Activation section, 11. . . Inner electrode, 111. . . Lead portion, 112. . . Reaction electrode, 12. . . Outer electrode, 15. . . Interior room, 150. . . Upper end, 151. . . Bottom, 152. . . Inner surface, 49. . . Plating solution,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 博美 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromi Sano 1-1-1, Showa-cho, Kariya city, Aichi prefecture Nihon Denso Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一端を閉塞し,他端を開放した内室を有
するコップ型固体電解質を有し,該固体電解質の外側面
には外側電極を,一方,上記内室の内側面にはリード部
と反応電極とよりなる内側電極を有する酸素センサ素子
を製造する方法において,上記内側電極を形成するに当
たり,まず,注入針を有し,電極形成用の導電性塗布液
を充填した注入器を準備し,次いで,上記注入針の先端
を固体電解質の内室における上端部に配置して,上記導
電性塗布液を内側面づたいに内室に注入して,上記内側
面にリード部形成用のリード塗布部を,また内室の底部
全周に電極塗布部を形成し,次いで,先端に吸出針を有
する排出器を用いて,上記吸出針の先端を上記内室の底
部に挿入して,該内室内に残留した導電性塗布液を吸出
し,次いで,上記固体電解質を乾燥し,その後上記導電
性塗布液を加熱焼成することを特徴とする酸素センサ素
子の製造方法。
1. A cup-type solid electrolyte having an inner chamber having one end closed and the other end open, wherein an outer electrode is provided on an outer surface of the solid electrolyte and a lead is provided on an inner surface of the inner chamber. In a method of manufacturing an oxygen sensor element having an inner electrode composed of a reaction part and a reaction electrode, in forming the inner electrode, first, an injector having an injection needle and filled with a conductive coating liquid for electrode formation is used. Then, the tip of the injection needle is placed at the upper end of the inner chamber of the solid electrolyte, and the conductive coating solution is injected into the inner chamber according to the inner surface, and leads for forming the lead portion are formed on the inner surface. An electrode coating part is formed on the entire circumference of the bottom part of the inner chamber, and then the tip of the suction needle is inserted into the bottom part of the inner chamber by using an ejector having a suction needle at the tip. The conductive coating liquid remaining in the inner chamber is sucked out, and then the solid A method for manufacturing an oxygen sensor element, which comprises drying a body electrolyte and then heating and baking the conductive coating solution.
【請求項2】 請求項1において,上記注入針は,内径
0.1〜3mmであることを特徴とする酸素センサ素子
の製造方法。
2. The method for manufacturing an oxygen sensor element according to claim 1, wherein the injection needle has an inner diameter of 0.1 to 3 mm.
【請求項3】 請求項1又は2において,上記導電性塗
布液は,貴金属粉末,無機バインダ,樹脂,溶剤及び安
定剤を含有してなることを特徴とする酸素センサ素子の
製造方法。
3. The method for manufacturing an oxygen sensor element according to claim 1, wherein the conductive coating liquid contains a noble metal powder, an inorganic binder, a resin, a solvent and a stabilizer.
【請求項4】 一端を閉塞し,他端を開放した内室を有
するコップ型固体電解質を有し,該固体電解質の外側面
には外側電極を,一方,上記内室の内側面にはリード部
と反応電極とよりなる内側電極を有する酸素センサ素子
を製造する方法において,上記内側電極を形成するに当
たり,まず,注入針を有し,活性化液を充填した注入器
を準備し,次いで,上記注入針の先端を固体電解質の内
室における上端部に配置して,上記活性化液を内側面づ
たいに内室に注入して,上記内側面にリード部形成用の
リード塗布部を,また内室の底部全周に電極塗布部を形
成し,次いで,先端に吸出針を有する排出器を用いて,
上記吸出針の先端を上記内室の底部に挿入して,該内室
内に残留した活性化液を吸出し,次いで,上記内室に付
着させた活性化液を熱処理し活性化部となし,その後,
上記内室内にメッキ液を注入して上記活性化部に内側電
極用のメッキ膜を形成することを特徴とする酸素センサ
素子の製造方法。
4. A cup-type solid electrolyte having an inner chamber having one end closed and the other end open, wherein an outer electrode is provided on an outer surface of the solid electrolyte and a lead is provided on an inner surface of the inner chamber. In a method of manufacturing an oxygen sensor element having an inner electrode composed of a reaction part and a reaction electrode, in forming the inner electrode, first, an injector having an injection needle and filled with an activating liquid is prepared, and then, The tip of the injection needle is disposed at the upper end of the inner chamber of the solid electrolyte, and the activating liquid is injected into the inner chamber so that the inner surface of the solid electrolyte is filled with a lead coating portion for forming a lead portion. An electrode coating is formed on the entire circumference of the bottom of the chamber, and then an ejector having a suction needle at the tip is used to
The tip of the suction needle is inserted into the bottom of the inner chamber to suck out the activating liquid remaining in the inner chamber, and then the activating liquid attached to the inner chamber is heat-treated to form an activating part, and then ,
A method for manufacturing an oxygen sensor element, which comprises injecting a plating solution into the inner chamber to form a plating film for an inner electrode on the activated portion.
JP33400795A 1995-11-28 1995-11-28 Method for manufacturing oxygen sensor element Expired - Lifetime JP3577816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33400795A JP3577816B2 (en) 1995-11-28 1995-11-28 Method for manufacturing oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33400795A JP3577816B2 (en) 1995-11-28 1995-11-28 Method for manufacturing oxygen sensor element

Publications (2)

Publication Number Publication Date
JPH09145669A true JPH09145669A (en) 1997-06-06
JP3577816B2 JP3577816B2 (en) 2004-10-20

Family

ID=18272459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33400795A Expired - Lifetime JP3577816B2 (en) 1995-11-28 1995-11-28 Method for manufacturing oxygen sensor element

Country Status (1)

Country Link
JP (1) JP3577816B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326267A (en) * 1998-03-11 1999-11-26 Ngk Spark Plug Co Ltd Formation method for conductive film of ceramic body
US6096372A (en) * 1997-01-23 2000-08-01 Denso Corporation Method for manufacturing O2 sensor with solid electrolyte member using conductive paste element
US9927390B2 (en) 2014-03-04 2018-03-27 Denso Corporation Gas sensor element, its manufacturing method and gas sensor including the gas sensor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096372A (en) * 1997-01-23 2000-08-01 Denso Corporation Method for manufacturing O2 sensor with solid electrolyte member using conductive paste element
JPH11326267A (en) * 1998-03-11 1999-11-26 Ngk Spark Plug Co Ltd Formation method for conductive film of ceramic body
US9927390B2 (en) 2014-03-04 2018-03-27 Denso Corporation Gas sensor element, its manufacturing method and gas sensor including the gas sensor element

Also Published As

Publication number Publication date
JP3577816B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
EP0809101B1 (en) Oxygen sensor element and method of producing same
JP5173042B2 (en) Manufacturing method of gas sensor
US20150075254A1 (en) Gas sensor element and gas sensor
JPS61108953A (en) Electrical connecting terminal of sensor element using ceramics
JPS6245496B2 (en)
JP3605984B2 (en) Method and apparatus for manufacturing oxygen sensor element
JPS6213622B2 (en)
JPH09145669A (en) Manufacture of oxygen sensor element
JP2003516521A (en) Method and apparatus for pumping oxygen to a gas sensor
EP0936463B1 (en) Gas sensor element and method for manufacturing the element
JPH0798294A (en) Oxygen sensor, electrode formation thereof and lead-wire attaching method thereto
WO1999019722A1 (en) Chemical plating method, electrolytic cell and automotive oxygen sensor using it
CN103091380A (en) Gas sensor element and gas sensor
JPH1183789A (en) Oxygen sensor element and manufacture thereof
JPS61254848A (en) Formation of electrode
JPH01203963A (en) Oxygen sensor element
JP4610127B2 (en) Air-fuel ratio sensor element
JP2011247620A (en) Manufacturing method of gas sensor element and manufacturing method of gas sensor
EP0360159B1 (en) Method of producing thick-film gas sensor element having improved stability
CN113376236B (en) Tubular oxygen sensor core and preparation method thereof
JP3668059B2 (en) Method for manufacturing heater-integrated oxygen sensor element
JPH0850114A (en) Manufacture of oxygen sensor element
JPH09170999A (en) Manufacture of oxygen sensor
JPS60107560A (en) Manufacture of oxygen concentration sensor
CN214122081U (en) Novel ceramic-based gas sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term