JPH09137296A - Method for plating electronic parts - Google Patents

Method for plating electronic parts

Info

Publication number
JPH09137296A
JPH09137296A JP29237195A JP29237195A JPH09137296A JP H09137296 A JPH09137296 A JP H09137296A JP 29237195 A JP29237195 A JP 29237195A JP 29237195 A JP29237195 A JP 29237195A JP H09137296 A JPH09137296 A JP H09137296A
Authority
JP
Japan
Prior art keywords
plating
plated
electronic component
electronic parts
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29237195A
Other languages
Japanese (ja)
Other versions
JP3240893B2 (en
Inventor
Iwao Ishikawa
巌夫 石川
Yasutaka Baba
康孝 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17780942&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09137296(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29237195A priority Critical patent/JP3240893B2/en
Publication of JPH09137296A publication Critical patent/JPH09137296A/en
Application granted granted Critical
Publication of JP3240893B2 publication Critical patent/JP3240893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the blossoming phenomenon of cathode, to surely and effectively apply plating and to improve reliability by regulating the size of energization media to be used to a specific range at the time of forming the external electrodes of electronic parts by horizontal rotary barrel plating. SOLUTION: The electronic parts which are the objects to be plated and the energization media are charged onto a horizontal or spiral diaphragm 6 embedded with the cathode 8 in a barrel plating cell 5 and plating is executed while the objects to be plated are moved around the central shaft 7 by the vibration of the diaphragm 6 together with the plating liquid. At this time, the diameter of the energization media is specified to >=0.8 to <=3 times the max. size of the min. projection area of the electronic parts to be plated. Further preferably, the energization media having the diameter of <=0.8 to <=1.3 times the max. size of the min. projection area of the electronic parts are mixed in a proper amt. with the plating liquid to decrease the variations in the plating of the layers. These methods are particularly effectively applicable to the plating of laminated ceramic capacitors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子部品の外部電極
などを形成する電子部品のメッキ方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of plating an electronic component for forming an external electrode of the electronic component.

【0002】[0002]

【従来の技術】従来における積層セラミックコンデンサ
の外部電極を形成するメッキ方法としては、図5に示す
ような電解バレルメッキ方法が利用されていた。すなわ
ち、水平軸1に回転可能に取付けられたドラム2内に被
メッキ物である電子部品とスチールボールに半田メッキ
を施した構成の通電媒介物とメッキ液からなるバレル溶
液4を収納し、上記水平軸1に下方に突出しバレル溶液
4に必ず浸っている陰極3を設け、ドラム2を低速で回
転させながら電子部品の所定位置にメッキを施し外部電
極を形成するようにしていた。
2. Description of the Related Art As a conventional plating method for forming external electrodes of a monolithic ceramic capacitor, an electrolytic barrel plating method as shown in FIG. 5 has been used. That is, in the drum 2 rotatably mounted on the horizontal shaft 1, the electronic component as the object to be plated and the barrel solution 4 consisting of the plating medium and the current-carrying medium having the structure in which the steel ball is solder-plated are stored. The cathode 3 which protrudes downward and is always immersed in the barrel solution 4 is provided on the horizontal shaft 1, and the drum 2 is rotated at a low speed to plate the electronic parts at predetermined positions to form the external electrodes.

【0003】しかしながら、この回転式では被メッキ物
である電子部品に衝撃が加わり、電子部品に欠けや割れ
を発生させたり、メッキ液中で表面張力や浮力あるいは
揚力によって電子部品が舞い上げられてメッキ厚にばら
つきが発生するといった課題を有していた。
However, in this rotary type, the electronic parts which are the objects to be plated are impacted to cause chipping or cracking of the electronic parts, or the electronic parts are soared by surface tension, buoyancy or lift in the plating solution. There was a problem that the plating thickness varied.

【0004】このようなことから、最近では被メッキ物
である電子部品と通電媒介物とメッキ液をメッキ槽内の
水平板上に収納し、水平板に振動を与えて被メッキ物を
回転させてメッキする方法が開発されてきている。
For these reasons, recently, the electronic parts to be plated, the energizing medium and the plating solution are stored on a horizontal plate in the plating tank, and the horizontal plate is vibrated to rotate the plate. Have been developed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記水
平回転式のメッキ方法においては、ダミーと呼ばれる通
電媒介物を使用するため被メッキ物と通電媒介物が分離
し十分なメッキが施せないといったことや、被メッキ物
と分離しない通電媒介物を用いても、メッキ液の種類に
より、図6に示すように水平板に設けた陰極3の周囲に
メッキが樹枝状に成長する花咲き現象を発生してメッキ
効率を著しく低下させたり、被メッキ物の水平板の中心
部を通るものと周縁部を通るものとでは水平板によって
発生させる振動の振幅が異なり被メッキ物の角速度が異
なってメッキ厚にばらつきが発生するといった課題を有
するものであった。
However, in the above-described horizontal rotary plating method, since a current-carrying medium called a dummy is used, the object to be plated and the current-carrying medium are separated from each other, and sufficient plating cannot be performed. Even if an energizing medium that does not separate from the object to be plated is used, a flowering phenomenon in which the plating grows in a dendritic manner around the cathode 3 provided on the horizontal plate as shown in FIG. 6 occurs depending on the type of plating solution. Significantly lowers the plating efficiency, and the amplitude of the vibration generated by the horizontal plate differs depending on whether it passes through the central part of the plate to be plated or through the peripheral part. There was a problem that variations occurred.

【0006】本発明は以上のような従来の欠点を除去
し、陰極に花咲き現象が発生せず、被メッキ物と通電媒
介物との分離もなく、被メッキ物の角速度に差がない電
子部品のメッキ方法を提供することを目的とするもので
ある。
The present invention eliminates the above-mentioned conventional defects, does not cause a flowering phenomenon on the cathode, does not separate the object to be plated from the energizing medium, and has no difference in angular velocity of the object to be plated. It is an object to provide a plating method for parts.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明の電子部品のメッキ方法は、陰極が埋設された
水平板あるいは螺旋状板の上を被メッキ物である電子部
品と略球状の通電媒介物とメッキ液とを水平板あるいは
螺旋状板の振動によって中心軸の周囲を移動させながら
電子部品にバレルメッキを行うに当り、上記通電媒介物
の直径が電子部品の最小投影面積の最大寸法の0.8〜
1.3倍のものを用いた方法である。
In order to solve the above-mentioned problems, a method of plating an electronic component according to the present invention comprises a horizontal plate or a spiral plate in which a cathode is embedded and an electronic component which is to be plated and a substantially spherical shape. When barrel plating is performed on the electronic component while moving the current-carrying medium and the plating liquid around the central axis by the vibration of the horizontal plate or the spiral plate, the diameter of the current-carrying medium is the minimum projected area of the electronic component. Maximum dimension 0.8 ~
This is a method using 1.3 times.

【0008】この方法によってメッキ厚が均一で効率的
なメッキが行えることになる。
By this method, the plating thickness is uniform and efficient plating can be performed.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、陰極が埋設された水平板あるいは螺旋状板の上を被
メッキ物である電子部品と通電媒介物とメッキ液とを水
平板あるいは螺旋状板の振動によって中心軸の周囲を移
動させながら電子部品にバレルメッキを行うに当り、上
記通電媒介物の直径が電子部品の最小投影面積の最大寸
法の0.8倍以上で1.3倍以下のものを用いるメッキ
方法であり、この方法によって通電媒介物が被メッキ物
と分離せず確実、かつ均一にメッキを施すことができる
ことになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is characterized in that an electronic component which is an object to be plated, an energizing agent, and a plating solution are leveled on a horizontal plate or a spiral plate in which a cathode is embedded. When the electronic component is barrel-plated while being moved around the central axis by the vibration of the plate or the spiral plate, the diameter of the current-carrying medium is 0.8 times or more the maximum size of the minimum projected area of the electronic component. This is a plating method using less than 3 times, and by this method, the current-carrying medium can be surely and uniformly plated without being separated from the object to be plated.

【0010】請求項2に記載の発明は、通電媒介物とし
て請求項1に記載のものに0.8倍以下のものを混合し
て用い、陰極にメッキが樹枝状に成長する花咲き現象を
阻止し、メッキ効率を向上させることができる。
The invention according to claim 2 uses a current-carrying medium as described in claim 1 in which a mixture of 0.8 times or less is used, and a phenomenon in which the plating grows in a dendritic manner on the cathode is observed. It can prevent and improve plating efficiency.

【0011】請求項3に記載の発明は、通電媒介物とし
て請求項1に記載のものに1.3倍以上のものを混合し
て用い、被メッキ物の角速度を一定になるようにしてメ
ッキばらつきのないものとするものである。
According to a third aspect of the present invention, as a current carrying medium, a mixture of 1.3 times or more of the medium of the first aspect is used, and plating is performed so that the angular velocity of the object to be plated becomes constant. There should be no variation.

【0012】請求項4に記載の発明は、通電媒介物とし
て請求項1に記載のものに0.8倍以下のものと1.3
倍以上のものを混合して、花咲き現象を阻止するととも
に被メッキ物の角速度を一定にしてより効率的でばらつ
きのないメッキを可能にするものである。
According to the invention described in claim 4, the current carrying medium is 0.8 times or less than the one described in claim 1 and 1.3.
By mixing two or more times the amount, the flower bloom phenomenon is prevented and the angular velocity of the object to be plated is kept constant to enable more efficient and uniform plating.

【0013】すなわち、本発明はメッキ後に被メッキ物
と通電媒介物の分散状況を調査して径の小さい通電媒介
物は水平板もしくは螺旋状板の底に、径の大きいものは
表面あるいは中心軸の周囲に存在し、直径が被メッキ物
と同程度のものだけが被メッキ物と均一に分散している
ことを究明し、このことを確認するために分級した通電
媒介物を用いて実験した結果、被メッキ物の最小投影面
積の最大寸法Lと通電媒介物の径φとの間に(表1)に
示す関係があることを究明した。
That is, according to the present invention, after plating, the distribution state of the object to be plated and the current carrying medium is investigated, and the current carrying medium having a small diameter is at the bottom of the horizontal plate or the spiral plate, and the large current carrying medium is at the surface or the central axis. In order to confirm this, it was confirmed that only the particles that exist around the object and have the same diameter as the object to be plated are dispersed uniformly in the object to be plated. As a result, it was clarified that there is a relationship shown in (Table 1) between the maximum dimension L of the minimum projected area of the object to be plated and the diameter φ of the current-carrying medium.

【0014】[0014]

【表1】 [Table 1]

【0015】(表1)から被メッキ物と通電媒介物との
分離を解決するには、通電媒介物の直径φが0.8L以
上で1.3L以下のものが有効であるといえる。
It can be said from Table 1 that the diameter φ of the current-carrying medium is 0.8 L or more and 1.3 L or less in order to solve the separation between the plated object and the current-carrying medium.

【0016】次に水平板または螺旋状板に埋設した陰極
の周縁部にメッキが樹枝状に成長する花咲き現象を解決
するために上記分級した通電媒介物を用いて実験した結
果から(表2)示す結果を得た。
Next, in order to solve the flowering phenomenon in which the plating grows in a dendritic manner on the peripheral portion of the cathode embedded in the horizontal plate or the spiral plate, the result of the experiment using the classified current carrying medium (Table 2) ) The result shown was obtained.

【0017】[0017]

【表2】 [Table 2]

【0018】この(表2)から陰極の花咲き現象を解決
するためには、通電媒介物の直径が0.8L以上で1.
3L以下のものと0.8L未満のものを混合して用いる
ことが有効であるといえる。
From the above (Table 2), in order to solve the phenomenon of flower blooming of the cathode, 1.
It can be said that it is effective to use a mixture of 3L or less and less than 0.8L.

【0019】さらにバレルの中心および周縁部で被メッ
キ物の角速度が異なりメッキ量に差がでる現象を解決す
るために、上記分級した通電媒介物を用いた実験から通
電媒介物の直径が1.3L以上のものであればこの通電
媒介物がバレルの中心部に集まり、被メッキ物を中心部
より周縁部に押出すことが判明したため、0.8L以上
で1.3L以下の通電媒介物と1.3L以上の通電媒介
物とを混合して用いることが有効となる。
Further, in order to solve the phenomenon in which the angular velocity of the object to be plated is different at the center and the peripheral portion of the barrel and the amount of plating is different, the diameter of the current carrying medium is 1. If it is 3 L or more, this energizing agent gathers in the center of the barrel, and it was found that the object to be plated is extruded from the center to the peripheral edge. It is effective to mix and use 1.3 L or more of a current-carrying medium.

【0020】また、花咲き現象と被メッキ物の角速度の
不一致の現象を無くすには、0.8L以上で1.3L以
下の通電媒介物に0.8L以下と1.3L以上の通電媒
介物を混合して用いることが有効となる。
Further, in order to eliminate the phenomenon of flower bloom and the inconsistency in the angular velocity of the object to be plated, 0.8L or more and 1.3L or less of the current carrying medium, 0.8L or less and 1.3L or more of the current carrying medium are used. It is effective to mix and use.

【0021】以下、本発明の具体的な実施の形態につい
て図面を用いて説明する。 (実施の形態1)以下、本発明の実施の形態1について
図面を用いて説明する。
Specific embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.

【0022】図1において、5はバレルメッキ槽であ
り、このバレルメッキ槽5内には螺旋状板6が組込ま
れ、この螺旋状板6の中心には螺旋状板6に振動を加え
る中心軸7が結合されている。この螺旋状板6には陰極
8が埋設されている。また、螺旋状板6上には被メッキ
物としての積層セラミックコンデンサ20ccと、分級し
た通電媒介物として半田メッキを施したスチールボール
140ccとをNiメッキ液中で積層チップコンデンサを
100回転させた後、メッキ液中から引上げて分散状態
を観察した。
In FIG. 1, reference numeral 5 is a barrel plating tank. A spiral plate 6 is incorporated in the barrel plating tank 5, and a central axis for vibrating the spiral plate 6 is provided at the center of the spiral plate 6. 7 are connected. A cathode 8 is embedded in the spiral plate 6. Further, on the spiral plate 6, 20 cc of the laminated ceramic capacitor as an object to be plated and 140 cc of steel balls plated with solder as a classified current-carrying medium are rotated 100 times in a Ni plating solution, and then the laminated chip capacitor is rotated. Then, it was pulled up from the plating solution and the dispersed state was observed.

【0023】その結果を(表3)〜(表6)に示す。
(表3)は積層チップコンデンサとして長さ1.0mm、
幅0.5mm、厚み0.5mmのもの(aタイプと称す)で
あり、(表4)は長さ1.6mm、幅0.8mm、厚み0.
8mmのもの(bタイプと称す)であり、(表5)は長さ
2.0mm、幅1.25mm、厚み1.0mmのもの(cタイ
プと称す)であり、(表6)は長さ3.2mm、幅1.6
mm、厚み1.0mmのもの(dタイプと称す)を用いた実
験結果である。
The results are shown in (Table 3) to (Table 6).
(Table 3) shows a laminated chip capacitor with a length of 1.0 mm,
It has a width of 0.5 mm and a thickness of 0.5 mm (referred to as a type), and (Table 4) has a length of 1.6 mm, a width of 0.8 mm and a thickness of 0.
8 mm (referred to as b type), (Table 5) is 2.0 mm in length, 1.25 mm in width and 1.0 mm in thickness (referred to as c type), and (Table 6) is in length 3.2 mm, width 1.6
It is the result of an experiment using a film having a thickness of 1.0 mm and a thickness of 1.0 mm (referred to as d type).

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】なお、上記(表3)〜(表6)においてA
〜Eは次のように定義したものである。
In the above (Table 3) to (Table 6), A
~ E are defined as follows.

【0029】A:積層セラミックコンデンサが通電媒介
物層の表面付近にのみ観察され、中間、底面には全く観
察されない。
A: The monolithic ceramic capacitor was observed only near the surface of the current-carrying medium layer, and was not observed at all in the middle and bottom surfaces.

【0030】B:通電媒介物層の表面、中間と底面にわ
たってほぼ均一に分散しているが、多くの積層セラミッ
クコンデンサが表面付近に存在している。
B: Most of the monolithic ceramic capacitors are present in the vicinity of the surface, although they are dispersed almost uniformly over the surface, the middle and the bottom of the current carrying medium layer.

【0031】C:通電媒介物層の表面、中間と底面にわ
たって均一に分散している。 D:通電媒介物層の表面、中間と底面にわたってほぼ均
一に分散しているが、底面にはより多くの積層セラミッ
クコンデンサが存在している。
C: Dispersed uniformly over the surface, the middle and the bottom of the current carrying medium layer. D: Almost evenly distributed over the surface, middle and bottom of the current carrying medium layer, but more multilayer ceramic capacitors are present on the bottom.

【0032】E:積層セラミックコンデンサが通電媒介
物層の底面付近のみに観察され、表面、中間には全く観
察されない。
E: The monolithic ceramic capacitor was observed only near the bottom surface of the conduction medium layer, and was not observed at all on the surface or in the middle.

【0033】一方、各積層セラミックコンデンサの最小
投影面積の最大寸法、すなわち、幅×厚みの矩形の対象
線長Lを求め、均一分散する通電媒介物の直径φとの関
係の実験結果を(表7)に示す。
On the other hand, the maximum dimension of the minimum projected area of each monolithic ceramic capacitor, that is, the target line length L of a rectangle of width × thickness is obtained, and the experimental result of the relation with the diameter φ of the uniformly distributed current-carrying medium is shown in the table. 7).

【0034】[0034]

【表7】 [Table 7]

【0035】この(表7)より均一分散の通電媒介物の
φ/Lが少し異なっているが、φ/L=0.80〜1.
30の通電媒介物を準備し、実際にメッキを実施し、メ
ッキ厚およびそのばらつきを評価したところ、全く差異
がなく、φ/L=0.80〜1.30の妥当性が確認で
きた。また、半田メッキでも同様の確認を行ったが結果
は上述のものと全く同じであった。
Although φ / L of the uniformly distributed current-carrying medium is slightly different from this (Table 7), φ / L = 0.80 to 1.
When 30 current-carrying media were prepared, plating was actually performed, and the plating thickness and its variation were evaluated. As a result, there was no difference and the validity of φ / L = 0.80 to 1.30 was confirmed. Further, the same confirmation was performed by solder plating, but the result was exactly the same as that described above.

【0036】(実施の形態2)aタイプの積層セラミッ
クコンデンサ50cc、直径が0.560mm〜0.930
mmの通電媒介物50cc、直径が0.560mm未満の通電
媒介物を2〜40cc図2の水平回転バレルに入れて回転
速度6rpmでメッキを行った。
(Embodiment 2) A type monolithic ceramic capacitor 50 cc, diameter 0.560 mm to 0.930
50 mm of a current carrying medium having a diameter of 0.560 mm and 2 to 40 cc of a current carrying medium having a diameter of less than 0.560 mm were placed in the horizontal rotating barrel shown in FIG. 2 and plated at a rotation speed of 6 rpm.

【0037】さらに、aタイプの積層セラミックコンデ
ンサを30cc、直径が0.560mm〜0.930mmの通
電媒介物を30cc、直径が0.560mm未満の通電媒介
物を100cc図2の水平回転バレルに入れてメッキを行
い花咲き現象の評価を行った。その結果を(表8)に示
す。
Further, 30cc of a type monolithic ceramic capacitor, 30cc of current carrying medium having a diameter of 0.560mm to 0.930mm, 100cc of current carrying medium having a diameter of less than 0.560mm are put in the horizontal rotary barrel of FIG. Plating was performed to evaluate the flower bloom phenomenon. The results are shown in (Table 8).

【0038】[0038]

【表8】 [Table 8]

【0039】(表8)において花咲き現象の無いもの
は、直径0.560mm未満の通電媒介物9が螺旋状板6
上に沈み、この螺旋状板6に埋設された陰極8と接触し
て螺旋状板6の全面が陰極となり、積層セラミックコン
デンサと陰極8との接触抵抗が下がり、陰極8への分配
電流が減り、陰極8へのメッキの付着が減って花咲き現
象が無くなる。
In Table 8 where the flowering phenomenon does not occur, the current-carrying medium 9 having a diameter of less than 0.560 mm is the spiral plate 6.
It sinks above and contacts the cathode 8 embedded in the spiral plate 6, and the entire surface of the spiral plate 6 becomes a cathode, the contact resistance between the multilayer ceramic capacitor and the cathode 8 decreases, and the distribution current to the cathode 8 decreases. Therefore, the adhesion of plating to the cathode 8 is reduced and the flowering phenomenon is eliminated.

【0040】この螺旋状板6の上面を覆う通電媒介物9
の最低量は以下の式で求められる。 V=4S・r/3 ここで、Vはバレルの螺旋状板の上面を覆う通電媒介物
の最低量(体積) Sは螺旋状板の上面の表面積 rは通電媒介物の直径である。
A current-carrying medium 9 covering the upper surface of the spiral plate 6.
The minimum amount of is calculated by the following formula. V = 4S · r / 3 where V is the minimum amount (volume) of the current carrying medium covering the upper surface of the spiral plate of the barrel S is the surface area of the upper surface of the spiral plate r is the diameter of the current carrying medium.

【0041】この実施の形態2の場合は、S=188cm
2、通電媒介物の平均直径は0.296mm、すなわち、
r=0.0296cmであるのでVは7.4cm2(cc)と
なる。(表8)の結果から、Vの0.9倍以下、すなわ
ち、6cc以上で直径が0.560mm以下、(直径が0.
80L以下)の通電媒介物を用いることにより花咲き現
象を無くすことができる。
In the case of this second embodiment, S = 188 cm
2 , the average diameter of the current carrying medium is 0.296mm, that is,
Since r = 0.0296 cm, V becomes 7.4 cm 2 (cc). From the results of (Table 8), 0.9 times or less of V, that is, diameter of 0.560 mm or less at 6 cc or more, (diameter of 0.
The flowering phenomenon can be eliminated by using an energizing agent of 80 L or less).

【0042】(実施の形態3)上記実施の形態2の0.
80L以下の通電媒介物を混合するものに代えて1.3
L以上の通電媒介物を混合した。すなわち、直径0.9
30mm以上の通電媒介物を5〜85cc使用してメッキを
施した結果を(表9)に示す。(表9)は直径が1.3
L以上の通電媒介物の量と、その通電媒介物10が図3
に示すように中心軸7の周囲に集った厚さとの関係およ
び外周部に対する中心部の積層セラミックコンデンサの
角速度比を示している。
(Third Embodiment) In the third embodiment, 0.
1.3 instead of mixing 80 L or less energizing medium
L or more energizing agents were mixed. Ie 0.9
Table 9 shows the results of plating using 5-85 cc of an energization medium of 30 mm or more. (Table 9) has a diameter of 1.3
The amount of the energizing medium of L or more and the energizing medium 10 are shown in FIG.
Shows the relationship with the thickness gathered around the central axis 7 and the angular velocity ratio of the monolithic ceramic capacitor in the central part to the outer peripheral part.

【0043】[0043]

【表9】 [Table 9]

【0044】(表9)から明らかなように、直径が1.
3L以上の通電媒介物の量は15cc以上であれば中心軸
7の周囲に集まり、0.8L以上で1.3L以下の通電
媒介物と積層セラミックコンデンサを中心部より振幅の
大きい螺旋状板6の外周部に追いやり、外周部と中心部
の積層セラミックコンデンサの角速度が同じになること
が判る。これは、積層セラミックコンデンサと通電媒介
物の総量(体積)、すなわち、被メッキ物と通電媒介物
の総量(体積)の13%に当る。
As is clear from (Table 9), the diameter is 1.
If the amount of the energizing medium of 3 L or more is 15 cc or more, it gathers around the central axis 7, and the energizing medium of 0.8 L or more and 1.3 L or less and the laminated ceramic capacitor are spiral plates 6 having a larger amplitude than the central portion. It can be seen that the angular velocities of the monolithic ceramic capacitors at the outer peripheral portion and the central portion become the same, by chasing them to the outer peripheral portion. This corresponds to 13% of the total amount (volume) of the laminated ceramic capacitor and the current carrying medium, that is, the total amount (volume) of the object to be plated and the current carrying medium.

【0045】なお、実施の形態2と実施の形態3との組
合わせ、すなわち、直径0.8L以上で1.3L以下の
通電媒介物に直径0.8L以下の通電媒介物と直径1.
3L以上の通電媒介物とを混合することにより図4に示
すように中心軸7の周囲に大径の通電媒介物10が集
り、螺旋状板6上に小径の通電媒介物9が沈澱されて、
花咲き現象がなく、被メッキ物の角速度に差のないメッ
キが行えることになる。
A combination of the second embodiment and the third embodiment, that is, a current carrying medium having a diameter of 0.8 L or more and 1.3 L or less and a current carrying medium having a diameter of 0.8 L or less and a diameter of 1.
By mixing with 3 L or more energizing agents, as shown in FIG. 4, energizing agents 10 with a large diameter gather around the central axis 7 and energizing agents 9 with a small diameter are deposited on the spiral plate 6. ,
It is possible to perform plating with no flower bloom phenomenon and no difference in the angular velocity of the object to be plated.

【0046】また、上記各実施の形態では、aタイプの
積層セラミックコンデンサについて説明したが、他のタ
イプでも同様の効果があることを確認した。さらに積層
セラミックコンデンサ以外の電子部品においても同様の
効果が得られることは言うまでもない。また、螺旋状板
6の代わりに水平板を用いても同様の効果が期待でき
る。
Further, in each of the above-mentioned embodiments, the a-type monolithic ceramic capacitor has been described, but it has been confirmed that other types have the same effect. Needless to say, similar effects can be obtained in electronic parts other than the monolithic ceramic capacitor. Also, the same effect can be expected by using a horizontal plate instead of the spiral plate 6.

【0047】[0047]

【発明の効果】以上のように本発明の電子部品のメッキ
方法によれば、被メッキ物である電子部品と通電媒介物
が均一に分散して確実かつ効果的にメッキを施すことが
でき信頼性を著しく高めることができる。
As described above, according to the method of plating an electronic component of the present invention, the electronic component which is the object to be plated and the energizing medium are uniformly dispersed, and reliable and effective plating can be performed. It is possible to significantly improve the sex.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電子部品のメッキ方法の一実施の形態
を示す水平回転バレルメッキ装置の概略断面図
FIG. 1 is a schematic sectional view of a horizontal rotary barrel plating apparatus showing an embodiment of a plating method for electronic parts of the present invention.

【図2】他の実施の形態の水平回転バレルメッキ装置の
概略断面図
FIG. 2 is a schematic sectional view of a horizontal rotary barrel plating apparatus according to another embodiment.

【図3】他の実施の形態の水平回転バレルメッキ装置の
概略断面図
FIG. 3 is a schematic sectional view of a horizontal rotary barrel plating apparatus according to another embodiment.

【図4】他の実施の形態の水平回転バレルメッキ装置の
概略断面図
FIG. 4 is a schematic sectional view of a horizontal rotary barrel plating apparatus according to another embodiment.

【図5】従来の電子部品のメッキ方法によるバレルメッ
キ装置の概略断面図
FIG. 5 is a schematic sectional view of a barrel plating apparatus according to a conventional electronic component plating method.

【図6】従来の方法による陰極の周囲にメッキが成長す
る状態を示した説明図
FIG. 6 is an explanatory view showing a state in which plating grows around a cathode by a conventional method.

【符号の説明】[Explanation of symbols]

5 バレルメッキ槽 6 螺旋状板 7 中心軸 8 陰極 5 Barrel plating tank 6 Spiral plate 7 Center axis 8 Cathode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陰極が埋設された水平板あるいは螺旋状
板の上を被メッキ物である電子部品と通電媒介物とメッ
キ液とを水平板あるいは螺旋状板の振動によって中心軸
の周囲を移動させながら電子部品にバレルメッキを行う
に当り、上記通電媒介物の直径が電子部品の最小投影面
積の最大寸法の0.8倍以上で1.3倍以下のものを用
いる電子部品のメッキ方法。
1. A horizontal plate or a spiral plate in which a cathode is embedded moves an electronic component as an object to be plated, an energizing agent, and a plating solution around a central axis by vibration of the horizontal plate or the spiral plate. A method of plating an electronic component, wherein the diameter of the current-carrying medium is 0.8 times or more and 1.3 times or less of the maximum dimension of the minimum projected area of the electronic component when barrel-plating the electronic component.
【請求項2】 通電媒介物として電子部品の最小投影面
積の最大寸法の0.8倍以下のものをバレルの底面を覆
う最低量の0.9倍以上の通電媒介物を混合して用いる
請求項1記載の電子部品のメッキ方法。
2. A current carrying agent which is 0.8 times or less of a maximum dimension of a minimum projected area of an electronic component and is mixed with a current carrying agent which is 0.9 times or more a minimum amount for covering a bottom surface of a barrel. Item 2. A method for plating an electronic component according to Item 1.
【請求項3】 通電媒介物として電子部品の最小投影面
積の最大寸法の1.3倍以上のものを混合して用いる請
求項1記載の電子部品のメッキ方法。
3. The method of plating an electronic component according to claim 1, wherein a material having 1.3 times or more the maximum dimension of the minimum projected area of the electronic component is mixed and used as the energizing medium.
【請求項4】 通電媒介物として電子部品の最小投影面
積の最大寸法の0.8倍以下のものと1.3倍以上のも
のとを混合して用いる請求項1記載の電子部品のメッキ
方法。
4. The method of plating an electronic component according to claim 1, wherein a mixture of 0.8 times or less and 1.3 times or more of the maximum dimension of the minimum projected area of the electronic component is used as the energizing medium. .
JP29237195A 1995-11-10 1995-11-10 Plating method for electronic components Expired - Lifetime JP3240893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29237195A JP3240893B2 (en) 1995-11-10 1995-11-10 Plating method for electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29237195A JP3240893B2 (en) 1995-11-10 1995-11-10 Plating method for electronic components

Publications (2)

Publication Number Publication Date
JPH09137296A true JPH09137296A (en) 1997-05-27
JP3240893B2 JP3240893B2 (en) 2001-12-25

Family

ID=17780942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29237195A Expired - Lifetime JP3240893B2 (en) 1995-11-10 1995-11-10 Plating method for electronic components

Country Status (1)

Country Link
JP (1) JP3240893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87921A1 (en) * 2000-03-30 2002-04-16 Murata Manufacturing Co Plating barrel
JP2002129394A (en) * 2000-10-30 2002-05-09 Murata Mfg Co Ltd Apparatus for vibration plating of electronic component
JP2002129395A (en) * 2000-10-30 2002-05-09 Murata Mfg Co Ltd Method for vibration plating of electronic component
KR100889293B1 (en) * 2008-07-14 2009-03-17 주식회사 이즈컨텍 Plating barrel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87921A1 (en) * 2000-03-30 2002-04-16 Murata Manufacturing Co Plating barrel
US6558524B2 (en) 2000-03-30 2003-05-06 Murata Manufacturing Co., Ltd. Barrel plating method and apparatus
JP2002129394A (en) * 2000-10-30 2002-05-09 Murata Mfg Co Ltd Apparatus for vibration plating of electronic component
JP2002129395A (en) * 2000-10-30 2002-05-09 Murata Mfg Co Ltd Method for vibration plating of electronic component
JP4682411B2 (en) * 2000-10-30 2011-05-11 株式会社村田製作所 Vibration plating equipment for electronic parts
KR100889293B1 (en) * 2008-07-14 2009-03-17 주식회사 이즈컨텍 Plating barrel

Also Published As

Publication number Publication date
JP3240893B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
CN1434882A (en) Pad designs and structures for universal material working equipment
TWI395256B (en) Deposition and patterning process
JPS61104623A (en) Rotary coater
TW200536649A (en) Solder composition and method for forming bump by using the same
JPH09137296A (en) Method for plating electronic parts
JP3360250B2 (en) COMPOSITE MICRO BALL, ITS MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP2015067890A (en) Method of manufacturing composite conductive particle
JP3697481B2 (en) Solder plating method for fine metal balls
CN106544634B (en) A kind of forming method of film layer, target and target production method
JPH11279800A (en) Method for plating small-sized electronic parts
JPH02225693A (en) Jet-type wafer plating device
JP3282585B2 (en) Plating apparatus and plating method
JP3966119B2 (en) Manufacturing method of electronic parts
JP2002541325A5 (en)
JPH11209898A (en) Plating anode
JP3400278B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2000256899A (en) Barrel plating method for electronic parts
JP2004149926A (en) Method of forming embedded wiring
JP2000090736A (en) Paste, connecting plug and burying method
JP2005036270A (en) Method of producing electronic component
JP3259137B2 (en) Manufacturing method of multilayer chip varistor
JPH046086B2 (en)
JP2006028571A (en) Method for plating electronic component and method for manufacturing electronic component
JPS6280292A (en) Plating method and apparatus
JP2003342785A (en) Method for manufacturing ceramic electronic part

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

EXPY Cancellation because of completion of term