JP2006028571A - Method for plating electronic component and method for manufacturing electronic component - Google Patents

Method for plating electronic component and method for manufacturing electronic component Download PDF

Info

Publication number
JP2006028571A
JP2006028571A JP2004207710A JP2004207710A JP2006028571A JP 2006028571 A JP2006028571 A JP 2006028571A JP 2004207710 A JP2004207710 A JP 2004207710A JP 2004207710 A JP2004207710 A JP 2004207710A JP 2006028571 A JP2006028571 A JP 2006028571A
Authority
JP
Japan
Prior art keywords
plating
electronic component
medium
electronic components
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004207710A
Other languages
Japanese (ja)
Inventor
Tomohiro Domae
友宏 同前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004207710A priority Critical patent/JP2006028571A/en
Publication of JP2006028571A publication Critical patent/JP2006028571A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for plating electronic components for applying good plating at a good yield to the electronic components by suppressing and preventing occurrence of an adhesion defect of the cohesion of the electronic components to each other, and degradation in uniformity of plating films even when the plating is applied to the small-sized electronic components, and a method for manufacturing the electronic components using the method for plating electronic components. <P>SOLUTION: The electronic component (laminated ceramic capacitors) 10 has an approximately rectangular parallelepipe shape of 0.6 mm in length (L), 0.3 mm in width (W) and 0.3 mm in height (T), and in this case, as media 11 for current passage, the media of approximately spherical shapes having a diameter of 0.9 to 1.1 times of the shortest side size of the electronic component are used. Also, the plating is performed by further adding approximately spherical insulative granule (medium for agitation) 12 for loosening thereto. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、電子部品にめっきを施す際に用いられるめっき方法に関し、詳しくは、めっき用電極を備えた容器内に収納された電子部品と通電用メディアをめっき液に浸漬し、めっき用電極に通電することにより電子部品にめっきを施すようにした電子部品のめっき方法およびそれを用いた電子部品の製造方法に関する。   The present invention relates to a plating method used when plating an electronic component. Specifically, the electronic component and a current-carrying medium housed in a container equipped with a plating electrode are immersed in a plating solution, and the plating electrode is used. The present invention relates to a plating method for an electronic component in which the electronic component is plated by energization, and a method for manufacturing an electronic component using the same.

チップ型の電子部品の代表的なものの1つに、図3に示すような積層セラミックコンデンサがある。この積層セラミックコンデンサ60は、複数の内部電極53a,53bがセラミック層52を介して互いに対向するように配設され、かつ、その一端側が交互に異なる側の端面に引き出されたセラミック素子51の両端側に、内部電極53a,53bと導通するように一対の外部電極54a,54bが配設された構造を有している。なお、外部電極54a,54bは、例えば、Ag粉末を導電成分とする導電性ペーストを塗布、乾燥、焼成することにより形成されており、外部電極54a,54bの表面にはAg電極のはんだくわれを防止するためのNiめっき膜55およびはんだ付け性を向上させるためのSnめっき膜56が形成されている。   One of typical chip-type electronic components is a multilayer ceramic capacitor as shown in FIG. This multilayer ceramic capacitor 60 is arranged such that a plurality of internal electrodes 53a, 53b are opposed to each other via a ceramic layer 52, and both ends of a ceramic element 51 with one end side alternately drawn to different end faces. On the side, a pair of external electrodes 54a and 54b are disposed so as to be electrically connected to the internal electrodes 53a and 53b. The external electrodes 54a and 54b are formed, for example, by applying, drying and baking a conductive paste containing Ag powder as a conductive component, and Ag electrodes are soldered on the surfaces of the external electrodes 54a and 54b. An Ni plating film 55 for preventing the above and an Sn plating film 56 for improving the solderability are formed.

そして、外部電極にめっき膜を形成する方法としては、めっき用電極を備えた容器に、電子部品と通電用メディアを入れ、電極に通電しながら容器を振動させることによりめっきを行う容器めっき法が知られている(特許文献1参照)。   And, as a method of forming a plating film on the external electrode, there is a container plating method in which an electronic component and a current-carrying medium are put in a container equipped with a plating electrode, and plating is performed by vibrating the container while energizing the electrode. It is known (see Patent Document 1).

また、めっき用電極を備えた容器内に、電子部品と通電用メディアを収容し、容器をめっき液に浸漬して振動を与えながら、めっき用電極に通電することにより電子部品にめっきを施す振動めっき方法も用いられている(特許文献2および3参照)。   In addition, the electronic component and the energizing medium are housed in a container equipped with a plating electrode, and vibration is applied to the electronic component by energizing the plating electrode while immersing the container in the plating solution and applying vibration. A plating method is also used (see Patent Documents 2 and 3).

ところで、特許文献1のめっき方法では、めっき用電極(陰極)にめっきが樹枝状に成長してめっき効率が低下したり、めっき膜厚のばらつきが発生したりするというような問題点を解決するために、通電用メディアとして、直径が被めっき物である電子部品の最小投影面積の最大寸法の0.8〜1.3倍のものを用いるようにしている。   By the way, the plating method disclosed in Patent Document 1 solves problems such as plating growing on the plating electrode (cathode) in a dendritic manner, resulting in a decrease in plating efficiency and a variation in plating film thickness. Therefore, a medium having a diameter of 0.8 to 1.3 times the maximum dimension of the minimum projected area of the electronic component that is the object to be plated is used as the energization medium.

また、特許文献2の振動めっき方法では、通電用メディアとして、直径が被めっき物である電子部品の最長辺寸法の0.93〜1.8倍の通電用メディアを用いるようにしている。   Moreover, in the vibration plating method of Patent Document 2, a current-carrying medium having a diameter of 0.93 to 1.8 times the longest side dimension of an electronic component that is an object to be plated is used.

さらに、特許文献3の振動めっき方法では、電子部品に割れや欠けが発生することを防止しつつ、電子部品の凝集を抑制して、確実にめっきを行うことができるように、表面硬度が、電子部品の表面硬度よりも低い絶縁性ゴムまたは樹脂で表面を覆われた絶縁性粒体を用いる方法が提案されている。また、特許文献3には、絶縁性粒体の直径が電子部品の外形における最小寸法の5倍以上、最大寸法の10倍以下とすることが開示されている。   Furthermore, in the vibration plating method of Patent Document 3, while preventing the occurrence of cracks and chips in the electronic component, the surface hardness is set so that the aggregation of the electronic component can be suppressed and plating can be performed reliably. There has been proposed a method using an insulating particle whose surface is covered with an insulating rubber or resin whose surface hardness is lower than that of an electronic component. Patent Document 3 discloses that the diameter of the insulating particles is not less than 5 times the minimum dimension of the outer shape of the electronic component and not more than 10 times the maximum dimension.

しかしながら、上記従来のめっき方法の場合、例えば、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下というような小型の電子部品にめっきを施そうとした場合、被めっき物である電子部品の寸法が小さくなると、めっき中に電子部品が凝集し、電子部品どうしが着合してしまう、いわゆるくっつき不良が発生したり、形成されるめっき膜の均一性が低下したりするという問題点がある。
特開平9−137296号公報 特開2002−129395号公報 特開2003−73898号公報
However, in the case of the above conventional plating method, for example, when trying to plate a small electronic component having a length of 0.6 mm or less, a width of 0.3 mm or less, and a height of 0.3 mm or less, If the size of the electronic component is small, the electronic components are aggregated during plating, and the electronic components are joined together, so-called sticking failure occurs, or the uniformity of the formed plating film is reduced. There is a problem.
JP-A-9-137296 JP 2002-129395 A JP 2003-73898 A

本願発明は、上記の問題点を解決するものであり、小型の電子部品にめっきを施す場合にも、電子部品どうしが着合してしまうくっつき不良や、めっき膜の均一性の低下などの発生を抑制、防止して、歩留まりよく良好なめっきを施すことが可能な電子部品のめっき方法および該めっき方法を用いた電子部品の製造方法を提供することを課題とする。   The invention of the present application solves the above-mentioned problems, and even when plating is performed on small electronic components, the occurrence of sticking defects in which the electronic components are joined together and the uniformity of the plating film is reduced. It is an object of the present invention to provide a method for plating an electronic component capable of suppressing and preventing the above-described plating and performing good plating with a high yield and a method for manufacturing an electronic component using the plating method.

上記課題を解決するために、本願発明(請求項1)の電子部品のめっき方法は、
めっき用電極を備えた容器内に収納された電子部品と通電用メディアをめっき液に浸漬し、めっき用電極に通電することにより電子部品にめっきを施す電子部品のめっき方法において、
前記電子部品が、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下の、略直方体形状を有する電子部品である場合に、
通電用メディアとして、直径が前記電子部品の最短辺寸法の0.9〜1.1倍の略球形の通電用メディアを用いること
を特徴としている。
In order to solve the above problems, the plating method of the electronic component of the present invention (Claim 1)
In the plating method of an electronic component in which an electronic component housed in a container equipped with an electrode for plating and a current-carrying medium are immersed in a plating solution and the electronic component is plated by energizing the electrode for plating.
When the electronic component is an electronic component having a substantially rectangular parallelepiped shape having a length of 0.6 mm or less, a width of 0.3 mm or less, and a height of 0.3 mm or less,
As the energization medium, a substantially spherical energization medium having a diameter of 0.9 to 1.1 times the shortest side dimension of the electronic component is used.

また、請求項2の電子部品のめっき方法は、前記容器内に、略球形のほぐし用絶縁性粒体をさらに添加してめっきを行うことを特徴としている。   According to a second aspect of the present invention, there is provided a method for plating an electronic component, further comprising adding a substantially spherical insulating particle for unraveling to the container to perform plating.

また、請求項3の電子部品のめっき方法は、前記容器に振動を与えながら、めっき用電極に通電することにより電子部品にめっきを施すことを特徴としている。   The electronic component plating method according to claim 3 is characterized in that the electronic component is plated by energizing the plating electrode while applying vibration to the container.

また、本願発明(請求項4)の電子部品の製造方法は、請求項1〜3のいずれかに記載のめっき方法により、電子部品に配設された電極の表面にめっき膜を形成する工程を備えていることを特徴としている。   Moreover, the manufacturing method of the electronic component of the present invention (Claim 4) includes a step of forming a plating film on the surface of the electrode disposed in the electronic component by the plating method according to any one of Claims 1 to 3. It is characterized by having.

本願発明(請求項1)の電子部品のめっき方法は、電子部品が、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下の、略直方体形状を有する電子部品である場合に、通電用メディアとして、直径が電子部品の最短辺寸法の0.9〜1.1倍の略球形の通電用メディアを用いるようにしているので、電子部品どうしが着合してしまうくっつき不良が発生したり、めっき膜の均一性が低下したりすることを抑制、防止して、歩留まりよく良好なめっきを施すことが可能になる。   In the method of plating an electronic component according to the present invention (Claim 1), the electronic component is an electronic component having a substantially rectangular parallelepiped shape having a length of 0.6 mm or less, a width of 0.3 mm or less, and a height of 0.3 mm or less. In addition, as the energization medium, a substantially spherical energization medium having a diameter of 0.9 to 1.1 times the shortest side dimension of the electronic component is used. It is possible to suppress and prevent the occurrence of the above and the deterioration of the uniformity of the plating film, and to perform good plating with a high yield.

すなわち、電子部品の最短辺寸法の0.9〜1.1倍の略球形の通電用メディアを用いることにより、電子部品が上述のような小型のものである場合にも、通電用メディアと電子部品との間の十分な接触確率を確保することが可能になる。その結果、電子部品へのめっき分配率(電子部品、めっき電極、通電用メディアへの全めっき量に対する、電子部品にめっきされる量の割合)を増大させて、目標とする膜厚のめっき膜を形成するために必要な電流密度を減少させることが可能になり、くっつき不良を抑制することができるようになるとともに、通電用メディアと電子部品との接触確率を増大させて、めっき膜の均一性を向上させることが可能になり、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下の微細な電子部品に効率よくめっきを施すことが可能になる。
なお、通電用メディアとして、直径が電子部品の最短辺寸法の0.9〜1.1倍の略球形の通電用メディアを用いるようにしているのは、通電用メディアの直径が電子部品の最短辺寸法の0.9倍未満になると、通電用メディア上に電子部品素子が浮き出し、高電流密度でめっきが施されることになり、電子部品どうしが着合してしまうくっつき不良の発生率が高くなり、また、1.1倍を超えると、目標とする膜厚を得るために必要な電流密度が高くなり、電子部品どうしが着合してしまうくっつき不良の発生率が高くなることによる。
本願請求項1の発明の電子部品のめっき方法においては、通常、容器内に収納された電子部品と通電用メディアをめっき液に浸漬した状態で、撹拌、揺動、振動などを与えながらめっきを施すことになるが、本願請求項1の発明において、撹拌、揺動、振動などを与える方法やそれらの態様に特別の制約はない。
That is, by using a substantially spherical energization medium 0.9 to 1.1 times the shortest side dimension of the electronic component, even when the electronic component is small as described above, the energization medium and the electronic medium It becomes possible to ensure a sufficient contact probability between the parts. As a result, the plating distribution ratio to the electronic component (the ratio of the amount plated on the electronic component to the total plating amount on the electronic component, plating electrode, and energizing medium) is increased, and the plating film with the target film thickness It is possible to reduce the current density required to form the film, to suppress the sticking failure, and to increase the contact probability between the current-carrying media and the electronic component, thereby making the plating film uniform. Therefore, it is possible to efficiently plate fine electronic components having a length of 0.6 mm or less, a width of 0.3 mm or less, and a height of 0.3 mm or less.
Note that, as the energization medium, a substantially spherical energization medium having a diameter of 0.9 to 1.1 times the shortest side dimension of the electronic component is used because the diameter of the energization medium is the shortest of the electronic component. If the side dimension is less than 0.9 times, the electronic component element will be raised on the energizing medium, and plating will be performed at a high current density, and the occurrence rate of sticking defects in which the electronic components are joined together will be increased. Further, when it exceeds 1.1 times, the current density required for obtaining the target film thickness increases, and the occurrence rate of sticking defects that cause electronic components to be joined increases.
In the method of plating an electronic component according to the first aspect of the present invention, the plating is usually performed while stirring, swinging, vibrating, and the like in a state where the electronic component accommodated in the container and the energizing medium are immersed in the plating solution. However, in the invention of claim 1 of the present application, there are no particular restrictions on the method of giving agitation, oscillation, vibration, etc., and their modes.

また、請求項2の電子部品のめっき方法のように、容器内に略球形のほぐし用絶縁性粒体(撹拌用メディア)をさらに添加してめっきを行うようにした場合、電子部品の凝集(集合)や、電子部品と通電用メディアの凝集(集合)を抑制し、電子部品どうしが着合してしまうくっつき不良が発生したり、めっき膜の均一性が低下したりすることをより確実に抑制、防止して、歩留まりよく電子部品に良好なめっきを施すことが可能になる。   Further, as in the method for plating electronic parts according to claim 2, when plating is performed by further adding substantially spherical insulating particles for agitation (stirring medium) in the container, the aggregation of electronic parts ( Assembly) and agglomeration (aggregation) of electronic parts and current-carrying media, and it is more certain that sticking defects will occur, and the uniformity of the plating film will be reduced. It is possible to suppress and prevent electronic parts from being plated with good yield.

また、請求項3の電子部品のめっき方法のように、容器に振動を与えながら、めっき用電極に通電することにより電子部品にめっきを施すようにした場合、電子部品が上述のような小型のものである場合にも、通電用メディアと電子部品との間の十分な接触確率を確保することが可能になり、電子部品へのめっき分配率を増大させて、目標とする膜厚のめっき膜を形成するために必要な電流密度を減少させてくっつき不良の発生を抑制することが可能になるとともに、めっき膜の均一性を向上させることが可能になり、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下の微細な電子部品に、効率よくしかも確実にめっきを施すことが可能になる。   Further, when the electronic component is plated by energizing the plating electrode while applying vibration to the container as in the method for plating an electronic component of claim 3, the electronic component is small as described above. Even if it is, it is possible to ensure a sufficient contact probability between the current-carrying medium and the electronic component, and increase the plating distribution ratio to the electronic component, so that a plating film with a target film thickness is obtained. It is possible to reduce the current density required to form the film and suppress the occurrence of sticking defects, and to improve the uniformity of the plating film, with a length of 0.6 mm or less and a width of 0 It is possible to efficiently and surely apply plating to minute electronic parts having a height of 3 mm or less and a height of 0.3 mm or less.

また、本願発明(請求項4)の電子部品の製造方法は、請求項1〜3のいずれかに記載のめっき方法により、電子部品に配設された電極の表面にめっき膜を形成するようにしているので、例えば、電子部品の表面に形成された外部電極に、NiめっきやSnめっきなどを施す際に、電子部品どうしが着合してしまうくっつき不良の発生や、めっき膜の均一性の低下の発生などを抑制、防止して、歩留まりよく良好なめっきを施すことが可能になる。
その結果、小型で信頼性の高い電子部品を効率よく製造することが可能になる。
Moreover, the manufacturing method of the electronic component of the present invention (Claim 4) is such that a plating film is formed on the surface of the electrode disposed in the electronic component by the plating method according to any one of Claims 1 to 3. Therefore, for example, when Ni plating or Sn plating is applied to the external electrode formed on the surface of the electronic component, the occurrence of sticking defects that cause the electronic components to come together, and the uniformity of the plating film It is possible to suppress and prevent the occurrence of a decrease and to perform good plating with a high yield.
As a result, it is possible to efficiently manufacture a small and highly reliable electronic component.

以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説明する。   The features of the present invention will be described in more detail below with reference to examples of the present invention.

この実施例(実施例1)では、図1(a),(b)に示すように、寸法が、長さ(L)0.6mm、幅(W)0.3mm、高さ(T)0.3mmの、略直方体形状を有する積層セラミックコンデンサ10の外部電極4a,4b(表面にNiめっき膜5が形成されている)にSnめっきを施して、Niめっき膜5の表面にSnめっき膜6を形成する場合を例にとって説明する。   In this example (Example 1), as shown in FIGS. 1A and 1B, the dimensions are length (L) 0.6 mm, width (W) 0.3 mm, and height (T) 0. The outer electrodes 4a and 4b (the Ni plating film 5 is formed on the surface) of the multilayer ceramic capacitor 10 having a substantially rectangular parallelepiped shape of 3 mm are subjected to Sn plating, and the Sn plating film 6 is formed on the surface of the Ni plating film 5. An example of forming the case will be described.

この実施例1における被めっき物である積層セラミックコンデンサ(電子部品)10は、図1(a),(b)に示すように、セラミック素子1中に、複数の内部電極3a,3bがセラミック層2を介して積層され、かつ、セラミック層2を介して互いに対向する内部電極3a,3bが交互にセラミック素子1の逆側の端面に引き出されて、該端面に形成された外部電極4a,4bに接続された構造を有している。   As shown in FIGS. 1A and 1B, a multilayer ceramic capacitor (electronic component) 10 which is an object to be plated in Example 1 includes a plurality of internal electrodes 3a and 3b in a ceramic layer in a ceramic element 1. 2 and the internal electrodes 3a and 3b facing each other through the ceramic layer 2 are alternately drawn out to the end face on the opposite side of the ceramic element 1, and the external electrodes 4a and 4b formed on the end face It has the structure connected to.

なお、この実施例1において、めっきを施す対象とした積層セラミックコンデンサ10は、図1(a)に示すように、導電ペーストを塗布して、焼き付けることにより形成された外部電極4a,4bの表面にNiめっき5が施された状態のものである。   In Example 1, as shown in FIG. 1 (a), the multilayer ceramic capacitor 10 to be plated is a surface of external electrodes 4a and 4b formed by applying and baking a conductive paste. In this state, Ni plating 5 is applied.

また、図2は本願発明の一実施例にかかるめっき電子部品のめっき方法を実施するのに用いためっき装置の一例を示す図である。
このめっき装置20は、積層セラミックコンデンサ(電子部品)10、通電用の媒体として機能する通電用メディア11、およびほぐし用絶縁性粒体(撹拌用メディア)12を収容する、少なくとも一部がめっき液を通過させるような材料(例えば金網)で構成された容器13と、容器13に振動を与えるための駆動手段14と、下端側が容器13を保持するとともに、上端側が駆動手段14に接続された容器保持部材15と、容器13の底部16に配設された陰極(陰極用電極)17と、陽極用電極18と、めっき液を収容するめっき槽(Snめっき槽)19とを備えている。
Moreover, FIG. 2 is a figure which shows an example of the plating apparatus used in implementing the plating method of the plating electronic component concerning one Example of this invention.
This plating apparatus 20 accommodates a multilayer ceramic capacitor (electronic component) 10, an energizing medium 11 that functions as an energizing medium, and a loosening insulating granular material (agitating medium) 12, at least a part of which is a plating solution. A container 13 made of a material (for example, a wire mesh) that passes through, a driving means 14 for applying vibration to the container 13, a container whose lower end side holds the container 13, and whose upper end side is connected to the driving means 14 A holding member 15, a cathode (cathode electrode) 17 disposed on the bottom 16 of the container 13, an anode electrode 18, and a plating tank (Sn plating tank) 19 for containing a plating solution are provided.

次に、上述のめっき装置を用いて、積層セラミックコンデンサ10の外部電極4a,4bにSnめっきを施す方法について説明する。
まず、上記の長さ(L)0.6mm、幅(W)0.3mm、高さ(T)0.3mmの積層セラミックコンデンサ10を30万個と、直径が0.22〜0.55mmの通電用メディア11を50ccと、直径が7.5mmのほぐし用絶縁性粒体12を80個とを混在させ、陰極用電極17を備えた容器13に投入して、これをSnめっき槽19に浸漬する。
Next, a method of performing Sn plating on the external electrodes 4a and 4b of the multilayer ceramic capacitor 10 using the above-described plating apparatus will be described.
First, 300,000 multilayer ceramic capacitors 10 having a length (L) of 0.6 mm, a width (W) of 0.3 mm, and a height (T) of 0.3 mm, and a diameter of 0.22 to 0.55 mm. 50 cc of energizing media 11 and 80 insulating particles 12 for loosening having a diameter of 7.5 mm are mixed and put into a container 13 equipped with a cathode electrode 17, and this is put into an Sn plating tank 19. Immerse.

なお、通電用メディア11としては、スチールボールを用い、表1に示すように、その直径を0.22〜0.55mmの範囲で変化させたものを用いた。
また、ほぐし用絶縁性粒体(撹拌用メディア)12としては、鉄からなる球体の表面をゴムなどの絶縁材料で被覆したものを用いた。
なお、通電用メディアとしては、スチールボールに限らず、容器内に収納された電子部品と通電用メディアをめっき液に浸漬し、通電することによりめっきを行うめっき方法において通電用メディアとして用いられる種々の材料からなるものを用いることが可能である。
In addition, as the energizing medium 11, a steel ball was used, and as shown in Table 1, the diameter was changed in the range of 0.22 to 0.55 mm.
In addition, as the loosening insulating particles (stirring medium) 12, a sphere made of iron whose surface was covered with an insulating material such as rubber was used.
The energizing medium is not limited to a steel ball, and various kinds of energizing media that are used as energizing media in a plating method in which an electronic component housed in a container and an energizing medium are immersed in a plating solution and are energized. It is possible to use a material made of these materials.

それから、駆動手段14から振動を加え、容器13を振動させて、容器13内の積層セラミックコンデンサ10、通電用メディア11、ほぐし用絶縁性粒体12を撹拌しつつ、容器13の陰極用電極17に通電することにより、積層セラミックコンデンサ10の外部電極4a,4bにSnめっきを施した。なお、この実施例1では、目標めっき膜厚が3.5μmのSnめっき膜が200分間で形成されるように電流密度を変化させた。   Then, vibration is applied from the driving means 14 to vibrate the container 13, while stirring the multilayer ceramic capacitor 10, the energizing medium 11, and the loosening insulating particles 12 in the container 13, and the cathode electrode 17 of the container 13. Was applied to the external electrodes 4a and 4b of the multilayer ceramic capacitor 10 by Sn plating. In Example 1, the current density was changed so that an Sn plating film having a target plating film thickness of 3.5 μm was formed in 200 minutes.

そして、上述のようにしてSnめっきを施すことにより得られた積層セラミックコンデンサについて、Snめっき膜厚を調べるとともに、積層セラミックコンデンサ(電子部品)どうしが着合してしまうくっつき不良の発生率を調べた。
その結果を表1に示す。
And about the multilayer ceramic capacitor obtained by performing Sn plating as mentioned above, while investigating Sn plating film thickness, it investigated the incidence rate of the sticking defect which multilayer ceramic capacitors (electronic parts) join together. It was.
The results are shown in Table 1.

Figure 2006028571
Figure 2006028571

なお、表1において、「試料番号」の欄および「通電用メディア直径の電子部品最短辺寸法に対する比率」の欄に*印を付したものは本願発明の範囲外のものである。   In Table 1, the “sample number” column and the “ratio of the current-carrying media diameter to the electronic component shortest side dimension” marked with * are outside the scope of the present invention.

表1に示すように、通電用メディアとして、試料番号6,7,8のように、直径が電子部品最短辺寸法の0.9〜1.1倍の範囲にあるもの、すなわち、直径が0.27〜0.33mmの範囲にある通電用メディア11を用いた場合には、くっつき不良率が0.05%以下になることが確認された。   As shown in Table 1, as the energization media, those having a diameter in the range of 0.9 to 1.1 times the shortest side dimension of the electronic component, such as sample numbers 6, 7, and 8, that is, the diameter is 0 It was confirmed that when the energization medium 11 in the range of .27 to 0.33 mm was used, the sticking failure rate was 0.05% or less.

これは、直径が電子部品最短辺寸法の0.9〜1.1倍の範囲にある通電用メディアを用いることにより、撹拌が良好になり、電子部品との接触確率が増大して電子部品へのめっき分配率が増加し、目標とする膜厚を得るための電流密度が減少する結果、電子部品どうしが着合してしまうくっつき不良の発生率が抑制されたものと考えられる。   This is because by using a current-carrying medium whose diameter is in the range of 0.9 to 1.1 times the shortest side dimension of the electronic component, the agitation becomes good and the probability of contact with the electronic component increases, leading to the electronic component. As a result of the increase in the plating distribution ratio and the decrease in the current density for obtaining the target film thickness, it is considered that the occurrence rate of the sticking failure in which the electronic components are brought together is suppressed.

一方、試料番号1〜5のように、通電用メディアとして、直径が電子部品最短辺寸法の1.1倍を超えるものを用いた場合、目標とする膜厚を得るために必要な電流密度が高くなり、電子部品どうしが着合してしまうくっつき不良の発生率が高くなることが確認された。   On the other hand, when a medium whose diameter exceeds 1.1 times the shortest side dimension of the electronic component is used as the energization medium as in sample numbers 1 to 5, the current density necessary to obtain the target film thickness is It has been confirmed that the incidence of sticking defects in which electronic components are brought into contact with each other increases.

また、試料番号9および10のように、通電用メディアとして、直径が電子部品最短辺寸法の0.9倍を下回るものを用いた場合にも、電子部品どうしが着合してしまうくっつき不良の発生率が高くなることが確認された。これは、通電用メディアの直径が小さくなりすぎて、通電用メディア上に電子部品素子が浮き出し、高電流密度でSnめっきが施されることによるものと考えられる。   In addition, even when a medium having a diameter of less than 0.9 times the shortest side dimension of the electronic component is used as in the case of sample numbers 9 and 10, there is no sticking failure in which the electronic components are brought together. It was confirmed that the incidence was high. This is considered to be due to the fact that the diameter of the current-carrying medium becomes too small, the electronic component element is raised on the current-carrying medium, and Sn plating is performed at a high current density.

この実施例(実施例2)では、上記実施例1の場合と同様のめっき装置を用いて、寸法が、長さ(L)0.4mm、幅(W)0.2mm、高さ(T)0.2mmの、略直方体形状を有する積層セラミックコンデンサの外部電極にSnめっきを施した。   In this example (Example 2), using the same plating apparatus as in Example 1, the dimensions were length (L) 0.4 mm, width (W) 0.2 mm, and height (T). The outer electrode of the multilayer ceramic capacitor having a substantially rectangular parallelepiped shape of 0.2 mm was subjected to Sn plating.

なお、Snめっきを施すにあたっては、長さ(L)0.4mm、幅(W)0.2mm、高さ(T)0.2mmの積層セラミックコンデンサを50万個と、直径が0.14〜0.40mmの通電用メディア50ccと、直径が7.5mmのほぐし用絶縁性粒体80個とを混在させて陰極を備えた容器に投入し、これをSnめっき槽に浸漬してめっきを施した。めっき方法の具体的な手順は、上記実施例1の場合と同様とした。   In addition, in performing Sn plating, 500,000 multilayer ceramic capacitors having a length (L) of 0.4 mm, a width (W) of 0.2 mm, and a height (T) of 0.2 mm and a diameter of 0.14 to 50cc of 0.40mm current-carrying medium and 80 insulating particles for loosening with a diameter of 7.5mm are mixed and put into a container equipped with a cathode, and this is immersed in a Sn plating tank and plated. did. The specific procedure of the plating method was the same as in Example 1 above.

そして、上述のようにしてSnめっきを施すことにより得られた積層セラミックコンデンサについて、Snめっき膜厚を調べるとともに、電子部品どうしが着合してしまうくっつき不良の発生率を調べた。
その結果を表2に示す。
And about the multilayer ceramic capacitor obtained by performing Sn plating as mentioned above, while investigating Sn plating film thickness, the incidence rate of the sticking defect which electronic components join together was investigated.
The results are shown in Table 2.

Figure 2006028571
Figure 2006028571

なお、表2において、「試料番号」の欄および「通電用メディア直径の電子部品最短辺寸法に対する比率」の欄に*印を付したものは本願発明の範囲外のものである。   In Table 2, the “sample number” column and the “ratio of the current-carrying medium diameter to the electronic component shortest side dimension” marked with * are outside the scope of the present invention.

表2に示すように、通電用メディア11として、試料番号15,16,17のように、直径が電子部品最短辺寸法の0.9〜1.1倍の範囲にあるもの、すなわち、直径が0.18〜0.22mmの範囲にある通電用メディアを用いた場合には、くっつき不良率が0.05%以下になることが確認された。   As shown in Table 2, the current-carrying medium 11 has a diameter in the range of 0.9 to 1.1 times the shortest side dimension of the electronic component, such as sample numbers 15, 16, and 17, that is, the diameter is It was confirmed that when the energization medium in the range of 0.18 to 0.22 mm was used, the sticking failure rate was 0.05% or less.

これは、上記実施例1の場合にも説明したように、直径が電子部品最短辺寸法の0.9〜1.1倍の範囲にある通電用メディアを用いることにより、撹拌が良好になり、電子部品との接触確率が増大して電子部品へのめっき分配率が増加し、目標とする膜厚を得るための電流密度が減少する結果、電子部品どうしが着合してしまうくっつき不良の発生率が抑制されたものと考えられる。   As described in the case of Example 1 above, the use of a current-carrying medium having a diameter in the range of 0.9 to 1.1 times the shortest side dimension of the electronic component makes stirring good. Increasing the probability of contact with electronic components, increasing the plating distribution ratio to electronic components, and reducing the current density to obtain the target film thickness, resulting in sticking defects that cause electronic components to join together It is thought that the rate was suppressed.

一方、試料番号11〜14のように、通電用メディアとして、直径が電子部品最短辺寸法の1.1倍を超えるものを用いた場合、目標とする膜厚を得るために必要な電流密度が高くなり、電子部品どうしが着合してしまうくっつき不良の発生率が高くなった。   On the other hand, when a medium having a diameter exceeding 1.1 times the shortest side dimension of the electronic component is used as the energization medium as in sample numbers 11 to 14, the current density necessary to obtain the target film thickness is Increasingly, the occurrence rate of sticking defects in which electronic components are brought together increases.

また、試料番号18および19のように、通電用メディアとして、直径が電子部品最短辺寸法の0.9倍を下回るものを用いた場合にも、電子部品どうしが着合してしまうくっつき不良の発生率が高くなった。これは、上記実施例1の場合にも説明したように、通電用メディアの直径が小さくなりすぎて、通電用メディア上に電子部品素子が浮き出し、高電流密度でSnめっきが施されてしまうことによるものと考えられる。   Further, even when a medium having a diameter of less than 0.9 times the shortest side dimension of the electronic component is used as in the case of sample numbers 18 and 19, there is no sticking failure in which the electronic components are brought together. Incidence increased. This is because, as described in the case of the first embodiment, the diameter of the current-carrying medium becomes too small, the electronic component element is raised on the current-carrying medium, and Sn plating is performed at a high current density. It is thought to be due to.

なお、上記実施例1及び2では、積層セラミックコンデンサ(セラミック素子)の外部電極の表面にNiめっき膜を形成した状態のものを被めっき部品とし、Niめっき膜上にSnめっきを施す場合を例にとって説明したが、めっきすべき対象となる金属の種類(実施例1および2ではNi)や、めっきすべき金属(この実施例1,2ではSn)の種類には、特に制約はなく、例えば、Ag電極上にNiめっきを施す場合、Niめっき膜上にはんだめっきを施す場合など、種々の条件下でめっきを行う場合に広く本願発明を適用することが可能である。   In Examples 1 and 2, an example in which a Ni plated film is formed on the surface of an external electrode of a multilayer ceramic capacitor (ceramic element) is a component to be plated, and Sn plating is applied on the Ni plated film. As described above, there are no particular restrictions on the type of metal to be plated (Ni in Examples 1 and 2) and the type of metal to be plated (Sn in Examples 1 and 2). The present invention can be widely applied to the case where the plating is performed under various conditions such as the case where Ni plating is performed on the Ag electrode and the case where solder plating is performed on the Ni plating film.

また、上記実施例では、積層セラミックコンデンサの外部電極にめっきを施す場合を例にとって説明したが、本願発明は、積層セラミックコンデンサ以外の他の電子部品(例えば、チップ抵抗、チップコイル、チップLC部品、チップサーミスタ、チップフェライトなど)にめっきを施す場合にも適用することが可能である。   In the above embodiment, the case where the external electrode of the multilayer ceramic capacitor is plated has been described as an example. However, the present invention is not limited to the multilayer ceramic capacitor, but other electronic components (for example, chip resistor, chip coil, chip LC component). It can also be applied to the case of plating a chip thermistor, chip ferrite, etc.).

また、上記実施例1および2では、被めっき物である電子部品(積層セラミックコンデンサ)を、通電用メディアとともに、ほぐし用絶縁性粒体(撹拌用メディア)を容器に投入してめっきを行うようにしているが、ほぐし用絶縁性粒体(撹拌用メディア)を添加することなくめっきを行うことも可能であり、その場合にも上記実施例1および2の場合に準じる作用効果を得ることができる。   In Examples 1 and 2, the electronic component (multilayer ceramic capacitor), which is the object to be plated, is plated with the energizing media and the loosening insulating particles (stirring media) in the container. However, it is also possible to perform plating without adding the insulating particles for agitation (stirring medium), and in this case, the same effects as those in Examples 1 and 2 can be obtained. it can.

また、上記実施例1および2では、上面側が開口した容器に被めっき物である電子部品(積層セラミックコンデンサ)および通電用メディアを入れてめっきを行うようにした場合を例にとって説明したが、本願発明の電子部品のめっき方法を実施するためのめっき装置の構成には特別の制約はなく、回転可能なバレルに被めっき部品および通電用メディアを入れ、バレルを回転させながらめっきを行うバレルめっき法を用いる場合にも本願発明を適用することが可能である。   Further, in the above-described Examples 1 and 2, the case where an electronic component (multilayer ceramic capacitor) that is an object to be plated and a current-carrying medium are plated in a container having an upper surface opened has been described as an example. There is no special restriction in the configuration of the plating apparatus for carrying out the plating method of the electronic component of the invention, and the barrel plating method in which the component to be plated and the current-carrying medium are placed in a rotatable barrel and plating is performed while rotating the barrel. It is possible to apply the present invention also when using.

本願発明はさらにその他の点においても上記実施例に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above embodiment in other points, and various applications and modifications can be made within the scope of the invention.

本願発明の電子部品のめっき方法のように、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下の、略直方体形状を有する電子部品の表面にめっきを施す場合において、通電用メディアとして、直径が電子部品最短辺寸法の0.9〜1.1倍の範囲にある略球形の通電用メディアを用いることにより、電子部品どうしのくっつき不良や、めっき膜の均一性の低下などの発生を抑制、防止して、歩留まりよく良好なめっきを施すことが可能になり、信頼性の高い小型の電子部品を効率よく製造することが可能になる。
したがって、本願発明は、例えば、めっき膜を備えた外部電極を有する小型の電子部品の製造工程などに広く用いることが可能である。
When plating the surface of an electronic component having a substantially rectangular parallelepiped shape having a length of 0.6 mm or less, a width of 0.3 mm or less, and a height of 0.3 mm or less as in the method for plating an electronic component of the present invention, energization is performed. By using a substantially spherical energizing medium with a diameter in the range of 0.9 to 1.1 times the shortest side dimension of the electronic component, the electronic components will not stick together and the plating film uniformity will be reduced. It is possible to suppress and prevent the occurrence of the above and to perform good plating with a high yield, and it is possible to efficiently manufacture highly reliable small electronic components.
Therefore, the present invention can be widely used in, for example, a manufacturing process of a small electronic component having an external electrode provided with a plating film.

本願発明の実施例1にかかる電子部品のめっき方法によりにめっきが施される電子部品(積層セラミックコンデンサ)を示す図であり、(a)は断面図、(b)は斜視図である。It is a figure which shows the electronic component (multilayer ceramic capacitor) plated by the plating method of the electronic component concerning Example 1 of this invention, (a) is sectional drawing, (b) is a perspective view. 本願発明の一実施例にかかるめっき電子部品のめっき方法を実施するのに用いためっき装置の一例を示す図である。It is a figure which shows an example of the plating apparatus used in implementing the plating method of the plating electronic component concerning one Example of this invention. 従来のめっき方法によりめっきが施される電子部品(積層セラミックコンデンサ)の構成を示す断面図である。It is sectional drawing which shows the structure of the electronic component (multilayer ceramic capacitor) plated by the conventional plating method.

符号の説明Explanation of symbols

1 セラミック素子
2 セラミック層
3a,3b 内部電極
4a,4b 外部電極
5 Niめっき膜
6 Snめっき膜
10 積層セラミックコンデンサ(電子部品)
11 通電用メディア(金属球メディア)
12 撹拌用メディア(ほぐし用絶縁性粒体)
13 容器
14 駆動手段
15 容器保持部材
16 容器の底部
17 陰極用電極
18 陽極用電極
19 めっき槽(Snめっき槽)
20 めっき装置
DESCRIPTION OF SYMBOLS 1 Ceramic element 2 Ceramic layer 3a, 3b Internal electrode 4a, 4b External electrode 5 Ni plating film 6 Sn plating film 10 Multilayer ceramic capacitor (electronic component)
11 Current-carrying media (metal ball media)
12 Stirring media (insulating granules for loosening)
DESCRIPTION OF SYMBOLS 13 Container 14 Drive means 15 Container holding member 16 Bottom of container 17 Electrode for cathode 18 Electrode for anode 19 Plating tank (Sn plating tank)
20 Plating equipment

Claims (4)

めっき用電極を備えた容器内に収納された電子部品と通電用メディアをめっき液に浸漬し、めっき用電極に通電することにより電子部品にめっきを施す電子部品のめっき方法において、
前記電子部品が、長さ0.6mm以下、幅0.3mm以下、高さ0.3mm以下の、略直方体形状を有する電子部品である場合に、
通電用メディアとして、直径が前記電子部品の最短辺寸法の0.9〜1.1倍の略球形の通電用メディアを用いること
を特徴とする電子部品のめっき方法。
In the plating method of an electronic component in which an electronic component housed in a container equipped with an electrode for plating and a current-carrying medium are immersed in a plating solution and the electronic component is plated by energizing the electrode for plating.
When the electronic component is an electronic component having a substantially rectangular parallelepiped shape having a length of 0.6 mm or less, a width of 0.3 mm or less, and a height of 0.3 mm or less,
A plating method for an electronic component, wherein a substantially spherical energization medium having a diameter of 0.9 to 1.1 times the shortest side dimension of the electronic component is used as the energization medium.
前記容器内に、略球形のほぐし用絶縁性粒体をさらに添加してめっきを行うことを特徴とする請求項1記載の電子部品のめっき方法。   The method for plating an electronic component according to claim 1, wherein plating is performed by further adding substantially spherical insulating particles for loosening into the container. 前記容器に振動を与えながら、めっき用電極に通電することにより電子部品にめっきを施すことを特徴とする請求項1または2記載の電子部品のめっき方法。   3. The electronic component plating method according to claim 1, wherein the electronic component is plated by energizing the plating electrode while applying vibration to the container. 請求項1〜3のいずれかに記載のめっき方法により、電子部品に配設された電極の表面にめっき膜を形成する工程を備えていることを特徴とする電子部品の製造方法。   A method for manufacturing an electronic component, comprising the step of forming a plating film on a surface of an electrode disposed on the electronic component by the plating method according to claim 1.
JP2004207710A 2004-07-14 2004-07-14 Method for plating electronic component and method for manufacturing electronic component Withdrawn JP2006028571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207710A JP2006028571A (en) 2004-07-14 2004-07-14 Method for plating electronic component and method for manufacturing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207710A JP2006028571A (en) 2004-07-14 2004-07-14 Method for plating electronic component and method for manufacturing electronic component

Publications (1)

Publication Number Publication Date
JP2006028571A true JP2006028571A (en) 2006-02-02

Family

ID=35895279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207710A Withdrawn JP2006028571A (en) 2004-07-14 2004-07-14 Method for plating electronic component and method for manufacturing electronic component

Country Status (1)

Country Link
JP (1) JP2006028571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120339A1 (en) * 2013-02-01 2014-08-07 Apple Inc. Low acoustic noise capacitors
US20170018362A1 (en) * 2015-07-17 2017-01-19 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014120339A1 (en) * 2013-02-01 2014-08-07 Apple Inc. Low acoustic noise capacitors
US9287049B2 (en) 2013-02-01 2016-03-15 Apple Inc. Low acoustic noise capacitors
US20170018362A1 (en) * 2015-07-17 2017-01-19 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing same
CN106356190A (en) * 2015-07-17 2017-01-25 株式会社村田制作所 Laminated ceramic electronic component and method for manufacturing same
US10068710B2 (en) * 2015-07-17 2018-09-04 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing same
US10366838B2 (en) 2015-07-17 2019-07-30 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and method for manufacturing same

Similar Documents

Publication Publication Date Title
US9583251B2 (en) Chip electronic component and board having the same
JP5807733B1 (en) Solder material, solder joint and method for producing solder material
JP6217836B1 (en) Nuclear material, semiconductor package and bump electrode forming method
CN105304324B (en) Ceramic electronic components and its manufacturing method
KR20160140153A (en) Coil electronic component and manufacturing method thereof
JP2018085459A (en) Coil component
EP1900461A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JP2021019010A (en) Multilayer electronic component and mounting structure of the same
JP2009266499A (en) Electronic component
US20240170199A1 (en) Coil component and method of manufacturing the same
JP2006028571A (en) Method for plating electronic component and method for manufacturing electronic component
JP2006229005A (en) Chip-type electronic component
CN109693054B (en) Core material, solder joint and bump electrode forming method
JP4111340B2 (en) Chip-type electronic components
JP2010274326A (en) Joined structure of solder joint
JP2008038240A (en) Method of plating chip-shaped electronic component
JP2019117900A (en) Multilayer electronic component
JPH08186050A (en) Electronic device and production thereof
JP3899722B2 (en) Barrel plating method for electronic parts
KR101719970B1 (en) Coil electronic component and manufacturing method thereof
JP2007204822A (en) Plating method
KR20190130998A (en) Conductive metal powder for forming electrode, manufacturing method tereof and conductive paste for electronic component termination electrode
JP2004100011A (en) Method for manufacturing electronic component
JP2005159064A (en) Ceramic electronic component and manufacturing method thereof
JP2005036270A (en) Method of producing electronic component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002