JPH09137227A - Production of high wear resistant pearlite rail - Google Patents

Production of high wear resistant pearlite rail

Info

Publication number
JPH09137227A
JPH09137227A JP23708496A JP23708496A JPH09137227A JP H09137227 A JPH09137227 A JP H09137227A JP 23708496 A JP23708496 A JP 23708496A JP 23708496 A JP23708496 A JP 23708496A JP H09137227 A JPH09137227 A JP H09137227A
Authority
JP
Japan
Prior art keywords
rail
steel
temperature
cooling
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23708496A
Other languages
Japanese (ja)
Other versions
JP3117915B2 (en
Inventor
Masaharu Ueda
正治 上田
Hideaki Kageyama
英明 影山
Koichi Uchino
耕一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08237084A priority Critical patent/JP3117915B2/en
Publication of JPH09137227A publication Critical patent/JPH09137227A/en
Application granted granted Critical
Publication of JP3117915B2 publication Critical patent/JP3117915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the wear resistance required of a high-load railroad rail. SOLUTION: A steel rail, which has a composition containing >0.85-1.40% C, 0.10-1.00% Si, and 0.10-1.50% Mn and further containing, if necessary, one or >=2 elements among Cr, Mo, V, Nb, Co, and B, and has a high-temp. heat after hot rolling, or a steel rail, heated to high temp. for the purpose of heat treatment, is used. The railhead of this steel rail is subjected to accelerated cooling through the temp. region from austenitic region temp. to 750-600 deg.C at a rate of (>10 to 30) deg.C/sec and successively subjected to controlled cooling through the temp. region from 750-600 deg.C to 550-450 deg.C at a rate of (1 to <10) deg.C/sec. In this rail steel, wear resistance is remarkably improved without deteriorating toughness, as compared with the reference rail steel, by increasing carbon content and simultaneously applying proper heat treatment to form a pearlitic structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重荷重鉄道のレー
ルに要求される耐摩耗性を大きく向上させたパーライト
レールの製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a pearlite rail having a significantly improved wear resistance required for a heavy rail rail.

【0002】[0002]

【従来の技術】鉄道輸送の高効率化の手段として、列車
速度の向上や列車積載重量の増加が図られている。この
ような鉄道輸送の効率化はレール使用環境の過酷化を意
味し、レール材質の一層の改善が要求されるに至ってい
る。具体的には、海外の重荷重鉄道の曲線区間に敷設さ
れたレールでは摩耗が急激に増加し、レールの摩耗寿命
の点で問題視されるようになった。
2. Description of the Related Art As means for increasing the efficiency of rail transportation, train speed has been increased and train load weight has been increased. Such an increase in the efficiency of rail transportation implies a severer use environment for rails, and further improvements in rail materials have been required. Specifically, rails laid on curved sections of heavy-duty railways abroad have rapidly increased in wear, and have become problematic in terms of rail wear life.

【0003】しかしながら、最近のレール高強度化熱処
理技術の向上により、共析炭素鋼を用いた微細パーライ
ト組織を呈した下記に示すような高強度(高硬度)レー
ルが開発され、重荷重鉄道の曲線区間のレール寿命を飛
躍的に改善してきた。 頭部がソルバイト組織、または、微細なパーライト組
織の超大荷重用の熱処理レール(特公昭54−2549
0号公報参照)。 Cr,Nbなどの合金を添加し、耐摩耗性ばかりでな
く溶接部の硬度低下を改善した低合金熱処理レールの製
造法(特公昭59−19173号公報参照)。 これらのレールの特徴は、共析炭素含有鋼による微細パ
ーライト組織を呈する高強度(高硬度)レールであり、
その目的とするところは耐摩耗性を向上させるところに
あった。
However, due to the recent improvement in the heat treatment technology for increasing the strength of rails, the following high-strength (high-hardness) rails having a fine pearlite structure using eutectoid carbon steel have been developed, and have been developed for heavy-duty railways. We have dramatically improved the rail life in curved sections. Heat-treating rail for super heavy load with sorbite structure or fine pearlite structure on the head (Japanese Patent Publication No. 54-2549).
No. 0). A method for manufacturing a low alloy heat treatment rail, in which alloys such as Cr and Nb are added to improve not only wear resistance but also decrease in hardness of welded portions (see Japanese Patent Publication No. 59-19173). The characteristics of these rails are high-strength (high hardness) rails that exhibit a fine pearlite structure made of steel containing eutectoid carbon.
The purpose was to improve wear resistance.

【0004】しかし、近年、海外の重荷重鉄道ではより
一層の鉄道輸送の高効率化のために、貨物の高積載化を
強力に進めており、特に急曲線のレールでは上記開発の
レールを用いても耐摩耗性が確保できず、摩耗によるレ
ール寿命の低下が問題となってきた。このような背景か
ら、現状の共析炭素含有の高強度レール以上の耐摩耗性
を有するレールの開発が求められるようになってきた。
However, in recent years, in overseas heavy-duty railways, in order to further improve the efficiency of railway transportation, the loading of cargo has been strongly promoted. Especially, in the case of a steep curve rail, the rail developed above is used. However, wear resistance cannot be ensured, and the reduction of rail life due to wear has become a problem. Against this background, there has been a demand for the development of a rail having wear resistance higher than that of the current high-strength rail containing eutectoid carbon.

【0005】[0005]

【発明が解決しようとする課題】従来の共析炭素成分の
パーライト組織を呈したレール鋼においては、耐摩耗性
を向上させるため、パーライト組織中のラメラ間隔を微
細化し、硬さを向上させる方法が用いられている。しか
し、共析炭素成分のパーライト組織を呈したレール鋼で
は現状の硬さが上限(Hv420)であり、硬さの向上
を狙って熱処理冷却速度や合金の添加量を増加させる
と、パーライト組織中にベイナイトやマルテンサイト組
織が生成し、レールの耐摩耗性や靭性を低下させるとい
った問題点があった。また、もう一つの解決方法として
はパーライト組織より耐摩耗性が高い金属組織を呈した
材料をレール鋼として使用する方法が考えられるが、レ
ールと車輪のようなころがり摩耗環境下では微細パーラ
イト組織よりも安価で耐摩耗性に優れた材料は見いださ
れていないのが現状である。
In a conventional rail steel exhibiting a pearlite structure of an eutectoid carbon component, in order to improve abrasion resistance, a method of reducing the lamellar spacing in the pearlite structure and improving hardness. Is used. However, in the case of a rail steel exhibiting a pearlite structure of a eutectoid carbon component, the current hardness is the upper limit (Hv420). In addition, there was a problem that a bainite or martensite structure was generated, and the wear resistance and toughness of the rail were reduced. Another possible solution is to use a material with a metal structure that has higher wear resistance than the pearlite structure as the rail steel, but in rolling wear environments such as rails and wheels, it is better than the fine pearlite structure. At present, however, no material that is inexpensive and has excellent wear resistance has been found.

【0006】従来レール鋼として用いられている共析炭
素成分のパーライト組織は硬さの低いフェライト組織と
板状の硬いセメンタイト組織の層状構造になっている。
本発明者らはパーライト組織の摩耗機構を解析した結
果、まずはじめに車輪の通過により柔らかなフェライト
相が絞り出され、その後ころがり面直下に硬いセメンタ
イト相のみが積層化し、耐摩耗性が確保されていること
を確認した。そこで、本発明者らは耐摩耗性を向上させ
るためパーライト組織の硬さを向上させると同時に、炭
素量を高くし、耐摩耗性を確保しているパーライト組織
中の板状の硬いセメンタイト相の比率を増加させ、ころ
がり面直下でのセメンタイト相密度を高めることによ
り、耐摩耗性が飛躍的に向上することを実験により見い
だした。
The pearlite structure of the eutectoid carbon component conventionally used as a rail steel has a layered structure of a ferrite structure having a low hardness and a hard cementite structure having a plate shape.
As a result of analyzing the wear mechanism of the pearlite structure, the present inventors first squeeze out a soft ferrite phase by passing through a wheel, and then only a hard cementite phase is laminated immediately below the rolling surface to ensure wear resistance. I confirmed that. Therefore, the present inventors have improved the hardness of the pearlite structure in order to improve the wear resistance, at the same time, increase the carbon content, to secure the wear resistance of the plate-like hard cementite phase in the pearlite structure. It was found by experiments that the wear resistance was dramatically improved by increasing the ratio and increasing the cementite phase density just below the rolling surface.

【0007】しかし、耐摩耗性を向上させるため炭素量
を増加させると、レール頭部に初析セメンタイトが生成
し易く、レールの延性および靭性が大きく低下するとい
った問題点があった。
However, if the amount of carbon is increased to improve wear resistance, proeutectoid cementite is likely to be formed on the rail head, and there is a problem that ductility and toughness of the rail are greatly reduced.

【0008】炭素量を増加させた時に生成するこの初析
セメンタイトは、冷却速度の遅い、パーライト変態が始
まる前の高温度域で生成することが知られている。そこ
で、この初析セメンタイトの生成を防止する方法とし
て、熱間圧延直後のレールまたは再加熱されたレールに
加速冷却を施す方法もある。しかし、成分系や鋳片の偏
析状態によっては、加速冷却を行っても旧オーステナイ
ト粒界に微量な初析セメンタイトが生成し、レールの基
本性能として重要なレール頭部での靭性および延性を低
下させるといった問題点があった。しかし、このような
問題点があるにも関わらず、この微量な初析セメンタイ
トの生成を防止し、かつ、セメンタイト比率が高く、硬
さの高いパーライト組織を安定的に生成させるレール製
造法については十分な検討が行われていなかった。
It is known that the pro-eutectoid cementite formed when the amount of carbon is increased is formed in a high temperature region where the cooling rate is slow and before the pearlite transformation starts. Therefore, as a method of preventing the formation of this pro-eutectoid cementite, there is also a method of subjecting a rail immediately after hot rolling or a reheated rail to accelerated cooling. However, depending on the composition of the components and the segregation state of the slab, a small amount of pro-eutectoid cementite is generated in the old austenite grain boundaries even if accelerated cooling is performed, and the toughness and ductility at the rail head, which is important as the basic performance of the rail, is reduced. There was a problem of making it happen. However, in spite of such problems, a rail manufacturing method for preventing the formation of a small amount of pro-eutectoid cementite and for stably forming a pearlite structure having a high cementite ratio and a high hardness is It has not been fully examined.

【0009】そこで、本発明者らはこの初析セメンタイ
トの生成を抑制する冷却方法を実験により検討した。そ
の結果、熱間圧延直後または再加熱されたレール頭部を
初析セメンタイトが生成するパーライト変態開始直前の
高温度域を10超〜30℃/secの高冷却速度で加速冷却
することにより、初析セメンタイトの生成を抑制できる
ことを確認した。さらに、本発明者らは初析セメンタイ
ト生成抑制後にパーライト組織を高硬度化する方法を検
討した。その結果、パーライト変態開始までの加速冷却
の直後に、1〜10℃/secの冷却速度で制御冷却するこ
とにより、高硬度の耐摩耗性に優れたパーライト組織が
安定的に生成することを実験により確認した。
Therefore, the present inventors have conducted experiments to examine a cooling method for suppressing the formation of pro-eutectoid cementite. As a result, by accelerating and cooling the high temperature region immediately after hot rolling or just before the start of pearlite transformation in which proeutectoid cementite is formed, the reheated rail head is accelerated at a high cooling rate of more than 10 to 30 ° C./sec. It was confirmed that the formation of precipitated cementite can be suppressed. Furthermore, the present inventors examined a method of increasing the hardness of the pearlite structure after suppressing the formation of pro-eutectoid cementite. As a result, by performing controlled cooling at a cooling rate of 1 to 10 ° C / sec immediately after accelerated cooling until the start of pearlite transformation, it was confirmed that a pearlite structure with high hardness and excellent wear resistance was stably generated. Confirmed by.

【0010】以上の結果から、本発明者らはレールの耐
摩耗性の向上と靭性および延性の確保を図るため、ま
ず、レール鋼の炭素量を増加させ、同時に、熱間圧延直
後または再加熱されたレール頭部に加速冷却を行い、引
き続き、制御冷却を行うことにより、レールの靭性およ
び延性に有害な初析セメンタイトの生成を防止し、セメ
ンタイト比率が高く、耐摩耗性に優れたパーライト組織
を呈した高強度レールが製造できることを確認した。す
なわち本発明は、重荷重鉄道のレールに要求される耐摩
耗性を大きく向上させたレールを低コストで提供するこ
とを目的とするものである。
From the above results, in order to improve the wear resistance of the rail and to secure the toughness and ductility, the present inventors first increase the carbon content of the rail steel and, at the same time, immediately after hot rolling or reheating. By accelerating cooling the rail head and then performing controlled cooling, the formation of proeutectoid cementite, which is harmful to the toughness and ductility of the rail, is prevented, and the pearlite structure has a high cementite ratio and excellent wear resistance. It was confirmed that a high-strength rail exhibiting the above can be manufactured. That is, it is an object of the present invention to provide a rail having a significantly improved wear resistance required for a heavy-duty railway rail at low cost.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するものであって、その要旨とするところは、重量%
で、C :0.85超〜1.40%、 Si:0.10
〜1.00%、Mn:0.10〜1.50%を含有し
て、さらに必要に応じて、Cr:0.05〜1.00
%、 Mo:0.01〜0.20%、V :0.02
〜0.30%、 Nb:0.002〜0.05%、C
o:0.10〜2.00%、 B :0.0005〜
0.005%の1種または2種以上を含有し、残部が鉄
および不可避的不純物からなる鋼を熱間圧延した、高温
度の熱を保有する鋼レール、あるいは熱処理する目的で
高温に加熱された鋼レールの頭部を、オーステナイト域
温度から750〜600℃の間の温度までを10超〜3
0℃/secで加速冷却し、引き続き、750〜600℃の
間の温度から550〜450℃の間の温度までを1〜1
0℃/sec未満で制御冷却することを特徴とする高耐摩耗
パーライトレールの製造法である。
The present invention achieves the above-mentioned object, and the gist of the invention is% by weight.
And C: more than 0.85 to 1.40%, Si: 0.10.
.About.1.00%, Mn: 0.10 to 1.50%, and if necessary, Cr: 0.05 to 1.00.
%, Mo: 0.01 to 0.20%, V: 0.02
~ 0.30%, Nb: 0.002-0.05%, C
o: 0.10 to 2.00%, B: 0.0005 to
Steel rails containing 0.005% of 1 or 2 or more types, the balance of which is iron and unavoidable impurities, hot-rolled, steel rails that retain high temperature heat, or heated to high temperature for the purpose of heat treatment. The steel rail head is heated from austenite temperature to a temperature between 750 and 600 ° C in excess of 10 to 3
Accelerated cooling at 0 ° C / sec, followed by 1-1 from 750 to 600 ° C to 550 to 450 ° C
It is a method for producing a high wear-resistant pearlite rail characterized by controlled cooling at less than 0 ° C / sec.

【0012】以下本発明について詳細に説明する。ま
ず、本発明においてレールの化学成分を上記のように限
定した理由について説明する。Cはパーライト変態を促
進させて、かつ、耐摩耗性を確保する有効な元素であ
り、通常のレール鋼としてはC量0.60〜0.85%
が添加されているが、C量0.85%以下では耐摩耗性
の向上を図るためのパーライト組織中のセメンタイト密
度が確保できず、さらに、レール頭部内部疲労損傷の起
点となる初析フェライトが生成し易くなる。また、C量
が1.40%を超えると上記熱処理を行ってもレール頭
部に初析セメンタイトが生成し、延性および靭性が低下
するため、C量を0.85超〜1.40%に限定した。
Hereinafter, the present invention will be described in detail. First, the reason why the chemical composition of the rail is limited as described above in the present invention will be described. C is an effective element that promotes pearlite transformation and secures wear resistance. As a normal rail steel, the C content is 0.60 to 0.85%.
However, if the C content is 0.85% or less, the cementite density in the pearlite structure for improving wear resistance cannot be ensured, and the proeutectoid ferrite that becomes the starting point of rail head internal fatigue damage is added. Are easily generated. Further, when the C content exceeds 1.40%, proeutectoid cementite is generated at the rail head even if the above heat treatment is performed, and the ductility and toughness decrease, so the C content is set to more than 0.85 to 1.40%. Limited

【0013】Siはパーライト組織中のフェライト相へ
の固溶体硬化により強度を向上させる元素であるが、
0.10%未満ではその効果が十分に期待できず、ま
た、1.00%を超えるとレールの脆化をもたらし溶接
性も低下するので、Si量を0.10〜1.00%に限
定した。
Si is an element which improves strength by solid solution hardening into a ferrite phase in the pearlite structure.
If it is less than 0.10%, the effect cannot be expected sufficiently, and if it exceeds 1.00%, the rail becomes brittle and the weldability decreases, so the Si content is limited to 0.10 to 1.00%. did.

【0014】Mnはパーライト変態温度を低下させ、焼
き入れ性を高めることによって高強度化に寄与し、さら
に、初析セメンタイトの生成を抑制する元素であるが、
0.10%未満の含有量ではその効果が小さく、熱処理
後のレール頭部の硬さが低下し、初析セメンタイトが生
成し易くなる。また、1.50%を超えるとレールの靭
性に有害なマルテンサイト組織を生成させ易くするた
め、Mn量を0.10〜1.50%に限定した。なお、
Mnが1.00%を超えると、高炭素の本成分系では、
添加元素の組み合わせや冷却条件によっては、偏析部に
微量なマルテンサイト組織が生成する場合がある。この
微量なマルテンサイト組織はレールの靭性や耐摩耗性に
大きな影響を及ぼさないが、熱処理においてパーライト
組織を安定的に生成させるには、Mn量を0.10〜
1.00%の範囲とすることが望ましい。
Mn is an element that lowers the pearlite transformation temperature and contributes to the strengthening by increasing the hardenability and further suppresses the formation of pro-eutectoid cementite.
If the content is less than 0.10%, the effect is small, the hardness of the rail head after heat treatment is lowered, and pro-eutectoid cementite is easily generated. Further, when the content exceeds 1.50%, a martensite structure harmful to the toughness of the rail is easily generated, so the Mn content is limited to 0.10 to 1.50%. In addition,
When Mn exceeds 1.00%, in the high-carbon component system,
Depending on the combination of the added elements and the cooling conditions, a minute amount of martensite structure may be generated in the segregated portion. This small amount of martensite structure does not significantly affect the toughness and wear resistance of the rail, but in order to stably generate the pearlite structure during heat treatment, the Mn content is 0.10 to 0.10.
It is desirable to set it in the range of 1.00%.

【0015】また、上記の成分組成で製造されるレール
は強度、延性、靭性を向上させる目的で以下の元素を必
要に応じて1種または2種以上を添加する。 Cr:0.05〜1.00%、 Mo:0.01〜
0.20%、V :0.02〜0.30%、 Nb:
0.002〜0.05%、Co:0.10〜2.00
%、 B :0.0005〜0.005%
In addition, one or more of the following elements are added to the rail manufactured with the above-mentioned component composition, if necessary, for the purpose of improving strength, ductility and toughness. Cr: 0.05-1.00%, Mo: 0.01-
0.20%, V: 0.02-0.30%, Nb:
0.002-0.05%, Co: 0.10-2.00
%, B: 0.0005 to 0.005%

【0016】次に、これらの化学成分を上記のように定
めた理由について説明する。Crはパーライトの平衡変
態点を上昇させ、結果としてパーライト組織を微細にし
て高強度化に寄与すると同時に、パーライト組織中のセ
メンタイト相を強化することによって耐摩耗性を向上さ
せる元素であるが、0.05%未満ではその効果が小さ
く、1.00%を超える過剰な添加はマルテンサイト組
織を多量に生成させ、鋼を脆化させるため、Cr添加量
を0.05〜1.00%に限定した。なお、Crが0.
60%を超えると、高炭素の本成分系では、添加元素の
組み合わせや冷却条件によっては、偏析部に微量なマル
テンサイト組織が生成する場合がある。この微量なマル
テンサイト組織はレールの靭性や耐摩耗性に大きな影響
を及ぼさないが、熱処理においてパーライト組織を安定
的に生成させるには、Cr量を0.05〜0.60%の
範囲とすることが望ましい。
Next, the reason why these chemical components are defined as described above will be explained. Cr is an element that raises the equilibrium transformation point of pearlite and, as a result, makes the pearlite structure finer and contributes to higher strength, and at the same time enhances the wear resistance by strengthening the cementite phase in the pearlite structure. If less than 0.05%, its effect is small, and excessive addition exceeding 1.00% produces a large amount of martensite structure and embrittles the steel, so the Cr addition amount is limited to 0.05 to 1.00%. did. In addition, when Cr is 0.
If it exceeds 60%, in the high-carbon component system, a small amount of martensite structure may be generated in the segregated portion depending on the combination of the added elements and the cooling conditions. This small amount of martensite structure does not significantly affect the toughness and wear resistance of the rail, but in order to stably generate the pearlite structure during heat treatment, the Cr content is set to 0.05 to 0.60%. Is desirable.

【0017】MoはCr同様パーライトの平衡変態点を
上昇させ、結果としてパーライト組織を微細にすること
により高強度化に寄与し、耐摩耗性を向上させる元素で
あるが、0.01%未満ではその効果が小さく、0.2
0%を超える過剰な添加は、パーライト変態速度を低下
させ、靭性に有害なマルテンサイト組織が生成し易くな
るため、Mo添加量を0.01〜0.20%に限定し
た。
Mo is an element which, like Cr, raises the equilibrium transformation point of pearlite and, as a result, contributes to higher strength by making the pearlite structure finer and improves wear resistance, but if it is less than 0.01%. The effect is small, 0.2
Excessive addition of more than 0% lowers the pearlite transformation rate and facilitates the formation of a martensitic structure detrimental to toughness, so the Mo addition amount was limited to 0.01 to 0.20%.

【0018】Vは熱間圧延時の冷却過程で生成したV炭
・窒化物による析出硬化で強度を高め、さらに、高温度
に加熱する熱処理が行われる際に結晶粒の成長を抑制す
る作用によりオーステナイト粒を微細化させ、レールに
要求される強度と靭性を向上させるのに有効な成分であ
るが、0.02%未満ではその効果が期待できず、0.
30%を超えて添加してもそれ以上の効果が期待できな
いことから、V量を0.02〜0.30%に限定した。
V increases the strength by precipitation hardening due to V carbon / nitride produced in the cooling process during hot rolling, and further suppresses the growth of crystal grains when heat treatment is performed at a high temperature. It is an effective component for refining austenite grains and improving the strength and toughness required for rails, but if it is less than 0.02%, the effect cannot be expected,
Since no further effect can be expected even if it exceeds 30%, the V content is limited to 0.02 to 0.30%.

【0019】NbはVと同様にNb炭・窒化物を形成し
てオーステナイト粒を細粒化する有効な元素であり、そ
のオーステナイト粒成長抑制効果はVよりも高温度域
(1200℃近傍)まで作用し、レールの延性と靭性を
改善する。その効果は0.002%未満では期待でき
ず、また、0.050%を超える過剰な添加を行っても
それ以上の効果が期待できない。従って、Nb量を0.
002〜0.050%に限定した。
Similar to V, Nb is an effective element that forms Nb carbon / nitride to refine austenite grains, and its austenite grain growth suppressing effect is up to a temperature range higher than V (near 1200 ° C.). Acts to improve the ductility and toughness of the rail. The effect cannot be expected if it is less than 0.002%, and further effect cannot be expected even if an excessive addition exceeding 0.050% is performed. Therefore, the Nb amount is set to 0.1.
002 to 0.050%.

【0020】Coはパーライトの変態エネルギーを増加
させて、パーライト組織を微細にすることにより強度を
向上させる元素であるが、0.10%未満ではその効果
が期待できず、また、2.00%を超える過剰な添加を
行ってもその効果が飽和域に達するため、Co量を0.
10〜2.00%に限定した。
Co is an element which increases the transformation energy of pearlite and makes the pearlite structure finer to improve the strength, but if it is less than 0.10%, its effect cannot be expected, and 2.00%. The effect reaches the saturation region even if an excessive amount of Co is added, so that the Co content is set to 0.
Limited to 10-2.00%.

【0021】Bは旧オーステナイト粒界から生成する初
析セメンタイトを抑制する効果があり、パーライト組織
を安定的に生成させるために有効な元素である。しか
し、0.0005%未満ではその効果が弱く、0.00
5%を超えて添加するとBの粗大な炭ほう化物が生成
し、レールの延性および靭性等を劣化させるため0.0
005〜0.005%に限定した。
[0021] B has an effect of suppressing the pro-eutectoid cementite formed from the former austenite grain boundaries, and is an element effective for stably forming the pearlite structure. However, if less than 0.0005%, the effect is weak, and 0.005%.
If added in excess of 5%, coarse carbon boride of B will be formed, and the ductility and toughness of the rail will be deteriorated.
It was limited to 005 to 0.005%.

【0022】上記のような成分組成で構成されるレール
鋼は、転炉、電気炉などの通常使用される溶解炉で溶製
を行い、この溶鋼を造塊・分塊法あるいは連続鋳造法、
さらに熱間圧延を経てレールとして製造される。次に、
この熱間圧延した高温度の熱を保有するレール、あるい
は熱処理する目的で高温に加熱されたレールの頭部を加
速冷却し、引き続き、制御冷却を行うことにより、レー
ル頭部のパーライト組織の硬さを向上させる。
The rail steel composed of the above-described composition is melted in a commonly used melting furnace such as a converter or an electric furnace, and the molten steel is ingot-segmented or continuously cast,
Further, it is manufactured as a rail through hot rolling. next,
This hot-rolled rail that retains high-temperature heat, or the head of the rail that has been heated to a high temperature for the purpose of heat treatment, is accelerated and cooled, and then controlled cooling is performed to harden the pearlite structure of the rail head. Improve the quality.

【0023】次に、各冷却停止温度範囲および加速冷却
速度を上記のように定めた理由を詳細に説明する。ま
ず、オーステナイト域温度から加速冷却停止温度750
〜600℃の間の温度までを10〜30℃/secで加速冷
却する理由について説明する。
Next, the reason why each cooling stop temperature range and the accelerated cooling rate are set as described above will be described in detail. First, from the austenite region temperature to the accelerated cooling stop temperature 750
The reason why accelerated cooling is performed at a temperature of up to 600 ° C at 10 to 30 ° C / sec will be described.

【0024】750℃を超える温度で加速冷却を停止す
ると、その後の制御冷却途中の高温度域で初析セメンタ
イトが生成し、レールの靭性および延性が大きく低下す
るため、750℃以下に限定した。また、600℃未満
まで加速冷却を行うと、その後の制御冷却時にパーライ
ト変態が終了せず、レールの靭性、耐摩耗性に有害なマ
ルテンサイトやベイナイトなどの異組織が生成し易くな
るため、600℃以上に限定した。
If accelerated cooling is stopped at a temperature higher than 750 ° C., proeutectoid cementite is formed in the high temperature region during the subsequent controlled cooling, and the toughness and ductility of the rail are greatly reduced, so the temperature was limited to 750 ° C. or lower. Further, if accelerated cooling is performed to less than 600 ° C., the pearlite transformation does not end during the subsequent controlled cooling, and a different structure such as martensite or bainite, which is harmful to the toughness and wear resistance of the rail, is easily generated. Limited to above ℃.

【0025】加速冷却速度を10超〜30℃/secに限定
したのは、10℃/sec以下になると、成分系によっては
加速冷却途中の高温度域で微量な初析セメンタイトが生
成し、レール頭部での靭性および延性が低下するため、
10℃/sec超に限定した。また、30℃/secを超える冷
却速度で加速冷却を行うと、その後の制御冷却時にパー
ライト変態が終了せず、レールの靭性、耐摩耗性に有害
なマルテンサイトやベイナイトなどの異組織が生成し易
くなるため、1〜10℃/secに限定した。
The reason for limiting the accelerated cooling rate to more than 10 to 30 ° C./sec is that when the temperature is 10 ° C./sec or less, a small amount of proeutectoid cementite is generated in the high temperature region during accelerated cooling depending on the component system, and Since the toughness and ductility at the head are reduced,
Limited to over 10 ° C / sec. In addition, when accelerated cooling is performed at a cooling rate of over 30 ° C / sec, pearlite transformation does not end during subsequent controlled cooling, and different structures such as martensite and bainite that are harmful to the toughness and wear resistance of rails are generated. Since it becomes easy, it was limited to 1 to 10 ° C / sec.

【0026】次に、750〜600℃の間の温度から制
御冷却停止温度550〜450℃の間の温度までを1〜
10℃/sec未満で制御冷却する理由について説明する。
550℃を超える温度で制御冷却を停止すると、制御冷
却直後に粗大で、かつ硬さの低いパーライト組織が多く
生成し、レール頭部の耐摩耗性に必要な硬さが確保でき
ないため、550℃以下に限定した。また、450℃未
満まで制御冷却を行うと、加速冷却後にレール内部から
の十分な自然復熱が期待できず、偏析部などにレールの
靭性に有害なマルテンサイト組織が生成するため、45
0℃以上に限定した。
Next, the temperature from 750 to 600 ° C. to the controlled cooling stop temperature 550 to 450 ° C.
The reason for controlled cooling at less than 10 ° C / sec will be described.
If the controlled cooling is stopped at a temperature higher than 550 ° C, a large amount of coarse and low hardness pearlite structure is generated immediately after the controlled cooling, and the hardness required for the wear resistance of the rail head cannot be secured. Limited to: Further, if controlled cooling is performed to less than 450 ° C., sufficient natural recuperation from the inside of the rail cannot be expected after accelerated cooling, and a martensite structure harmful to the toughness of the rail is generated in the segregation portion, etc.
It was limited to 0 ° C or higher.

【0027】制御冷却速度を1〜10℃/sec未満に限定
したのは、制御冷却速度が1℃/sec未満になると、制御
冷却途中の高温度域で粗大で、かつ、硬さの低いパーラ
イト組織が多く生成し、レール頭部の耐摩耗性に必要な
硬さが確保できないため、1℃/sec以上に限定した。ま
た、10℃/sec以上の冷却速度で制御冷却を行うと、制
御冷却中にパーライト変態が終了せず、制御冷却途中や
その後の自然復熱領域でレールの靭性、耐摩耗性に有害
なマルテンサイトやベイナイトなどの異組織が生成する
ため、1〜10℃/sec未満に限定した。
The controlled cooling rate is limited to 1 to less than 10 ° C./sec, that is, when the controlled cooling rate is less than 1 ° C./sec, pearlite is coarse and has a low hardness in a high temperature region during controlled cooling. Since a large amount of structure is generated and the hardness required for the wear resistance of the rail head cannot be secured, the hardness is limited to 1 ° C / sec or more. Further, if controlled cooling is performed at a cooling rate of 10 ° C / sec or more, pearlite transformation does not end during controlled cooling, and martens which is harmful to rail toughness and wear resistance during controlled cooling and in the natural recuperation region thereafter. Since different structures such as sites and bainite are generated, it is limited to less than 1 to 10 ° C / sec.

【0028】従って、パーライト組織を呈した耐摩耗性
に優れたレールを製造するには、図1に示すようにレー
ルの靭性および延性に有害な初析セメンタイトが生成し
ないように、オーステナイト域温度から750〜600
℃の間の温度までを10超〜30℃/secで加速冷却し、
さらに、粗大で、かつ、硬さの低いパーライト組織およ
び靭性、耐摩耗性に有害なマルテンサイトやベイナイト
組織が生成しないように、750〜600℃の間の温度
から550〜450℃の間の温度までを1〜10℃/sec
未満で制御冷却し、低温度域で硬さの高いパーライト組
織を安定的に生成させる必要がある。
Therefore, in order to manufacture a rail having a pearlite structure and excellent in wear resistance, as shown in FIG. 1, the austenite temperature is controlled so that proeutectoid cementite harmful to the toughness and ductility of the rail is not formed. 750-600
Accelerated cooling up to a temperature between 10 ℃ and 10 ℃ ~ 30 ℃ / sec,
Further, in order not to form a coarse and low hardness pearlite structure and martensite or bainite structure, which is harmful to toughness and wear resistance, a temperature between 750 to 600 ° C. and 550 to 450 ° C. Up to 1-10 ℃ / sec
It is necessary to perform controlled cooling at a temperature lower than the above and to stably generate a pearlite structure having high hardness in a low temperature range.

【0029】なお、成分系および冷却速度の選択によっ
ては、オーステナイト域温度からの加速冷却中にパーラ
イト変態が始まり、その後の制御冷却領域で変態を完了
する場合と、制御冷却中およびその後の自然復熱領域に
おいてパーライト変態が始まり、変態を完了する場合が
ある。しかし、本加速冷却停止温度範囲および制御冷却
停止範囲に生成するパーライト組織はいずれも高硬度で
あり、レールの耐摩耗性に大きな影響をおよぼさないた
め、本発明のパーライト組織としては、オーステナイト
域温度からの加速冷却領域において生成するパーライト
組織と、加速冷却後の制御冷却領域および自然復熱領域
において生成するパーライト組織の両方を含んでいる。
Depending on the selection of the component system and the cooling rate, the pearlite transformation starts during accelerated cooling from the austenite region temperature, and the transformation is completed in the subsequent controlled cooling region, as well as during and after controlled cooling. The pearlite transformation may start in the thermal region and the transformation may be completed. However, since the pearlite structure generated in the accelerated cooling stop temperature range and the controlled cooling stop range has a high hardness and does not significantly affect the wear resistance of the rail, the pearlite structure of the present invention is austenite. Both the pearlite structure generated in the accelerated cooling region from the zone temperature and the pearlite structure generated in the controlled cooling region and the natural recuperation region after the accelerated cooling are included.

【0030】加速冷却時の冷却媒体としては空気あるい
はミストなどの気液混合物を用いることが望ましく、ま
た、加速冷却、制御冷却後のレール頭部の硬さについて
は耐摩耗性を確保する点でHv320以上とすることが
望ましい。また、このHv320以上の硬さの領域は、
レール寿命を確保する点で、図2に示すように、レール
頭頂部aおよびレール頭部コーナー部bにおいて頭部表
面(頭側部全体を含む)を起点として少なくとも深さ2
0mmの範囲であることが望ましい。
It is desirable to use a gas-liquid mixture such as air or mist as the cooling medium at the time of accelerated cooling, and to ensure wear resistance with respect to the hardness of the rail head after accelerated cooling and controlled cooling. It is desirable that the Hv is 320 or more. In addition, the region of hardness of Hv320 or more,
In order to secure the rail life, as shown in FIG. 2, at least a depth of 2 from the head surface (including the entire head side part) as a starting point in the rail crown a and the rail head corner b.
It is desirable that the range is 0 mm.

【0031】[0031]

【実施例】次に、本発明の実施例について説明する。表
1−1、表1−2に本発明レール鋼の化学成分および冷
却条件を示す。さらに、表2には冷却後のレール頭部の
硬さ、組織、および、図3に示す西原式摩耗試験機によ
るレール頭部材料の摩耗特性評価結果、シャルピー衝撃
試験機によるレール頭部衝撃特性評価結果も併記した。
図において、1はレール試験片、2は相手材、3は冷却
ノズルである。また、表3−1に比較レール鋼の化学成
分および冷却条件を示す。さらに、表3−2には冷却後
のレール頭部の硬さ、組織、および、図3に示す西原式
摩耗試験機によるレール頭部材料の摩耗特性評価結果、
シャルピー衝撃試験機によるレール頭部衝撃特性評価結
果も併記した。
Next, an embodiment of the present invention will be described. Tables 1-1 and 1-2 show the chemical composition and cooling conditions of the rail steel of the present invention. Further, Table 2 shows the hardness and structure of the rail head after cooling, the wear characteristic evaluation result of the rail head material by the Nishihara abrasion tester shown in FIG. 3, and the rail head impact characteristic by the Charpy impact tester. The evaluation results are also shown.
In the figure, 1 is a rail test piece, 2 is a mating member, and 3 is a cooling nozzle. In addition, Table 3-1 shows the chemical composition and cooling conditions of the comparative rail steel. Further, Table 3-2 shows the hardness and structure of the rail head after cooling, and the wear characteristic evaluation result of the rail head material by the Nishihara wear tester shown in FIG.
The results of rail head impact characteristics evaluation using a Charpy impact tester are also shown.

【0032】なお、レールの構成は以下のとおりであ
る。 ・本発明レール鋼(16本) 符号:A〜P :上記成分範囲でレール頭部に上記限定範囲内の加速冷
却と引き続き制御冷却を施した熱処理レール。 ・比較レール鋼(7本) 符号:Q〜W :共析炭素含有鋼による比較レール(Q〜S)および上
記成分範囲内でレール頭部に上記限定範囲外の加速冷却
または制御冷却を施した熱処理レール(T〜W)。
The structure of the rail is as follows. -Invention rail steel (16 pieces) Codes: A to P: Heat-treated rails in which the rail head is subjected to accelerated cooling within the above-mentioned limited range and subsequently controlled cooling within the above-mentioned component range. -Comparative rail steel (7 pieces) Codes: Q to W: Comparative rails (Q to S) made of eutectoid carbon-containing steel and the rail head within the above-mentioned component range were subjected to accelerated cooling or controlled cooling outside the above-mentioned limited range. Heat treatment rail (T-W).

【0033】摩耗試験条件は以下のとおりとした。 ・試験機 :西原式摩耗試験機(図3参照) ・試験片形状:円盤状試験片(外径:30mm、厚さ:8mm) ・試験荷重 :686N ・すべり率 :20% ・相手材 :パーライト鋼(Hv390) ・雰囲気 :大気中 ・冷却 :圧搾空気による強制冷却(流量:100Nl/min) ・繰返し回数:70万回The wear test conditions were as follows.・ Testing machine: Nishihara abrasion tester (see Fig. 3) ・ Shape of test piece: Disc-shaped test piece (outer diameter: 30 mm, thickness: 8 mm) ・ Test load: 686N ・ Slip ratio: 20% ・ Mating material: perlite Steel (Hv390) -Atmosphere: In the air-Cooling: Forced cooling with compressed air (flow rate: 100 Nl / min) -Number of repetitions: 700,000 times

【0034】また、衝撃試験条件は以下のとおりとし
た。 ・試験片 :JIS3号2mmUノッチシャルピー衝撃試験片 ・試験温度 :常温(+20℃)
The impact test conditions were as follows.・ Test piece: JIS No. 2 mm U-notch Charpy impact test piece ・ Test temperature: Room temperature (+ 20 ° C)

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【発明の効果】本発明および比較レール鋼の頭部硬さ
(Hv)と摩耗量(g/70万回)の関係を図4に示
し、また、衝撃値と耐摩耗量の関係を図5に示した。図
4に示したように本発明レール鋼は共析炭素含有の比較
レール鋼(符号:Q〜S)よりも炭素量を高め、同時に
熱処理を行うことにより、比較レール鋼よりも同一硬さ
で摩耗量が少なく、耐摩耗性が大きく向上している。ま
た、図5に示すように本発明レール鋼は頭部に適切な熱
処理を行うことにより、比較レール鋼(符号:T〜W)
と比べて高炭素成分においても安定的にパーライト組織
が得られ、耐摩耗性と十分な靭性を確保することが可能
となる。このように本発明によれば、重荷重鉄道におい
て耐摩耗性に優れたレールを提供することができる。
The relationship between head hardness (Hv) and wear amount (g / 700,000 cycles) of the present invention and comparative rail steel is shown in FIG. 4, and the relationship between impact value and wear resistance amount is shown in FIG. It was shown to. As shown in FIG. 4, the rail steel of the present invention has a carbon content higher than that of the comparative rail steel containing eutectoid carbon (symbols: Q to S), and at the same time, heat treatment is performed to obtain the same hardness as the comparative rail steel. The amount of wear is small and the wear resistance is greatly improved. Further, as shown in FIG. 5, the rail steel of the present invention is subjected to an appropriate heat treatment on the head to obtain a comparative rail steel (codes: T to W).
Compared with the above, a pearlite structure can be stably obtained even in a high carbon component, and it becomes possible to secure wear resistance and sufficient toughness. As described above, according to the present invention, it is possible to provide a rail having excellent wear resistance in a heavy-duty railway.

【図面の簡単な説明】[Brief description of the drawings]

【図1】レール熱処理製造方法の模式図。FIG. 1 is a schematic diagram of a rail heat treatment manufacturing method.

【図2】レール頭部軸断面における各部の呼称を示す
図。
FIG. 2 is a view showing the names of various parts in a rail head axial cross section.

【図3】西原式摩耗試験機の概略図。FIG. 3 is a schematic diagram of a Nishihara-type abrasion tester.

【図4】表1に示す本発明レール鋼と表2に示す比較レ
ール鋼(符号:Q〜S)の摩耗試験結果を頭部の硬さと
摩耗量の関係で比較した図。
FIG. 4 is a diagram comparing the wear test results of the rail steel of the present invention shown in Table 1 and the comparative rail steel shown in Table 2 (symbols: Q to S) in terms of the hardness of the head and the wear amount.

【図5】表1に示す本発明レール鋼と表2に示す比較レ
ール鋼(符号:T〜W)の頭部の衝撃値と摩耗量の関係
を示した図。
FIG. 5 is a diagram showing the relationship between the impact value and the wear amount of the head of the present invention rail steel shown in Table 1 and the comparative rail steel (reference numeral: T to W) shown in Table 2.

【符号の説明】[Explanation of symbols]

a:レール頭頂部 b:レール頭部コーナー部 1:レール試験片 2:相手材 3:冷却ノズル a: Rail top part b: Rail head corner part 1: Rail test piece 2: Mating material 3: Cooling nozzle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.85超〜1.40%、 Si:0.10〜1.00%、 Mn:0.10〜1.50%を含有し、残部が鉄および
不可避的不純物からなる鋼を熱間圧延した、高温度の熱
を保有する鋼レール、あるいは熱処理する目的で高温に
加熱された鋼レールの頭部を、オーステナイト域温度か
ら750〜600℃の間の温度までを10超〜30℃/s
ecで加速冷却し、引き続き、750〜600℃の間の温
度から550〜450℃の間の温度までを1〜10℃/s
ec未満で制御冷却することを特徴とする高耐摩耗パーラ
イトレールの製造法。
1. By weight%, C: more than 0.85 to 1.40%, Si: 0.10 to 1.00%, Mn: 0.10 to 1.50%, and the balance iron and The head of a steel rail that retains high temperature heat, or the head of a steel rail that is heated to a high temperature for the purpose of heat treatment, is obtained by hot rolling steel consisting of unavoidable impurities. Temperature up to more than 10-30 ℃ / s
Accelerated cooling with ec, and then 1-10 ℃ / s from 750-600 ℃ to 550-450 ℃
A method for manufacturing a high wear resistant perlite rail, which is characterized by controlled cooling at a temperature less than ec.
【請求項2】 重量%で、 C :0.85超〜1.40%、 Si:0.10〜1.00%、 Mn:0.10〜1.50%を含有し、さらに Cr:0.05〜1.00%、 Mo:0.01〜0.20%、 V :0.02〜0.30%、 Nb:0.002〜0.05%、 Co:0.10〜2.00%、 B :0.0005〜0.005%の1種または2種以
上を含有し、残部が鉄および不可避的不純物からなる鋼
を熱間圧延した、高温度の熱を保有する鋼レール、ある
いは熱処理する目的で高温に加熱された鋼レールの頭部
を、オーステナイト域温度から750〜600℃の間の
温度までを10超〜30℃/secで加速冷却し、引き続
き、750〜600℃の間の温度から550〜450℃
の間の温度までを1〜10℃/sec未満で制御冷却するこ
とを特徴とする高耐摩耗パーライトレールの製造法。
2. By weight, C: more than 0.85 to 1.40%, Si: 0.10 to 1.00%, Mn: 0.10 to 1.50%, and Cr: 0. .05 to 1.00%, Mo: 0.01 to 0.20%, V: 0.02 to 0.30%, Nb: 0.002 to 0.05%, Co: 0.10 to 2.00 %, B: 0.0005 to 0.005% of one or more kinds of steel rails, hot-rolled steel containing the balance of iron and unavoidable impurities, the steel rail having high temperature heat, or The head of a steel rail heated to a high temperature for the purpose of heat treatment is accelerated cooled from 10 to 30 ° C / sec from the austenite temperature to a temperature between 750 and 600 ° C, and then continuously between 750 and 600 ° C. From the temperature of 550 to 450 ℃
A method for producing a high wear-resistant pearlite rail, which comprises controlled cooling up to a temperature between 1 and 10 ° C./sec.
JP08237084A 1995-09-14 1996-09-06 Manufacturing method of high wear resistant pearlite rail Expired - Lifetime JP3117915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08237084A JP3117915B2 (en) 1995-09-14 1996-09-06 Manufacturing method of high wear resistant pearlite rail

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23741495 1995-09-14
JP7-237414 1995-09-14
JP08237084A JP3117915B2 (en) 1995-09-14 1996-09-06 Manufacturing method of high wear resistant pearlite rail

Publications (2)

Publication Number Publication Date
JPH09137227A true JPH09137227A (en) 1997-05-27
JP3117915B2 JP3117915B2 (en) 2000-12-18

Family

ID=26533029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08237084A Expired - Lifetime JP3117915B2 (en) 1995-09-14 1996-09-06 Manufacturing method of high wear resistant pearlite rail

Country Status (1)

Country Link
JP (1) JP3117915B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972451B2 (en) 2002-04-05 2011-07-05 Nippon Steel Corporation Pearlitic steel rail excellent in wear resistance and ductility and method for producing same
CN114774775A (en) * 2022-03-23 2022-07-22 江阴兴澄合金材料有限公司 High-strength long-life steel wire for card clothing and manufacturing method thereof
CN115287541A (en) * 2022-08-09 2022-11-04 马鞍山钢铁股份有限公司 High-carbon high-toughness heavy-load wheel steel and wheel production method
CN115896599A (en) * 2022-11-01 2023-04-04 包头钢铁(集团)有限责任公司 Production method for improving wear resistance of steel rail

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972451B2 (en) 2002-04-05 2011-07-05 Nippon Steel Corporation Pearlitic steel rail excellent in wear resistance and ductility and method for producing same
CN114774775A (en) * 2022-03-23 2022-07-22 江阴兴澄合金材料有限公司 High-strength long-life steel wire for card clothing and manufacturing method thereof
CN114774775B (en) * 2022-03-23 2023-09-15 江阴兴澄合金材料有限公司 High-strength long-service-life steel wire rod for card clothing and manufacturing method thereof
CN115287541A (en) * 2022-08-09 2022-11-04 马鞍山钢铁股份有限公司 High-carbon high-toughness heavy-load wheel steel and wheel production method
CN115287541B (en) * 2022-08-09 2023-08-15 马鞍山钢铁股份有限公司 High-carbon high-toughness heavy-load wheel steel and wheel production method
CN115896599A (en) * 2022-11-01 2023-04-04 包头钢铁(集团)有限责任公司 Production method for improving wear resistance of steel rail

Also Published As

Publication number Publication date
JP3117915B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JP3078461B2 (en) High wear-resistant perlite rail
JPH09316598A (en) Pearlitic rail, excellent in wear resistance and weldability, and its production
JP3513427B2 (en) Pearlitic rail excellent in wear resistance and internal fatigue damage resistance, and method of manufacturing the same
JP3445619B2 (en) Rail with excellent wear resistance and internal damage resistance, and method of manufacturing the same
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JP2003293086A (en) Pearlitic rail having excellent wear resistance and ductility
JP4949144B2 (en) Perlite rail excellent in surface damage resistance and wear resistance and method for producing the same
JP3267772B2 (en) Manufacturing method of high strength, high ductility, high toughness rail
JPH10195601A (en) Pearlitic steel rail excellent in wear resistance and internal fatigue fracture resistance and manufacture therefor
JP4598265B2 (en) Perlite rail and its manufacturing method
JP3631712B2 (en) Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method
JPH09111352A (en) Production of pearlitic rail excellent in wear resistance
JP2000178690A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacture
JPH08246101A (en) Pearlitic rail excellent in wear resistance and damage resistance and its production
JP3267124B2 (en) High-strength rail excellent in delayed fracture resistance, wear resistance and toughness, and a method for manufacturing the same
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP4214043B2 (en) Method for producing high carbon steel rails with excellent wear resistance and ductility
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JPH1192866A (en) Bainitic steel rail excellent in joinability in weld zone, and its production
JP2000226636A (en) Pearlitic rail excellent in wear resistance and inside fatigue damage resistance and its production
JP3950212B2 (en) Manufacturing method of high-strength pearlitic rail with excellent wear resistance
JP2000226637A (en) Pearlitic rail excellent in wear resistance and inside fatigue damage resistance and its production
JP3832169B2 (en) Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility
JP2000008142A (en) Pearlitic rail excellent in inside fatigue damage resistance and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term