JPH09134836A - Manufacture of rare earth permanent magnet and hydrogen crushing processing oven - Google Patents

Manufacture of rare earth permanent magnet and hydrogen crushing processing oven

Info

Publication number
JPH09134836A
JPH09134836A JP29149395A JP29149395A JPH09134836A JP H09134836 A JPH09134836 A JP H09134836A JP 29149395 A JP29149395 A JP 29149395A JP 29149395 A JP29149395 A JP 29149395A JP H09134836 A JPH09134836 A JP H09134836A
Authority
JP
Japan
Prior art keywords
rare earth
hydrogen
phase forming
forming alloy
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29149395A
Other languages
Japanese (ja)
Inventor
Katsunori Iwasaki
克典 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP29149395A priority Critical patent/JPH09134836A/en
Publication of JPH09134836A publication Critical patent/JPH09134836A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable necessary alloys to be crushed into powder prescribed in grain diameter only through a hydrogen treatment without using a mechanical crushing method by a method wherein rare earth-rich phase forming alloy powder which is subjected to a hydrogen absorption treatment and a dehydrogenation treatment and obtained by crushing and main-phase forming alloy powder are mixed together as rolled, molded in a magnetic field, and baked. SOLUTION: Rare earth-rich phase forming alloy b which contains 40% or more rare earth element by weight is introduced together with a heat storing material c into a capsule a as a crushing chamber. The capsule (a) can be filled with hydrogen gas and provided with a pressure control opening (i) which is used for controlling an oven in hydrogen pressure. The capsule (a) is hermetically closed, but an oven tube (d) is provided taking the probability of hydrogen leakage into consideration, and inert gas is filled into the oven tube (d). A heater (c) and an heat insulator (f) are provided around the periphery of the oven tube (d). The capsule (a) is rotated at a speed of 200rpm or below, the rare earth-rich phase forming alloy (b) is subjected to a hydrogen absorption treatment and a dehydrogenation treatment into rare earth-rich phase forming alloy powder, and the rare earth-rich phase forming alloy powder and main-phase forming alloy powder are mixed together, molded in a magnetic field, and sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主相形成用合金微
粉と希土類リッチ相形成用合金微粉を混合して得られる
永久磁石の合金原料のうち、特に希土類リッチ相形成用
合金の粉砕装置に関し、内部が水素雰囲気に保持でき回
転可能な粉砕室を有する処理炉を用いることにより酸素
量が低くシャ−プな粒度分布の微粉を効率的かつ安定に
製造することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crushing device for a rare-earth-rich phase-forming alloy, among alloy raw materials for permanent magnets obtained by mixing a main-phase-forming alloy fine powder and a rare-earth-rich phase-forming alloy fine powder. By using a processing furnace having a crushing chamber which can be held in a hydrogen atmosphere and can be rotated, fine powder having a low oxygen content and a sharp particle size distribution can be efficiently and stably produced.

【0002】[0002]

【従来の技術】現在R214Bを主相とする焼結磁石の
製造に関しては、R214Bより若干R(希土類元素)
成分を多くした単一合金を出発原料として粉砕する方法
と、あらかじめR214Bを主成分とする主相と希土類
成分を多く含む希土類リッチ合金の2合金に分け各々微
粉化した後、混合する方法のいずれかが行われている。
前者においては粉砕時に発生した過剰な希土類成分が焼
結工程における液相の役割をなす。一方、後者では主相
は極力R214Bのストイキオメトリ−に近い組成にす
るため焼結時の液相は主に希土類リッチ相の微粉が担う
ことになる。いずれにしても希土類元素を含むためその
粉砕は困難を極め、粉砕時に発火を起こす危険性すら有
している。この原因は微粉粉砕時に用いる機器による影
響が大きい。一般的には不活性ガスを用いたジェットミ
ルが採用されているが、機械的な衝撃力を利用した粉砕
であるためその際に発生する熱で粉末が活性化し、雰囲
気中あるいは機器内の不可避酸素との反応で酸化を免れ
ない。この様に機械的な応力を用いた粉砕方法はたとえ
周囲を不活性雰囲気で覆っても避けられず、極めて手間
のかかる雰囲気管理が要求される。また酸化防止のため
有機溶媒中でのボ−ルミル粉砕も行われているが、微粉
内に炭素を残留することになり酸化同様有効希土類量を
減少させるため好ましくない。以上の方法によって得ら
れた原料による焼結磁石は自ずから酸素量の増大を招
く。酸素は優先的に希土類と反応するため本来液相焼結
に必要な希土類成分を減少させる。換言すれば実質的な
有効希土類量の低下を意味する。一方、酸素の増大を防
ぐ粉砕方法として、水素を用い合金の体積膨張、収縮現
象を利用した処理が広く行われている。しかし個々の合
金を綿密に観察した結果、合金外周部は水素吸蔵の影響
が大きく粉砕性に優れるものの中心部に進むにしたがい
その効果は薄れる。したがって最終的には粒度分布の広
い粉砕粉となってしまう。
2. Description of the Related Art At present, with respect to the production of sintered magnets having R 2 T 14 B as a main phase, the amount of R (rare earth element) is slightly higher than that of R 2 T 14 B.
A method of pulverizing a single alloy containing a large amount of components as a starting material and a method of dividing into two alloys, a main phase containing R 2 T 14 B as a main component and a rare earth-rich alloy containing a large amount of rare earth components in advance, and then finely powdered and mixed. Either way you are done.
In the former case, the excess rare earth component generated during crushing serves as a liquid phase in the sintering process. On the other hand, in the latter case, since the main phase has a composition close to stoichiometry of R 2 T 14 B as much as possible, the liquid phase at the time of sintering is mainly responsible for the fine powder of the rare earth-rich phase. In any case, since it contains rare earth elements, its crushing is extremely difficult, and there is even a risk of causing ignition during crushing. The cause of this is largely influenced by the equipment used for pulverizing the fine powder. Generally, a jet mill that uses an inert gas is used, but since it is pulverization that uses mechanical impact force, the heat generated at that time activates the powder and it is unavoidable in the atmosphere or in the equipment. Oxidation is unavoidable due to reaction with oxygen. Thus, the crushing method using mechanical stress is inevitable even if the surroundings are covered with an inert atmosphere, and extremely time-consuming atmosphere management is required. Further, ball mill grinding in an organic solvent has been carried out to prevent oxidation, but carbon is left in the fine powder and the amount of effective rare earth is reduced like oxidation, which is not preferable. The sintered magnet made of the raw material obtained by the above method naturally causes an increase in oxygen content. Since oxygen preferentially reacts with rare earths, it reduces the rare earth components originally required for liquid phase sintering. In other words, it means a substantial decrease in the effective rare earth amount. On the other hand, as a pulverization method for preventing an increase in oxygen, a treatment using hydrogen, which utilizes the phenomenon of volume expansion and contraction of an alloy, is widely performed. However, as a result of observing the individual alloys closely, the outer peripheral portion of the alloy is greatly affected by hydrogen absorption and is excellent in pulverizability, but its effect is diminished as it progresses to the central portion. Therefore, finally, the pulverized powder has a wide particle size distribution.

【0003】[0003]

【発明が解決しようとする問題点】本発明の目的は、R
214Bを主成分とする主相形成用合金と希土類元素を
多く含む希土類リッチ形成用合金相を各々微粉砕した後
混合、成形、焼結する希土類永久磁石の製造方法におい
て、特に粉砕にともなう酸化の著しい希土類リッチ相形
成用合金の粉砕に着目し、ジェットミル、ボ−ルミル等
の機械的粉砕方法を一切使用せず水素処理のみで所定の
粒径に粉砕する希土類永久磁石の製造方法を提供するこ
とである。また、水素粉砕処理において、初期に粉砕さ
れた合金外周を徐々に崩壊させ合金内部に至るまでまん
べんなく粉砕できる水素粉砕処理炉を提供することを目
的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
2 In the method for producing a rare earth permanent magnet, in which the main phase forming alloy containing T 14 B as a main component and the rare earth rich forming alloy phase containing a large amount of rare earth elements are finely pulverized, and then mixed, molded and sintered, particularly in the pulverization. Focusing on the pulverization of rare-earth rich phase forming alloys with remarkable oxidation, a method for producing a rare-earth permanent magnet that pulverizes to a predetermined particle size only by hydrogen treatment without using any mechanical pulverization method such as jet mill or ball mill. Is to provide. Another object of the present invention is to provide a hydrogen crushing treatment furnace capable of gradually collapsing the outer periphery of the initially crushed alloy in the hydrogen crushing treatment and crushing evenly to the inside of the alloy.

【0004】[0004]

【問題を解決するための手段】本発明者等は希土類成分
を40wt%以上含有する各種希土類リッチ相形成用合
金の生成相と水素処理による粉砕性の関係を着目した結
果、希土類リッチ相の水素吸蔵にともなう発熱反応の熱
量を蓄熱材で吸収することによって粉砕性が大幅に改善
できることを見出した。さらに、本合金と蓄熱材を水素
雰囲気の圧力制御が可能で外周を不活性ガスで覆われた
粉砕室内に挿入し本粉砕室を200rpm以下の回転速
度で回転しながら水素処理を行う水素粉砕処理炉を用い
ることにより、粉砕粒度を細かくかつシャ−プな微粉と
することができることをも見出した。希土類成分を40
wt%以上含有する希土類リッチ合金としては、RT3
相をベ−スとするRT3M、またはRT2相をベ−スとす
るRT2M(ここでR:希土類成分、T:遷移金属、
M:Al、Cu、Ga、Mn、Znの一種あるいは2種
以上の組合せからなる添加元素)といった合金が代表的
なものとして挙げられる。
Means for Solving the Problems As a result of focusing on the relationship between the production phase of various rare earth-rich phase forming alloys containing 40 wt% or more of rare earth components and the pulverizability by hydrogen treatment, the present inventors It was found that the pulverizability can be greatly improved by absorbing the heat amount of the exothermic reaction due to the occlusion with the heat storage material. Furthermore, this alloy and heat storage material can be pressure-controlled in a hydrogen atmosphere, and the outer periphery is inserted into a crushing chamber covered with an inert gas. The hydrogen crushing process is performed while rotating the main crushing chamber at a rotation speed of 200 rpm or less. It was also found that by using a furnace, it is possible to obtain fine powder having a fine crushed particle size and sharpness. 40 rare earth elements
As a rare earth-rich alloy containing more than wt%, RT 3
The phases base - scan to RT 3 M or base the RT 2 phase, - scan to RT 2 M (wherein R: rare earth component, T: transition metals,
Typical examples are alloys such as M: Al, Cu, Ga, Mn, Zn, or an additive element consisting of a combination of two or more thereof.

【0005】希土類リッチ相形成用合金の一般的な対水
素特性としては、室温付近から水素を急激に吸蔵し、体
積膨張する。本合金を徐々に加熱することによって自然
に脱水素を行い体積収縮を起こし粉砕が進展する。脱水
素時にロ−タリ−ポンプ等で強制的に排気してもよい。
また水素吸蔵時、合金は発熱反応をともなう。この熱量
で合金全体が暖められ脱水素が開始する温度に近づくに
つれ吸蔵傾向は弱まり、次第に平衡状態になり吸蔵を終
了する。したがって耐水素脆性に優れた蓄熱材を合金と
ともに用いることにより、合金と接触する領域では発熱
した合金との間で熱勾配が生じる。この熱勾配による熱
的応力で粉砕が促進されるのである。蓄熱材としてはス
ティ−ル、タングステン、モリブデン等の金属材料の他
セラミックス系材料でもよい。
As a general property of the rare earth-rich phase forming alloy with respect to hydrogen, hydrogen is rapidly occluded from around room temperature and its volume expands. By gradually heating the alloy, dehydrogenation occurs naturally, causing volume contraction and crushing progress. At the time of dehydrogenation, it may be forcedly exhausted by a rotary pump or the like.
The alloy is accompanied by an exothermic reaction when hydrogen is absorbed. With this amount of heat, the entire alloy is warmed up, and as it approaches the temperature at which dehydrogenation begins, the occlusion tendency weakens, gradually becoming an equilibrium state, and occlusion ends. Therefore, when a heat storage material having excellent hydrogen embrittlement resistance is used together with the alloy, a thermal gradient is generated between the alloy and the alloy that has generated heat in the region in contact with the alloy. The thermal stress due to this thermal gradient promotes crushing. The heat storage material may be a metal material such as steel, tungsten or molybdenum, or a ceramic material.

【0006】希土類リッチ相形成用合金を蓄熱材ととも
に水素吸蔵および脱水素を施し粉砕することにより、粉
砕粒度は十分細かくなるが、合金外周部と内周部では粒
径の差がやや大きくなることも分かった。この原因は、
水素吸蔵は合金外周部から始まり次第に内部へと進展す
る際、合金が全体的に発熱するため合金内部は熱勾配が
小さくなるためである。そこで上述の粉砕室内に合金お
よび蓄熱材を入れ、粉砕室を回転させながら同様に粉砕
したところ粒度が細かく、さらに極めてシャ−プな分布
を有する微粉を得ることができた。合金と蓄熱材の相対
的な位置を回転によって変えるためすでに水素吸蔵が進
行した合金外周部を崩壊でき、新たに合金内部と蓄熱材
が接触するためである。粉砕室内は圧力制御された水素
雰囲気であるが、万一の水素漏れの危険性を考慮し、粉
砕室外周を不活性ガスで覆った方がよい。また粉砕室の
回転数が早すぎると合金と蓄熱材の接触が短時間でとぎ
れたり粉砕室と一緒に回転するため200rpm以下が
望ましい。合金外周部を崩壊させるうえで粉砕室内に突
起あるいはベ−ン等の障害物となる粉砕補助具を有する
構造としてもよい。
By crushing a rare earth-rich phase forming alloy together with a heat storage material by hydrogen storage and dehydrogenation, the crushed particle size becomes sufficiently fine, but the difference in particle size between the outer peripheral part and the inner peripheral part of the alloy becomes slightly large. I also understood. This is because
This is because when the hydrogen absorption starts from the outer peripheral portion of the alloy and gradually progresses to the inside, the alloy generates heat as a whole, so that the thermal gradient inside the alloy becomes small. Therefore, when the alloy and the heat storage material were put in the crushing chamber and crushed in the same manner while rotating the crushing chamber, fine powder having a fine particle size and an extremely sharp distribution could be obtained. This is because the relative positions of the alloy and the heat storage material are changed by rotation, so that the outer peripheral portion of the alloy in which hydrogen absorption has already progressed can be collapsed, and the inside of the alloy and the heat storage material are newly contacted. Although the crushing chamber has a hydrogen atmosphere whose pressure is controlled, it is better to cover the outer periphery of the crushing chamber with an inert gas in consideration of the risk of hydrogen leakage. If the rotation speed of the crushing chamber is too fast, the contact between the alloy and the heat storage material is interrupted in a short time or the crushing chamber rotates together with the crushing chamber. It is also possible to have a structure having a grinding auxiliary tool which becomes an obstacle such as a protrusion or a vane in the grinding chamber when the outer peripheral portion of the alloy is collapsed.

【0007】[0007]

【発明の実施の態様】DESCRIPTION OF THE PREFERRED EMBODIMENTS

(実施例1)希土類リッチ合金の水素粉砕用に開発した
処理炉の基本構造を第1図に示す。図1において、試料
(希土類リッチ相形成用合金)bは、蓄熱材cとともに
粉砕室であるカプセルa内に挿入される。このカプセル
は水素雰囲気に保持できかつ炉内圧力制御のための雰囲
気制御口iを有し、さらにカプセル全体が200rpm
以下の回転速度で回転できる構造である。本カプセルは
密閉されているが、万一の水素漏れを考慮し炉心管dを
設け、炉心管d内は不活性ガス雰囲気とした。炉心管d
外周にはヒ−タ−eおよび断熱体fを配置し、カプセル
a内に保持された試料を加熱できる構造を有している。
また、図2および図3に示すように、カプセルa内は、
突起gあるいはベ−ンh等を有する構造としてもよい。
(Example 1) FIG. 1 shows the basic structure of a processing furnace developed for hydrogen crushing of rare earth-rich alloys. In FIG. 1, a sample (rare earth rich phase forming alloy) b is inserted into a capsule a which is a crushing chamber together with a heat storage material c. This capsule can be maintained in a hydrogen atmosphere and has an atmosphere control port i for controlling the pressure in the furnace.
It is a structure that can rotate at the following rotation speeds. Although this capsule is hermetically sealed, a furnace core tube d is provided in consideration of a hydrogen leak, and the inside of the furnace core tube d is set to an inert gas atmosphere. Core tube d
A heater e and a heat insulating body f are arranged on the outer circumference, and the structure is such that the sample held in the capsule a can be heated.
Further, as shown in FIGS. 2 and 3, the inside of the capsule a is
A structure having protrusions g or vanes h may be used.

【0008】(実施例2)実施例1で記した水素粉砕処
理炉を用いて実際に希土類リッチ合金の粉砕を行った。
希土類リッチ合金の組成はRT3相を目的としたNd35.
20Pr9.80Co52.60Al2.40と、RT2相を目的とした
Dy59.00Fe33.08Ga4.32Cu3.60の2種類で、いず
れも希土類量は40wt%以上を有している。それぞれ
の相の占有率が最大となる温度下でアルゴン雰囲気中均
質化処理を施した。得られた合金を約1cm角程度に砕
いた後、通常の水素処理炉内に置いた。まず炉内の水素
圧力を650〜660Torrの範囲内になるよう制御し室
温で3時間保持した。合金に十分水素を吸蔵させた後4
℃/分の昇温速度で700℃まで加熱し、対水素特性を
調べた。水素吸蔵時には炉内圧力が低下し、脱水素時に
は逆に上昇することから制御の作動方向および頻度を確
認することによって両者の別が判定できる。本予備検討
より(NdPr)系の脱水素終了温度は440℃付近で
Dy系の場合330℃付近であることが分かった。次い
で本脱水素終了温度を基に粉砕実験を行った。図4に
(NdPr)系希土類リッチ相形成用合金の水素処理パ
タ−ンを示す。
(Example 2) The rare earth-rich alloy was actually crushed using the hydrogen crushing treatment furnace described in Example 1.
The composition of the rare earth-rich alloy is aimed at RT 3-phase Nd35.
Two types, 20Pr9.80Co52.60Al2.40 and Dy59.00Fe33.08Ga4.32Cu3.60 for the purpose of the RT 2 phase, both of which have a rare earth content of 40 wt% or more. The homogenization treatment was performed in an argon atmosphere at a temperature at which the occupation ratio of each phase was maximized. The obtained alloy was crushed to a size of about 1 cm square and then placed in a normal hydrogen treatment furnace. First, the hydrogen pressure in the furnace was controlled to be in the range of 650 to 660 Torr, and the temperature was kept at room temperature for 3 hours. After allowing the alloy to absorb enough hydrogen 4
It was heated to 700 ° C. at a temperature rising rate of ° C./min, and its hydrogen resistance was examined. Since the pressure in the furnace decreases during hydrogen storage and rises in reverse during dehydrogenation, it is possible to determine the difference between the two by confirming the operating direction and frequency of control. From this preliminary study, it was found that the dehydrogenation completion temperature of the (NdPr) system is around 440 ° C. and that of the Dy system around 330 ° C. Then, a crushing experiment was conducted based on the final temperature of the dehydrogenation. FIG. 4 shows a hydrogen treatment pattern of the (NdPr) -based rare earth-rich phase forming alloy.

【0009】蓄熱材を用いる場合、合金質量に対し30
0wt%の鋼球ボ−ル(径9.5mm)とともに第1図
に示すカプセル内に挿入した。カプセル内をいったんア
ルゴンガスに置換した後真空引きし、次いで水素雰囲気
にした。カプセル内の圧力は650〜660Torrの範囲
内になるよう制御し、3時間保持した。水素吸蔵終了後
カプセル内をロ−タリポンプで排気しながら脱水素終了
温度(約440℃)まで昇温し約1時間保持した。なお
水素吸蔵開始から脱水素が終了するまで所定の回転数で
カプセルを回転させながら本工程を行った。処理終了
後、炉内をアルゴン雰囲気に置換して室温まで冷却し粉
砕粉を取り出した。Dy系についても、脱水素終了温度
を約330℃とした以外は同様に行った。得られた粉砕
粉の残留ガス量および平均粉砕粒径を測定した結果を表
1に示す。なお、表1中、No.1〜6まではNd35.2
0Pr9.80Co52.60Al2.40に対して、No.7〜12
まではDy59.00Fe33.08Ga4.32Cu3.60に対して行
った結果である。図5に表1中、本発明例No.1およ
び比較例No.5の水素粉砕処理による粉砕粉度分布を
示す。
When a heat storage material is used, it is 30 with respect to the mass of the alloy.
It was inserted into a capsule shown in FIG. 1 together with a 0 wt% steel ball ball (diameter 9.5 mm). The inside of the capsule was once replaced with argon gas, and then the inside of the capsule was evacuated, and then a hydrogen atmosphere was created. The pressure inside the capsule was controlled to be within the range of 650 to 660 Torr and kept for 3 hours. After completion of hydrogen storage, the capsule was evacuated with a rotary pump and the temperature was raised to the dehydrogenation end temperature (about 440 ° C.) and kept for about 1 hour. This step was performed while rotating the capsule at a predetermined rotation speed from the start of hydrogen absorption to the end of dehydrogenation. After the treatment was completed, the atmosphere in the furnace was replaced with an argon atmosphere, the temperature was cooled to room temperature, and the pulverized powder was taken out. The same procedure was performed for the Dy system except that the dehydrogenation end temperature was about 330 ° C. Table 1 shows the measurement results of the residual gas amount and the average pulverized particle size of the obtained pulverized powder. In Table 1, No. Nd 35.2 from 1 to 6
No. 0 Pr9.80Co52.60Al2.40 7-12
Up to here are the results obtained for Dy59.00Fe33.08Ga4.32Cu3.60. In Table 1 in FIG. 1 and Comparative Example No. 1. 5 shows a pulverization fineness distribution by the hydrogen pulverization treatment of No. 5.

【0010】[0010]

【表1】 [Table 1]

【0011】表1より、いずれの合金を用いた場合でも
蓄熱材を用い、カプセルを回転させた方が平均粉砕粒度
が細かくなることが分かる。しかし過剰な回転数を付与
したNo.6、12においてはカプセル内で合金の一部
あるいは蓄熱材が相対的な位置を変えず一緒に回転した
ため全体的に粒度が粗くなった。またカプセル内に突起
あるいはベ−ンを設けたNo.3、9では蓄熱材の量が
100wt%で少量であるにもかかわらず粒度は細か
い。したがって、カプセル内に突起あるいはベ−ンを設
けることにより、合金外周が崩壊しやすいことが分か
る。
From Table 1, it can be seen that the average crushed particle size becomes finer when the heat storage material is used and the capsule is rotated regardless of which alloy is used. However, in No. In Nos. 6 and 12, a part of the alloy or the heat storage material rotated together without changing the relative position in the capsule, so that the grain size became coarse as a whole. In addition, the No. In Nos. 3 and 9, the amount of the heat storage material is 100 wt% and the particle size is fine although the amount is small. Therefore, it is understood that the outer periphery of the alloy is easily collapsed by providing the projection or the vane inside the capsule.

【発明の効果】本発明によれば、主相微粉と希土類リッ
チ合金の微粉からなる焼結磁石のうち、後者の希土類リ
ツチ合金を酸素量が低くかつ粒度分布がシャ−プな微粉
に粉砕することができる。
According to the present invention, among the sintered magnets composed of the main phase fine powder and the rare earth-rich alloy fine powder, the latter rare earth rich alloy is crushed into fine powder having a low oxygen content and a sharp particle size distribution. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる水素粉砕処理炉の模式図であ
る。
FIG. 1 is a schematic diagram of a hydrogen pulverization processing furnace according to the present invention.

【図2】突起を有する粉砕室の模式図である。FIG. 2 is a schematic view of a grinding chamber having protrusions.

【図3】ベーンを有する粉砕室の模式図である。FIG. 3 is a schematic diagram of a grinding chamber having vanes.

【図4】熱処理パターンの一例を示す図である。FIG. 4 is a diagram showing an example of a heat treatment pattern.

【図5】水素粉砕処理による粉砕粉粒度分布を示す。FIG. 5 shows a pulverized powder particle size distribution obtained by hydrogen pulverization treatment.

【符号の説明】[Explanation of symbols]

a カプセル、b 試料(希土類リッチ合金)、c 蓄
熱材 d 炉心管、e ヒ−タ−、f 断熱体、g 突
起、h ベーン、i 雰囲気制御口
a capsule, b sample (rare earth rich alloy), c heat storage material d core tube, e heater, f heat insulator, g protrusion, h vane, i atmosphere control port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素を40wt%以上含む希土類
リッチ相形成用合金を蓄熱材とともに200rpm以下
の速度で回転しながら水素吸蔵および脱水素を施して粉
砕した希土類リッチ相形成用合金粉末と、主相形成用合
金粉末とを混合、磁場中成形、焼結することを特徴とす
る希土類永久磁石の製造方法。
1. A rare earth-rich phase forming alloy powder obtained by grinding and crushing a rare earth-rich phase forming alloy containing 40 wt% or more of a rare earth element with a heat storage material while rotating at a speed of 200 rpm or less and occluding hydrogen. A method for producing a rare earth permanent magnet, which comprises mixing with a phase forming alloy powder, molding in a magnetic field, and sintering.
【請求項2】 水素雰囲気の圧力制御が可能な雰囲気制
御口を有する粉砕室と、粉砕室内部に保持された被粉砕
物を加熱するヒーターとからなる水素粉砕処理炉におい
て、粉砕室が回転可能であることを特徴とする水素粉砕
処理炉。
2. A hydrogen pulverization treatment furnace comprising a pulverization chamber having an atmosphere control port capable of controlling the pressure of a hydrogen atmosphere and a heater for heating an object to be pulverized held in the pulverization chamber, the pulverization chamber being rotatable. A hydrogen pulverization treatment furnace characterized by:
【請求項3】 粉砕室内部に粉砕補助具を有する請求項
2に記載の希土類リッチ合金の水素粉砕処理炉。
3. The rare earth-rich alloy hydrogen crushing treatment furnace according to claim 2, further comprising a crushing assisting tool inside the crushing chamber.
JP29149395A 1995-11-09 1995-11-09 Manufacture of rare earth permanent magnet and hydrogen crushing processing oven Pending JPH09134836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29149395A JPH09134836A (en) 1995-11-09 1995-11-09 Manufacture of rare earth permanent magnet and hydrogen crushing processing oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29149395A JPH09134836A (en) 1995-11-09 1995-11-09 Manufacture of rare earth permanent magnet and hydrogen crushing processing oven

Publications (1)

Publication Number Publication Date
JPH09134836A true JPH09134836A (en) 1997-05-20

Family

ID=17769591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29149395A Pending JPH09134836A (en) 1995-11-09 1995-11-09 Manufacture of rare earth permanent magnet and hydrogen crushing processing oven

Country Status (1)

Country Link
JP (1) JPH09134836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175931A (en) * 2000-09-28 2002-06-21 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
CN101966584A (en) * 2010-11-18 2011-02-09 宁波百琪达自动化设备有限公司 Hydrogenation furnace for hydrogenating rare earth alloy powder
CN103008646A (en) * 2012-12-05 2013-04-03 宁波百琪达自动化设备有限公司 Hydrogen demolishing and dysprosium penetration dual-purpose reacting furnace for laboratory
CN103990806A (en) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 Hydrogen crushing method and equipment of neodymium iron boron rare earth permanent magnetic alloy
CN105149599A (en) * 2015-09-18 2015-12-16 苏州萨伯工业设计有限公司 Energy-saving hydrogen decrepitation method
CN113927035A (en) * 2021-09-09 2022-01-14 浙江英洛华磁业有限公司 Formula hydrogen is broken to dispersion magnetism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175931A (en) * 2000-09-28 2002-06-21 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
CN101966584A (en) * 2010-11-18 2011-02-09 宁波百琪达自动化设备有限公司 Hydrogenation furnace for hydrogenating rare earth alloy powder
CN103008646A (en) * 2012-12-05 2013-04-03 宁波百琪达自动化设备有限公司 Hydrogen demolishing and dysprosium penetration dual-purpose reacting furnace for laboratory
CN103990806A (en) * 2014-05-11 2014-08-20 沈阳中北通磁科技股份有限公司 Hydrogen crushing method and equipment of neodymium iron boron rare earth permanent magnetic alloy
CN105149599A (en) * 2015-09-18 2015-12-16 苏州萨伯工业设计有限公司 Energy-saving hydrogen decrepitation method
CN113927035A (en) * 2021-09-09 2022-01-14 浙江英洛华磁业有限公司 Formula hydrogen is broken to dispersion magnetism
CN113927035B (en) * 2021-09-09 2023-06-16 浙江英洛华磁业有限公司 Dispersed magnetic attraction type hydrogen breaking furnace

Similar Documents

Publication Publication Date Title
JP5510457B2 (en) Method for producing RTB-based sintered magnet
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP6963251B2 (en) Rare earth iron nitrogen-based magnetic powder
TW201113910A (en) Rare earth magnet and its preparation
WO2013108830A1 (en) Method for producing r-t-b sintered magnet
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
KR102100759B1 (en) Manufacturing method of metal powder and metal powder
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JP5125818B2 (en) Magnetic compact and manufacturing method thereof
JPH05163510A (en) Production of rare-earth magnetic alloy powder
US4071229A (en) Vacuum revolving cylindrical furnace
JPH09134836A (en) Manufacture of rare earth permanent magnet and hydrogen crushing processing oven
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JPH08167515A (en) Manufacturing for material of r-f-b-based permanent magnet
JPWO2015122422A1 (en) Rare earth-containing alloy slab, manufacturing method thereof, and sintered magnet
US20220246336A1 (en) Manufacturing method for rare earth magnet
EP3855459B1 (en) Sintered magnet manufacturing method
JP7156226B2 (en) Method for manufacturing rare earth magnet
JP2005226114A (en) Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
JP6520826B2 (en) Method of manufacturing rare earth magnet powder
JPH1022154A (en) Manufacture of rear-earth permanent magnet
JP2016037611A (en) Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder
JP2020136333A (en) Sintered body for rare earth magnet and method for manufacturing the same
JPH058562B2 (en)
JP2872794B2 (en) Manufacturing method of rare earth permanent magnet