JPH09132848A - Non-woven fabric for integrating porous base material, production of non-woven fabric for integrating porous base material, composite product integrated with the non-woven fabric for integrating porous base material, and production of the composite material - Google Patents

Non-woven fabric for integrating porous base material, production of non-woven fabric for integrating porous base material, composite product integrated with the non-woven fabric for integrating porous base material, and production of the composite material

Info

Publication number
JPH09132848A
JPH09132848A JP30828895A JP30828895A JPH09132848A JP H09132848 A JPH09132848 A JP H09132848A JP 30828895 A JP30828895 A JP 30828895A JP 30828895 A JP30828895 A JP 30828895A JP H09132848 A JPH09132848 A JP H09132848A
Authority
JP
Japan
Prior art keywords
woven fabric
fiber
fibers
porous base
ultrafine fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30828895A
Other languages
Japanese (ja)
Other versions
JP3526358B2 (en
Inventor
Toshio Aikawa
登志夫 相川
Yoshiko Shibano
佳子 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP30828895A priority Critical patent/JP3526358B2/en
Publication of JPH09132848A publication Critical patent/JPH09132848A/en
Application granted granted Critical
Publication of JP3526358B2 publication Critical patent/JP3526358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a non-woven fabric capable of integrating porous base materials, while maintaining the non-integrated states of the porous base materials, to provide a method for producing the non-woven fabric, to obtain a composite product integrated with the non- woven fabric, and to provide a method for producing the composite product. SOLUTION: This non-woven fabric contains ultra fine fibers having a fiber diameter of <=3μm and comprises two or more kinds of resin components. The non-woven fabric can be formed by binding fiber webs containing dividable fibers capable of being divided into the ultra fine fibers, and simultaneously or subsequently dividing the dividable fibers to generate the ultra fine fibers. The objective composite product comprises the same or different porous base materials and the above non-woven fabric integrally laminated between the porous base materials. The objective composite material can be formed by laminating the above non-woven fabric between the same or different kinds of the porous base materials and subsequently applying ultrasonic waves to at least one side of the laminated product in a liquid-containing state. Therein, the ultra fine fibers of the non-woven fabric are mainly invaded into or entangled with the pores of the porous base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は同種又は異種の多孔
性基材を一体化できる不織布、この多孔性基材一体化用
不織布の製造方法、この多孔性基材一体化用不織布で一
体化した複合体、及びこの複合体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonwoven fabric capable of integrating porous substrates of the same type or different types, a method for producing the nonwoven fabric for integrating the porous substrates, and the nonwoven fabric for integrating the porous substrates. The present invention relates to a composite and a method for producing the composite.

【0002】[0002]

【従来の技術】例えば、中入綿のような嵩高な繊維集合
体を形成するために、繊維シートを2〜3枚重ねた後、
ニードルや水流によって絡合一体化する方法がある。し
かしながら、このような方法によって絡合一体化する
と、繊維シートの厚みが減少し、断熱の働きをする空気
の量が少なくなり、中入綿としての性能が低下するとい
う問題がある。
2. Description of the Related Art For example, in order to form a bulky fiber aggregate such as padded cotton, after stacking two or three fiber sheets,
There is a method of entanglement and integration with a needle or water flow. However, when the entanglement and integration are performed by such a method, there is a problem that the thickness of the fiber sheet is reduced, the amount of air that functions as heat insulation is reduced, and the performance as a batting is deteriorated.

【0003】また、粗密構造を有する気体又は液体フィ
ルタを形成するために、設計した通りの見掛密度を有す
る粗構造繊維シートと密構造繊維シートとを、ニードル
や水流によって絡合一体化すると、フィルタの厚みが減
少し、各々の繊維シートの見掛密度が変化してしまい、
設計した通りのフィルタを形成することはできない。
Further, in order to form a gas or liquid filter having a coarse and dense structure, a coarse structure fiber sheet and a dense structure fiber sheet having an apparent density as designed are entangled and integrated by a needle or water flow, The thickness of the filter decreases, the apparent density of each fiber sheet changes,
It is not possible to form a filter as designed.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
問題を解決するためになされたものであり、多孔性基材
の一体化前の状態を維持したまま一体化できる不織布、
この不織布の製造方法、この不織布で一体化した複合
体、及びこの複合体の製造方法を提供することを目的と
する。
The present invention has been made to solve the above problems, and is a nonwoven fabric which can be integrated while maintaining the state before the integration of the porous substrate.
It is an object of the present invention to provide a method for producing this nonwoven fabric, a composite body integrated with this nonwoven fabric, and a method for producing this composite body.

【0005】[0005]

【課題を解決するための手段】本発明の多孔性基材一体
化用不織布(以下、「一体化用不織布」という)は、同
種又は異種の多孔性基材の間に積層した後に、超音波を
作用させて、多孔性基材を一体化するために使用する一
体化用不織布であり、この一体化用不織布が繊維径3μ
m以下の極細繊維を含んでいるため、超音波を作用させ
ることによって、極細繊維を多孔性基材に侵入、絡合さ
せることができ、容易に一体化できるものである。
The nonwoven fabric for integrating porous substrates of the present invention (hereinafter referred to as "nonwoven fabric for integration") is ultrasonic wave after being laminated between the same or different kinds of porous substrates. Is a non-woven fabric for integration that is used to integrate the porous base material by the action of.
Since it contains ultrafine fibers of m or less, the ultrafine fibers can invade and be entangled with the porous substrate by applying ultrasonic waves, and can be easily integrated.

【0006】本発明の一体化用不織布の製造方法は、2
種類以上の樹脂成分からなる、極細繊維に分割可能な分
割性繊維を含む繊維ウエブを結合すると同時に、又は結
合した後に、この分割性繊維を分割して、極細繊維を発
生させる方法であるため、強度があり、極細繊維を含む
一体化用不織布を容易に形成できる。
The method for producing the non-woven fabric for integration of the present invention is 2
Simultaneously with or after bonding a fibrous web containing splittable fibers that can be split into ultrafine fibers, which consists of more than one type of resin component, is a method of splitting the splittable fibers to generate ultrafine fibers, It has strength and can easily form a non-woven fabric containing ultrafine fibers for integration.

【0007】本発明の複合体は、同種又は異種の多孔性
基材の間に、上記の一体化用不織布が積層一体化した複
合体であり、この複合体は、主として、この一体化用不
織布の極細繊維が、多孔性基材の孔に侵入し、絡合した
ものであるため、一体化前の多孔性基材の状態を維持し
ている。
The composite of the present invention is a composite in which the above-mentioned nonwoven fabric for integration is laminated and integrated between the same or different kinds of porous substrates, and this composite is mainly the nonwoven fabric for integration. Since the ultrafine fibers of (1) have entered the pores of the porous base material and are entangled with each other, the state of the porous base material before the integration is maintained.

【0008】本発明の複合体の製造方法は、同種又は異
種の多孔性基材の間に、上記の一体化用不織布を積層し
た後、この積層物の少なくとも片側から、含液状態下で
超音波を作用させることにより、主として、この一体化
用不織布の極細繊維を多孔性基材の孔に侵入させ、絡合
させる方法であるため、一体化前の多孔性基材の状態を
維持したまま、容易に積層一体化できる方法である。
The method for producing a composite of the present invention comprises the steps of laminating the above nonwoven fabric for integration between porous substrates of the same type or different types, and then superposing the laminated nonwoven fabric from at least one side of the laminated body in a liquid-containing state. This is a method in which the ultrafine fibers of the nonwoven fabric for integration are mainly caused to invade the pores of the porous base material by the action of a sound wave so that they are entangled with each other. Therefore, the state of the porous base material before the integration is maintained. It is a method that can be easily laminated and integrated.

【0009】[0009]

【発明の実施の形態】本発明の一体化用不織布は繊維径
3μm以下の極細繊維を含むものである。この極細繊維
の繊維径が3μmを越えると、多孔性基材を一体化する
際に作用させる超音波によって、絡合作用が生じにく
く、一体化できなくなるため、繊維径3μm以下、好ま
しくは1.5μm以下、より好ましくは1μm以下、最も
好ましくは0.5μm以下の極細繊維を含んでいる。な
お、極細繊維の断面形状が非円形状である場合には、円
形断面に換算した値を繊維径とする。
BEST MODE FOR CARRYING OUT THE INVENTION The nonwoven fabric for integration of the present invention contains ultrafine fibers having a fiber diameter of 3 μm or less. If the fiber diameter of the ultrafine fibers exceeds 3 μm, the ultrasonic waves that act when the porous base materials are integrated hardly cause the entanglement action and the integration becomes impossible. Therefore, the fiber diameter is 3 μm or less, preferably 1. It contains ultrafine fibers of 5 μm or less, more preferably 1 μm or less, and most preferably 0.5 μm or less. In addition, when the cross-sectional shape of the ultrafine fiber is a non-circular shape, the value converted into a circular cross section is taken as the fiber diameter.

【0010】この繊維径3μm以下の極細繊維は、2種
類以上の樹脂成分からなる極細繊維に分割可能な分割性
繊維を分割して得られるものを使用しても良いし、メル
トブロー法により得られるものを使用しても良いが、前
者の分割性繊維を分割して得られる極細繊維は延伸配向
しており、後者の極細繊維よりも強度的に優れ、多孔性
基材との剥離強度を強くできるため、好適に使用でき
る。以下、分割性繊維から極細繊維を発生させる場合に
ついて説明する。
As the ultrafine fibers having a fiber diameter of 3 μm or less, those obtained by dividing a divisible fiber that can be divided into ultrafine fibers composed of two or more kinds of resin components may be used, or obtained by a melt blowing method. Although fine fibers may be used, the ultrafine fibers obtained by dividing the former splittable fibers are stretched and oriented, and are superior in strength to the latter ultrafine fibers and have a high peel strength with the porous substrate. Therefore, it can be preferably used. Hereinafter, a case of generating ultrafine fibers from splittable fibers will be described.

【0011】この分割性繊維としては、機械的及び/又
は化学的処理により分割できるものであれば良く、例え
ば、図1に繊維断面模式図を示すように、一成分A中に
他成分Bを島状に配置した繊維断面を有する海島型繊
維、図2に繊維断面模式図を示すように、一成分Aと他
成分Bとを交互に層状に積層した繊維断面を有する多重
バイメタル型繊維、或は図3(a)、(b)に繊維断面
模式図を示すように、一成分Aを繊維の内部(好適には
繊維軸)から繊維表面に伸びる他成分Bで分割した繊維
断面を有する菊花型繊維、或は、海島型繊維、多重バイ
メタル型繊維、菊花型繊維を適宜複合した繊維、つま
り、海島型繊維の島成分が海島型、多重バイメタル型、
菊花型の断面形状を有する繊維、多重バイメタル型繊維
の一成分及び/又は他成分が海島型、多重バイメタル
型、菊花型の断面形状を有する繊維、菊花型繊維の一成
分及び/又は他成分が海島型、多重バイメタル型、菊花
型の断面形状を有する繊維を使用できる。これらの中で
も、海島型繊維は繊維径3μm以下の極細繊維を容易に
発生できるので、好適に使用できる。
The splittable fiber may be any fiber that can be split by mechanical and / or chemical treatment. For example, as shown in the schematic cross-sectional view of the fiber in FIG. A sea-island type fiber having an island-shaped fiber cross section, a multi-bimetal type fiber having a fiber cross section in which one component A and another component B are alternately laminated in layers as shown in the fiber cross-section schematic diagram, or Is a chrysanthemum flower having a fiber cross section in which one component A is divided by another component B extending from the inside of the fiber (preferably the fiber axis) to the fiber surface, as shown in FIGS. 3 (a) and 3 (b). -Type fiber, or sea-island type fiber, multiple bimetal type fiber, and chrysanthemum-type fiber are appropriately compounded, that is, the island component of the sea-island type fiber is sea-island type, multiple bimetal type,
A fiber having a chrysanthemum-shaped cross-sectional shape, one component and / or other component of a multi-bimetal type fiber is a sea-island type, a multi-bimetal type, a fiber having a chrysanthemum-shaped cross-sectional shape, one component and / or another component of a chrysanthemum-type fiber Fibers having a sea-island type, multiple bimetal type, or chrysanthemum type cross-sectional shape can be used. Among these, the sea-island type fibers can easily generate ultrafine fibers having a fiber diameter of 3 μm or less, and thus can be preferably used.

【0012】この分割性繊維を構成する樹脂成分は、繊
維形成能のある2種類以上の樹脂からなれば良く、例え
ば、ナイロン6、ナイロン66、ナイロン系共重合体な
どのポリアミド、ポリエチレンテレフタレート、ポリエ
チレンテレフタレート系共重合体、ポリブチレンテレフ
タレート、ポリブチレンテレフタレート系共重合体など
のポリエステル、ポリエチレン、ポリプロピレン、ポリ
メチルペンテンなどのポリオレフィン、ポリウレタン、
ポリアクリロニトリル、ビニル重合体、或いは、ポリグ
リコール酸、グリコール酸共重合体、ポリ乳酸、乳酸共
重合体などの脂肪族ポリエステル系重合体、この脂肪族
ポリエステル系重合体にカプラミド、テトラメチレンア
ジパミド、ウンデカナミド、ラウロラクタミド、ヘキサ
メチレンアジパミドなどの脂肪族アミドが共重合した脂
肪族ポリエステルアミド系共重合体などの樹脂が使用で
きる。
The resin component constituting the splittable fiber may be composed of two or more kinds of resins capable of forming fibers, and examples thereof include polyamides such as nylon 6, nylon 66, and nylon copolymers, polyethylene terephthalate, polyethylene. Polyester such as terephthalate copolymer, polybutylene terephthalate and polybutylene terephthalate copolymer, polyolefin such as polyethylene, polypropylene and polymethylpentene, polyurethane,
Aliphatic polyester-based polymers such as polyacrylonitrile, vinyl polymers, polyglycolic acid, glycolic acid copolymers, polylactic acid, lactic acid copolymers, etc., the aliphatic polyester-based polymers being capamide, tetramethylene adipamide Resins such as aliphatic polyesteramide-based copolymers obtained by copolymerizing aliphatic amides such as undecanamid, laurolactamide, and hexamethyleneadipamide can be used.

【0013】分割性繊維として海島型繊維を使用する場
合、海成分として脂肪族ポリエステル重合体や脂肪族ポ
リエステルアミド系共重合体を使用すると、アルカリ水
溶液によって容易に除去できるため、製造上好適である
と共に、これら樹脂成分は生分解性であり、分解抽出し
た廃液を処理しやすいので、好適に使用できる。なお、
分割性繊維から発生する極細繊維が熱可塑性であるた
め、極細繊維を多孔性基材に絡合させた後に融着させる
ことによって、より強固に一体化できるという特長もあ
る。また、この熱可塑性樹脂成分からなる極細繊維の断
面が、芯鞘型形状を有しており、鞘成分が芯成分よりも
融点が低いと、この極細繊維を融着させても、芯成分に
よって強度が維持され、より多孔性基材を強固に一体化
できるという特長がある。このような樹脂成分からなる
分割性繊維は、常法の複合紡糸法、混合紡糸法、或はこ
れらを組み合わせることにより、容易に紡糸できる。ま
た、紡糸性や繊維強度を低下させない範囲内で、難燃
剤、帯電防止剤、吸湿剤、着色剤、染色剤、導電剤、親
水化剤などを混合しても良い。
When sea-island type fibers are used as the splittable fibers, use of an aliphatic polyester polymer or an aliphatic polyesteramide type copolymer as the sea component is suitable for production because it can be easily removed by an alkaline aqueous solution. In addition, since these resin components are biodegradable and the waste liquid decomposed and extracted can be easily treated, they can be preferably used. In addition,
Since the ultrafine fibers generated from the splittable fibers are thermoplastic, there is also a feature that the ultrafine fibers can be more firmly integrated by being entangled with the porous substrate and then fused. Further, the cross section of the ultrafine fibers made of the thermoplastic resin component has a core-sheath shape, and when the sheath component has a lower melting point than the core component, even if the ultrafine fibers are fused, the The strength is maintained and the porous base material can be firmly integrated. The splittable fiber composed of such a resin component can be easily spun by a conventional composite spinning method, a mixed spinning method, or a combination thereof. Further, a flame retardant, an antistatic agent, a hygroscopic agent, a coloring agent, a dyeing agent, a conductive agent, a hydrophilizing agent and the like may be mixed within a range that does not reduce the spinnability and the fiber strength.

【0014】このような極細繊維は、一体化用不織布
中、20重量%以上含まれていれば、多孔性基材と強固
に一体化できるが、極細繊維が多ければ多いほど、より
多くの極細繊維が多孔性基材の孔に侵入し、絡合できる
ので、50重量%以上含まれているのが好ましく、80
重量%以上含まれているのがより好ましく、100重量
%含まれているのが最も好ましい。この極細繊維以外の
繊維としては、例えば、絹、羊毛、綿、麻などの天然繊
維、レーヨン繊維などの再生繊維、アセテート繊維など
の半合成繊維、ポリアミド繊維、ポリビニルアルコール
繊維、アクリル繊維、ポリエステル繊維、ポリ塩化ビニ
ル系繊維、ポリ塩化ビニリデン繊維、ポリウレタン繊
維、ポリエチレン繊維、ポリプロピレン繊維、芳香族ポ
リアミド繊維などの合成繊維を混合できる。また、2成
分以上の樹脂成分からなる芯鞘型の接着性複合繊維を混
合して接着することにより、多孔性基材間の剥離強度を
向上させたり、偏芯型、貼り合わせ型などの巻縮を発現
可能な複合繊維を混合し、巻縮を発現させることにより
伸縮性をもたせ、多孔性基材の伸縮に追従させることも
できる。
When such an ultrafine fiber is contained in the nonwoven fabric for integration in an amount of 20% by weight or more, it can be firmly integrated with the porous substrate. However, the more the ultrafine fiber is, the more the ultrafine fiber is. Since the fibers can penetrate into the pores of the porous substrate and be entangled with each other, it is preferable that the content of the fibers is 50% by weight or more.
More preferably, it is contained in an amount of not less than 100% by weight, most preferably 100% by weight. Examples of the fibers other than the ultrafine fibers include natural fibers such as silk, wool, cotton and hemp, regenerated fibers such as rayon fibers, semi-synthetic fibers such as acetate fibers, polyamide fibers, polyvinyl alcohol fibers, acrylic fibers, polyester fibers. It is possible to mix synthetic fibers such as polyvinyl chloride fibers, polyvinylidene chloride fibers, polyurethane fibers, polyethylene fibers, polypropylene fibers, and aromatic polyamide fibers. Further, by mixing and adhering a core-sheath type adhesive composite fiber composed of two or more resin components and adhering them, the peeling strength between the porous base materials is improved, or eccentric type, laminated type, etc. Stretchability can be imparted by mixing bicomponent fibers capable of expressing crimp and causing crimp to follow the stretching of the porous substrate.

【0015】以上のような分割性繊維を含む繊維ウエブ
は、例えば、カード法、エアレイ法などの乾式法や、湿
式法により形成できる。なお、繊維ウエブの形成方法に
よって繊維長が異なり、前者の乾式法により形成する場
合には、20〜110mmの繊維を使用し、後者の湿式法
により形成する場合には、1〜30mmの繊維を使用す
る。前者の乾式法により形成する方が、より繊維長が長
く、多孔性基材の剥離強度を強くすることができるの
で、より好適である。また、これら繊維ウエブを適宜組
み合わせて積層しても良い。
The fibrous web containing the splittable fibers as described above can be formed by a dry method such as a card method or an air lay method, or a wet method. The fiber length varies depending on the method of forming the fibrous web. When the former dry method is used, fibers of 20 to 110 mm are used, and when the latter wet method is used, fibers of 1 to 30 mm are used. use. The former dry method is more preferable because the fiber length is longer and the peel strength of the porous substrate can be increased. Further, these fiber webs may be appropriately combined and laminated.

【0016】次いで、この分割性繊維を含む繊維ウエブ
を結合して、結合繊維ウエブを形成する。この分割性繊
維を含む繊維ウエブの結合方法としては、ニードルや水
流により絡合する方法、接着剤により接着する方法、分
割性繊維の熱可塑性成分又は混合した熱可塑性繊維によ
り融着する方法、特殊な針によってステッチする方法な
どがあるが、極細繊維を発生させた後にも、その結合強
度を維持できる、ニードルや水流により絡合する方法が
好適である。これらの中でも、水流で絡合する方法は、
分割性繊維を損傷することなく、繊維ウエブ全体を均一
に絡合できるので、より好適である。
Next, the fibrous web containing the splittable fibers is bonded to form a bonded fibrous web. As a method of bonding the fibrous web containing the splittable fiber, a method of entanglement with a needle or a water stream, a method of bonding with an adhesive, a method of fusing with a thermoplastic component of the splittable fiber or a mixed thermoplastic fiber, a special There is a method of stitching with a fine needle, but a method of entanglement with a needle or a water flow that can maintain the bonding strength even after the ultrafine fibers are generated is preferable. Among these, the method of entanglement with water flow is
This is more preferable because the entire fibrous web can be uniformly entangled without damaging the splittable fibers.

【0017】この水流による絡合条件としては、例え
ば、ノズル径0.05〜0.3mm、好適には0.08〜0.
2mm、ピッチ0.2〜3mm、好適には0.4〜2mmで一列
以上に配列したノズルプレートを使用し、圧力10〜3
00kg/cm2、好適には50〜250kg/cm2の水流を噴出
する。この水流による絡合は1回である必要はなく、必
要であれば、2回以上、繊維ウエブの片面又は両面から
噴出する。なお、水流の圧力は変化させたり、ノズルを
揺動又は振動させても良い。
The entanglement condition by this water flow is, for example, a nozzle diameter of 0.05 to 0.3 mm, preferably 0.08 to 0.03.
2 mm, pitch 0.2-3 mm, preferably 0.4-2 mm, using nozzle plates arranged in one or more rows, pressure 10-3
A water stream of 00 kg / cm 2 , preferably 50-250 kg / cm 2 , is jetted. The entanglement by the water flow does not have to be performed once, and if necessary, jetting is performed twice or more from one side or both sides of the fibrous web. The pressure of the water stream may be changed, or the nozzle may be swung or vibrated.

【0018】なお、水流で絡合する際に繊維ウエブを搬
送する、ネットやメッシュなどの支持体の非開孔部を大
きくすると、外観上、孔を有する結合繊維ウエブを形成
でき、支持体の非開孔部を小さくすると、外観上は孔の
ない結合繊維ウエブを形成できる。前者は、多孔性基材
間に気体、液体、或は固体などの移動が必要な場合に好
適であり、後者はその必要がない場合に好適である。よ
り具体的には、前者の場合には、線径0.25mmを越え
る太いワイヤーからなる、50メッシュ未満の目の粗い
ネットや、これに相当する多孔板を使用し、後者の場合
には、線径0.25mm以下の細いワイヤーからなる、5
0メッシュ以上の目の細かいネットや、これに相当する
多孔板を使用する。
If the non-perforated portion of the support, such as a net or mesh, which conveys the fibrous web when it is entangled with a water stream is made large, a bonded fibrous web having holes can be formed in appearance, and By reducing the size of the non-perforated portion, it is possible to form a bonded fibrous web having no pores in appearance. The former is suitable when the transfer of gas, liquid, solid or the like between the porous substrates is required, and the latter is suitable when it is not necessary. More specifically, in the former case, a coarse net of less than 50 mesh composed of a thick wire with a wire diameter exceeding 0.25 mm or a perforated plate corresponding to this is used, and in the latter case, Consists of a thin wire with a wire diameter of 0.25 mm or less, 5
A fine mesh of 0 mesh or more or a perforated plate corresponding to this is used.

【0019】次いで、結合繊維ウエブを構成する分割性
繊維を分割して、極細繊維を含む一体化用不織布を形成
する。この分割性繊維の分割方法は、分割性繊維の種類
によって異なり、海島型繊維の場合には、海成分を抽出
できる溶媒で抽出して極細繊維に分割し、多重バイメタ
ル型繊維や菊花型繊維の場合には、水などの液体やニー
ドルやカレンダーなどの固体を作用させて、極細繊維に
分割する。後者の多重バイメタル型繊維や菊花型繊維の
場合、繊維ウエブを絡合するのと同時に分割できるた
め、この分割性繊維の分割工程を省略できるという利点
がある。他方、前述のように、海島型繊維の海成分が、
脂肪族ポリエステル重合体や脂肪族ポリエステルアミド
系共重合体からなると、アルカリ溶液によって容易に除
去できるため、工程上好適であり、しかもこれら樹脂成
分は生分解性であるため、分解抽出した廃液を処理しや
すいという利点がある。
Then, the splittable fibers constituting the bonded fiber web are split to form an unwoven fabric containing ultrafine fibers. The method of splitting this splittable fiber differs depending on the type of splittable fiber.In the case of sea-island type fiber, it is extracted with a solvent that can extract sea components and split into ultrafine fibers, and the multi-bimetal type fiber and chrysanthemum type fiber are separated. In this case, a liquid such as water or a solid such as a needle or a calender is allowed to act to divide it into ultrafine fibers. In the case of the latter multiple bimetal type fiber or chrysanthemum type fiber, since the fiber web can be entangled and can be split at the same time, there is an advantage that the splitting step of this splittable fiber can be omitted. On the other hand, as described above, the sea component of the sea-island fiber is
An aliphatic polyester polymer or an aliphatic polyester amide-based copolymer is suitable for the process because it can be easily removed with an alkaline solution, and since these resin components are biodegradable, the waste liquid decomposed and extracted is treated. There is an advantage that it is easy to do.

【0020】なお、分割性繊維として多重バイメタル型
繊維や菊花型繊維を使用し、水流絡合により形成した、
外観上、孔を有する結合繊維ウエブ、つまり一体化用不
織布は、主として極細繊維が絡合した繊維群が略交差
し、しかも繊維群同士の交差点においても絡合してい
る。他方、分割性繊維として海島型繊維を使用し、水流
絡合により形成した、外観上、孔を有する結合繊維ウエ
ブを構成する、海島型繊維の海成分を抽出して形成した
一体化用不織布は、主として極細繊維の束が絡合した繊
維群が略交差し、しかも繊維群同士の交差点においても
主として極細繊維の束が絡合している。後者の一体化用
不織布は強度的に優れ、しかも超音波により極細繊維が
絡合しやすい。
It should be noted that multiple bimetal type fibers and chrysanthemum type fibers are used as the splittable fibers and are formed by hydroentanglement,
In terms of appearance, in a bonded fiber web having pores, that is, a non-woven fabric for integration, mainly fiber groups in which ultrafine fibers are entangled substantially intersect each other, and further, they are entangled at intersections between the fiber groups. On the other hand, using sea-island type fibers as splittable fibers, formed by hydroentanglement, in appearance, constituting a bonded fiber web having pores, nonwoven fabric for integration formed by extracting the sea component of sea-island type fibers is The fiber groups in which the bundles of ultrafine fibers are entangled substantially intersect each other, and the bundles of ultrafine fibers are also entangled mainly at the intersections between the fiber groups. The latter nonwoven fabric for integration is excellent in strength, and the ultrafine fibers are easily entangled by ultrasonic waves.

【0021】また、分割性繊維として多重バイメタル型
繊維や菊花型繊維を使用し、水流絡合により形成した、
外観上は孔のない結合繊維ウエブ、つまり一体化用不織
布は、一体化用不織布全体にわたって、主として極細繊
維が絡合している。他方、分割性繊維として海島型繊維
を使用し、水流絡合により形成した、外観上は孔のない
結合繊維ウエブを構成する、海島型繊維の海成分を抽出
して形成した一体化用不織布は、極細繊維の束が絡合し
ている。後者の一体化用不織布は引張強度に優れ、しか
も超音波により極細繊維が絡合しやすい。このように、
分割性繊維として海島型繊維を使用すると、極細繊維の
束の状態で存在し、極細繊維が絡合しているよりも、超
音波で多孔性基材と絡合しやすいので、好適である。
Further, multiple bimetal type fibers or chrysanthemum type fibers are used as the splittable fibers and are formed by hydroentangling.
In a bonded fiber web having no pores in appearance, that is, a non-woven fabric for integration, ultrafine fibers are mainly entangled over the whole non-woven fabric for integration. On the other hand, using sea-island type fibers as splittable fibers, formed by hydroentangling, to form a bonded fiber web with no holes in appearance, the nonwoven fabric for integration formed by extracting the sea component of sea-island type fibers is , Bundles of ultrafine fibers are intertwined. The latter nonwoven fabric for integration has excellent tensile strength, and ultrafine fibers are easily entangled by ultrasonic waves. in this way,
It is preferable to use sea-island type fibers as the splittable fibers, because they are present in the state of a bundle of ultrafine fibers and are easily entangled with the porous base material by ultrasonic waves rather than being entangled with the ultrafine fibers.

【0022】本発明の一体化用不織布の目付は、特に限
定するものではないが、多孔性基材に悪影響を及ぼさな
いように、目付2〜150g/m2であるのが好ましく、5
〜100g/m2であるのがより好ましい。
The unit weight of the nonwoven fabric for integration of the present invention is not particularly limited, but is preferably 2 to 150 g / m 2 in order not to adversely affect the porous substrate.
It is more preferably about 100 g / m 2 .

【0023】本発明の複合体は、同種又は異種の多孔性
基材の間に、上述の一体化用不織布が積層一体化したも
のであり、この複合体は、主として一体化用不織布を構
成する極細繊維が多孔性基材の孔に侵入し、絡合してい
るため、多孔性基材は一体化前の状態を維持している。
The composite of the present invention is one in which the above-mentioned non-woven fabric for integration is laminated and integrated between the same or different types of porous substrates, and this composite mainly constitutes the non-woven fabric for integration. Since the ultrafine fibers penetrate the pores of the porous base material and are entangled with each other, the porous base material maintains the state before the integration.

【0024】この多孔性基材としては、例えば、ネッ
ト、織物、編物、不織布などの多孔性のものであれば良
いが、後述の超音波処理によって、極細繊維が多孔性基
材の孔に侵入し、絡合しやすいように、線径(又は繊維
径)1.5mm以下であるのが好ましい。なお、一体化用
不織布を構成する極細繊維の繊維径が3μm程度の場合
には、多孔性基材の孔径(又は平均孔径)が35μm以
上程度である必要があるが、繊維径が1μm以下である
場合には、孔径(又は平均孔径)が15μm程度の多孔
性基材も一体化することができ、より汎用性に優れてい
る。
The porous substrate may be, for example, a net, woven fabric, knitted fabric, non-woven fabric, or the like, but ultrafine fibers penetrate into the pores of the porous substrate by the ultrasonic treatment described later. However, the wire diameter (or fiber diameter) is preferably 1.5 mm or less so that they are easily entangled. When the fiber diameter of the ultrafine fibers constituting the unifying nonwoven fabric is about 3 μm, the pore diameter (or average pore diameter) of the porous substrate should be about 35 μm or more, but the fiber diameter is 1 μm or less. In some cases, a porous substrate having a pore size (or average pore size) of about 15 μm can also be integrated, which is more versatile.

【0025】本発明の複合体は、多孔性基材の間に上述
の一体化用不織布を積層した後、この積層物の少なくと
も片側から、含液状態下で超音波を作用させることによ
り、主として一体化用不織布を構成する極細繊維を、多
孔性基材の孔に侵入させ、絡合させて形成することがで
きる。なお、複合体全体に亘って均一な構造であるのが
好ましい場合には、同種の多孔性基材を積層し、粗密構
造をもたせるなど、不均一な構造であるのが好ましい場
合には、異種の多孔性基材を積層する。また、多孔性基
材の間において、気体、液体、或は固体の移動が必要な
場合には、外観上、孔を有する一体化用不織布を使用
し、その必要がない場合には、外観上は孔のない一体化
用不織布を使用するのが好ましい。更に、この多孔性基
材は2枚である必要はなく、3枚以上でも良く、各々の
多孔性基材の間に一体化用不織布を積層すれば良い。
The composite of the present invention is mainly prepared by laminating the above-mentioned non-woven fabric for integration between porous substrates and then applying ultrasonic waves from at least one side of the laminate in a liquid-containing state. The ultrafine fibers forming the unifying nonwoven fabric can be formed by invading the pores of the porous base material and entangled with each other. In addition, when it is preferable that a uniform structure is formed over the entire composite body, it is preferable that a heterogeneous structure is formed, for example, by laminating porous substrates of the same kind to have a coarse and dense structure. The porous base materials are laminated. When it is necessary to move gas, liquid, or solid between the porous substrates, a non-woven fabric having a hole is used for the appearance. It is preferable to use a non-woven fabric having no pores for integration. Further, the number of the porous base materials does not have to be two, and may be three or more, and a non-woven fabric for integration may be laminated between the respective porous base materials.

【0026】本発明においては、積層物の少なくとも片
側から、含液状態下で超音波を作用させるが、この含液
状態とは、多孔性基材と一体化用不織布との積層物が液
体中に浸漬された状態や、液体をスプレー又は含浸した
状態など、少なくとも一体化用不織布に液体が付着した
状態をいう。この超音波を作用させる際に使用する液体
としては、極細繊維を侵食しない水や有機溶剤を使用す
ることができる。特に、極細繊維とのぬれ性が良好で、
超音波によって極細繊維が多孔性基材に侵入して、絡合
しやすい液体を使用するのが好ましい。例えば、極細繊
維がポリプロピレンからなる場合には、エタノール、プ
ロパノールなどのアルコールや、パークレンなどを使用
し、極細繊維がナイロンからなる場合には、アルコール
や水などを使用するのが好ましい。
In the present invention, ultrasonic waves are applied from at least one side of the laminate in a liquid-containing state, which means that the laminate of the porous substrate and the non-woven fabric is in liquid. The state in which the liquid is adhered to at least the nonwoven fabric for integration, such as the state in which the liquid is sprayed or impregnated with the liquid. As the liquid used when applying the ultrasonic waves, water or an organic solvent that does not attack the ultrafine fibers can be used. In particular, it has good wettability with ultrafine fibers,
It is preferable to use a liquid in which the ultrafine fibers penetrate into the porous substrate by ultrasonic waves and are easily entangled. For example, when the ultrafine fibers are made of polypropylene, it is preferable to use alcohol such as ethanol or propanol, or Perklen, and when the ultrafine fibers are made of nylon, it is preferable to use alcohol or water.

【0027】本発明で作用させる超音波について、超音
波ホーンによる下方照射の場合を例に説明すると、周波
数は1〜100キロヘルツ(kHz)、好ましくは10〜
50kHzで、振幅が10〜150μmであるのが好まし
い。この振幅が10μm未満であると、極細繊維の絡合
に時間がかかり、150μmを越えると、極細繊維や多
孔性基材を損傷したり、超音波ホーン自体も損傷しやす
くなるためで、より好ましい振幅は15〜100μmで
ある。なお、超音波による極細繊維の絡合を効率的に行
うために、例えば、厚さ5mm以上の金属板などの、超音
波を反射する反射板上に、多孔性基材と一体化用不織布
との積層物を載置して、超音波を作用させるのが好まし
い。この反射板を使用する場合、超音波によって絡合し
やすいように、反射板と超音波ホーンとの距離を50mm
以下とするのが好ましく、35mm以下とするのがより好
ましい。また、超音波の作用時間は、極細繊維や多孔性
基材を損傷せず、効率的に複合体を形成できるように、
10秒以下とするのが好ましい。更に、超音波の発振方
法としては、例えば、磁歪形振動子、圧電形振動子、電
歪形振動子、電磁形振動子、サイレン形発振子、空洞共
振形発振子、クサビ共振形発振子などが使用できる。以
上は、超音波ホーンによる下方照射の場合であるが、多
孔性基材と一体化用不織布との積層物に対して、10μ
m以上の振幅を有する超音波を照射できる方法であれば
良く、特に限定されない。
With respect to the ultrasonic waves used in the present invention, the case of downward irradiation with an ultrasonic horn will be described as an example. The frequency is 1 to 100 kilohertz (kHz), preferably 10 to 10.
The amplitude is preferably 10 to 150 μm at 50 kHz. If this amplitude is less than 10 μm, it takes time for the entanglement of the ultrafine fibers, and if it exceeds 150 μm, the ultrafine fibers and the porous substrate are likely to be damaged, and the ultrasonic horn itself is likely to be damaged, which is more preferable. The amplitude is 15-100 μm. In order to efficiently entangle the ultrafine fibers with ultrasonic waves, for example, a porous base material and a nonwoven fabric for integration are provided on a reflecting plate that reflects ultrasonic waves, such as a metal plate having a thickness of 5 mm or more. It is preferable to place the laminate of and to apply ultrasonic waves. When using this reflector, the distance between the reflector and the ultrasonic horn is 50 mm so that it can be easily entangled with ultrasonic waves.
The thickness is preferably not more than 35 mm, more preferably not more than 35 mm. In addition, the action time of the ultrasonic wave does not damage the ultrafine fibers or the porous substrate, so that the complex can be efficiently formed,
It is preferably 10 seconds or less. Further, as an ultrasonic wave oscillation method, for example, a magnetostrictive oscillator, a piezoelectric oscillator, an electrostrictive oscillator, an electromagnetic oscillator, a siren oscillator, a cavity resonant oscillator, a wedge resonant oscillator, etc. Can be used. The above is the case of downward irradiation with an ultrasonic horn, but for a laminate of a porous substrate and a nonwoven fabric for integration,
The method is not particularly limited as long as it is a method capable of irradiating an ultrasonic wave having an amplitude of m or more.

【0028】なお、多孔性基材の一体化用不織布との接
触面に、繊維径3μm以下の極細繊維が含まれていれ
ば、多孔性基材の極細繊維も絡合に寄与し、繊維径3μ
m以下の極細繊維が含まれていなければ、一体化用不織
布の極細繊維のみが絡合に関与する。また、超音波は、
多孔性基材と一体化用不織布との積層物の全面にわたっ
て作用させる必要はなく、多孔性基材の種類、使用用途
に応じて、必要な剥離強度が得られる範囲内で、部分的
に作用させても良い。
If the contact surface of the porous substrate with the non-woven fabric for integration contains ultrafine fibers having a fiber diameter of 3 μm or less, the ultrafine fibers of the porous substrate also contribute to the entanglement, and the fiber diameter 3μ
If the ultrafine fibers of m or less are not included, only the ultrafine fibers of the nonwoven fabric for integration are involved in the entanglement. Also, ultrasonic waves
It is not necessary to act on the entire surface of the laminate of the porous base material and the non-woven fabric for integration, and it works partially within the range where the necessary peel strength can be obtained depending on the type of the porous base material and the intended use. You may let me.

【0029】このように、本発明の複合体は多孔性基材
の一体化前の状態を維持しているため、多孔性基材を設
計通りに製造すれば、設計通りの精度の高いものであ
る。この複合体としては、例えば、嵩高な不織布(多孔
性基材)の間に一体化用不織布を積層一体化した複合体
を中入綿として用いたり、密構造を有する不織布(多孔
性基材)と粗構造を有する不織布(多孔性基材)との間
に、外観上、孔を有する一体化用不織布を積層一体化し
た複合体をフィルタとして用いることができる。なお、
本発明の複合体は、更に化学的又は物理的に処理して、
各種機能を付加し、様々な用途に適合させることができ
る。
As described above, since the composite body of the present invention maintains the state before the integration of the porous base material, if the porous base material is manufactured as designed, the accuracy is as designed. is there. As this composite, for example, a composite in which a non-woven fabric for integration is laminated and integrated between a bulky non-woven fabric (porous substrate) is used as a padding, or a non-woven fabric having a dense structure (porous substrate). It is possible to use, as a filter, a composite body in which a non-woven fabric for integration which has pores is laminated and integrated between the non-woven fabric and the non-woven fabric (porous substrate) having a rough structure. In addition,
The complex of the present invention can be further chemically or physically treated,
Various functions can be added to suit various purposes.

【0030】以下に、本発明の実施例を記載するが、以
下の実施例に限定されるものではない。なお、平均孔径
はポロメーター(コールター社製)を用いて、バブルポ
イント法により測定した値である。なお、厚みが2mm以
上の多孔性基材は、測定時に厚みが潰れてしまうため、
実際よりも小さい値になっている。
Examples of the present invention will be described below, but the invention is not limited to the following examples. The average pore diameter is a value measured by the bubble point method using a porometer (manufactured by Coulter). In addition, since the thickness of the porous substrate having a thickness of 2 mm or more is crushed during the measurement,
It is smaller than the actual value.

【0031】[0031]

【実施例】【Example】

(実施例1)共重合ポリエステルとポリプロピレンと
を、重量比57.5:42.5のペレット状態で混合紡糸
し、延伸した後、38mmに裁断して、ポリプロピレンか
らなる島成分を約2,200個有する(平均繊維径0.2
1μm)、繊度1.4デニールの海島型分割性繊維を形成
した。この海島型分割性繊維を100%使用し、カード
機により形成した一方向性繊維ウエブをクロスレイヤー
により、繊維ウエブの進行方向に対して交差させた、目
付70g/m2の交差繊維ウエブを形成した。この交差繊維
ウエブを100メッシュのネット(線径0.15mm)に
載置し、直径0.13mm、ピッチ0.6mmで配置したノズ
ル(固定)から、圧力80kgf/cm2の水流を噴出し、次
いで、交差繊維ウエブを反転した後、同様のノズルから
圧力120kgf/cm2の水流を噴出し、そして、交差繊維
ウエブを反転した後、同様のノズルから圧力120kgf/
cm2の水流を噴出し、更に、交差繊維ウエブを反転した
後、同様のノズルから圧力120kgf/cm2の水流を噴出
して、この交差繊維ウエブを絡合し、絡合繊維ウエブを
形成した。次いで、この絡合繊維ウエブを、温度80
℃、10重量%水酸化ナトリウム水溶液に20分間浸漬
して、海島型分割性繊維の海成分である、共重合ポリエ
ステルを分解抽出し、目付30g/m2、厚さ0.28mmの
ポリプロピレン極細繊維からなる、外観上は孔のない一
体化用不織布を形成した。なお、電子顕微鏡により、こ
の一体化用不織布の断面を観察したところ、一体化用不
織布全体において、極細繊維の束が絡合しているのが確
認できた。
(Example 1) Copolyester and polypropylene were mixed and spun in a pellet state with a weight ratio of 57.5: 42.5, stretched, and then cut into 38 mm to obtain an island component of polypropylene of about 2,200. Have (average fiber diameter 0.2
1 μm) and a fineness of 1.4 denier sea-island type splittable fiber was formed. Using 100% of this sea-island type splittable fiber, a unidirectional fiber web formed by a card machine is crossed with a cross layer in the traveling direction of the fiber web to form a crossed fiber web having a basis weight of 70 g / m 2. did. This crossed fiber web was placed on a 100-mesh net (wire diameter 0.15 mm), and a water stream with a pressure of 80 kgf / cm 2 was jetted from a nozzle (fixed) arranged with a diameter of 0.13 mm and a pitch of 0.6 mm. Then, after reversing the crossed fiber web, a water stream having a pressure of 120 kgf / cm 2 was ejected from the same nozzle, and after reversing the crossed fiber web, a pressure of 120 kgf / cm 2 was discharged from the same nozzle.
After injecting a water flow of cm 2 and further reversing the crossed fiber web, a water flow of 120 kgf / cm 2 in pressure was jetted from the same nozzle, and the crossed fiber web was entangled to form an entangled fiber web. . Then, the entangled fiber web is heated at a temperature of 80.
By dipping in a 10% by weight sodium hydroxide aqueous solution for 20 minutes at 20 ° C., the copolyester, which is the sea component of the sea-island type splittable fiber, is decomposed and extracted to give a polypropylene ultrafine fiber with a basis weight of 30 g / m 2 and a thickness of 0.28 mm. To form a non-woven fabric for integration which has no pores in appearance. When the cross section of the unifying nonwoven fabric was observed with an electron microscope, it was confirmed that bundles of ultrafine fibers were entangled in the entire unifying nonwoven fabric.

【0032】他方、ポリエステル繊維(繊維径14.3
μm、繊維長51mm)100%使用し、カード機により
形成した一方向性繊維ウエブをクロスレイヤーにより、
繊維ウエブの進行方向に対して交差させた、目付54g/
m2の交差繊維ウエブを形成した。次いで、この交差繊維
ウエブの両面からアクリル系バインダーをスプレーし、
乾燥して、目付60g/m2、厚さ5mm、平均孔径100μ
m以上の不織布(多孔性基材)を形成した。
On the other hand, polyester fiber (fiber diameter 14.3)
μm, fiber length 51 mm) 100%, unidirectional fiber web formed by card machine is cross layered
54 g / unit weight, crossing the direction of travel of the fiber web
An m 2 crossed fiber web was formed. Then, spray acrylic binder from both sides of this crossed fiber web,
After drying, the basis weight is 60 g / m 2 , the thickness is 5 mm, and the average pore size is 100 μ.
A non-woven fabric (porous substrate) having a size of m or more was formed.

【0033】次いで、このポリエステル不織布(多孔性
基材)の間に、前記ポリプロピレン極細繊維からなる一
体化用不織布を積層した後、この積層物を、パークレン
中、厚さ1cmの鉄板上に載置した状態で、この鉄板の上
方7mmの所に位置する、電歪型超音波ホーンから周波数
19.5kHz、振幅50μmの超音波を2秒間、片側づつ
両側から全面的に照射し、ポリプロピレン極細繊維のみ
をポリエステル不織布(多孔性基材)の孔に侵入させ、
絡合させて、複合体を形成した。この複合体は嵩高で保
温性に優れているため、中入綿として好適であった。
Next, a non-woven fabric for integration made of the polypropylene ultrafine fibers is laminated between the polyester non-woven fabric (porous substrate), and the laminated product is placed on a steel plate having a thickness of 1 cm in Perkren. In this condition, the electrostrictive ultrasonic horn located 7 mm above the iron plate is used to irradiate ultrasonic waves with a frequency of 19.5 kHz and an amplitude of 50 μm for 2 seconds from one side to the other side. To penetrate into the pores of the polyester nonwoven fabric (porous substrate),
Entangled to form a composite. Since this composite is bulky and has excellent heat retention, it was suitable as a batting.

【0034】(実施例2)実施例1と全く同様にして形
成した、目付70g/m2の交差繊維ウエブを、50メッシ
ュのネット(線径0.28mm)に載置し、直径0.15m
m、ピッチ0.6mmで配置したノズルから、圧力70kgf/
cm2の水流を噴出し、次いで、交差繊維ウエブを反転さ
せて、15メッシュのネット(線径0.75mm)に載置
し、同様のノズルから圧力80kgf/cm2の水流を噴出し
て、交差繊維ウエブを絡合し、外観上、孔を有する絡合
繊維ウエブを形成した。次いで、この絡合繊維ウエブ
を、温度80℃、10重量%水酸化ナトリウム水溶液に
20分間浸漬して、海島型分割性繊維の海成分である、
共重合ポリエステルを分解抽出し、目付30g/m2、厚さ
0.28mmのポリプロピレン極細繊維からなる、外観
上、孔を有する一体化用不織布を形成した。なお、電子
顕微鏡により、この一体化用不織布を観察したところ、
一体化用不織布全体にわたって、主として極細繊維の束
が絡合した繊維群が略交差し、しかも繊維群同士の交差
点においても主として極細繊維の束が絡合しているのが
確認できた。
(Example 2) A crossed fiber web having a basis weight of 70 g / m 2 formed in exactly the same manner as in Example 1 was placed on a 50 mesh net (wire diameter 0.28 mm) to have a diameter of 0.15 m.
From nozzles arranged at m and pitch of 0.6 mm, pressure 70 kgf /
A water stream of cm 2 is jetted, then the crossed fiber web is inverted and placed on a 15 mesh net (wire diameter 0.75 mm), and a water jet of pressure 80 kgf / cm 2 is jetted from the same nozzle, The crossed fiber webs were entangled to form an entangled fiber web having holes in appearance. Next, this entangled fiber web is immersed in a 10% by weight aqueous sodium hydroxide solution at a temperature of 80 ° C. for 20 minutes to form a sea component of the sea-island type splittable fiber.
The copolyester was decomposed and extracted to form a non-woven fabric having pores in appearance and made of polypropylene ultrafine fibers having a basis weight of 30 g / m 2 and a thickness of 0.28 mm. In addition, when observing this non-woven fabric with an electron microscope,
It was confirmed that the fiber groups in which the bundles of ultrafine fibers were entangled substantially crossed over the entire nonwoven fabric for integration, and the bundles of ultrafine fibers were entangled mainly at the intersections of the fiber groups.

【0035】他方、ポリプロピレン樹脂とポリエチレン
樹脂とが貼り合わされた断面形状を有する、繊維径2
1.7μm、繊維長51mmのサイドバイサイド型複合繊維
90重量%と、ポリプロピレン樹脂とポリエチレン樹脂
とが貼り合わされた断面形状を有する、繊維径46.9
μm、繊維長76mmのサイドバイサイド型複合繊維10
重量%とを混綿した後、カード機により形成した一方向
性繊維ウエブをクロスレイヤーにより、繊維ウエブの進
行方向に対して交差させた交差繊維ウエブを形成した。
次いで、この交差繊維ウエブを150℃の熱風で処理
し、ポリエチレン樹脂成分のみを融着させて、目付10
0g/m2、厚さ8mm、見掛密度0.013g/cm3、平均孔径
100μm以上の粗不織布(多孔性基材)を形成した。
また、上記と同じ、繊維径21.7μm、繊維長51mmの
サイドバイサイド型複合繊維65重量%と、ポリプロピ
レン樹脂とポリエチレン樹脂とが貼り合わされた断面形
状を有する、繊維径15.3μm、繊維長51mmのサイド
バイサイド型複合繊維35重量%とを混綿した後、カー
ド機により形成した一方向性繊維ウエブをクロスレイヤ
ーにより、繊維ウエブの進行方向に対して交差させた交
差繊維ウエブを形成した。次いで、この交差繊維ウエブ
を150℃の熱風で処理し、ポリエチレン樹脂成分のみ
を融着させて、目付100g/m2、厚さ5mm、見掛密度
0.02g/cm3、平均孔径85μmの密不織布(多孔性基
材)を形成した。
On the other hand, a fiber diameter 2 having a cross-sectional shape in which polypropylene resin and polyethylene resin are laminated
A fiber diameter of 46.9, which has a cross-sectional shape in which 90% by weight of side-by-side type composite fiber having a fiber length of 1.7 mm and a fiber length of 51 mm and polypropylene resin and polyethylene resin are laminated.
Side-by-side type composite fiber 10 with μm and fiber length of 76 mm
After mixing with 100% by weight, a unidirectional fiber web formed by a card machine was crossed by a cross layer to form a crossed fiber web in which the direction of travel of the fiber web was crossed.
Then, this crossed fiber web is treated with hot air at 150 ° C. to fuse only the polyethylene resin component,
A coarse nonwoven fabric (porous substrate) having a thickness of 0 g / m 2 , a thickness of 8 mm, an apparent density of 0.013 g / cm 3 , and an average pore diameter of 100 μm or more was formed.
Further, the same as the above, 65% by weight of side-by-side type composite fiber having a fiber diameter of 21.7 μm and a fiber length of 51 mm, and a cross-sectional shape in which polypropylene resin and polyethylene resin are laminated, fiber diameter of 15.3 μm, fiber length of 51 mm After mixing with 35% by weight of the side-by-side type composite fiber, a unidirectional fiber web formed by a card machine was crossed with a cross layer to form a crossed fiber web intersecting with the traveling direction of the fiber web. Then, this crossed fiber web is treated with hot air at 150 ° C. to fuse only the polyethylene resin component, and a basis weight of 100 g / m 2 , a thickness of 5 mm, an apparent density of 0.02 g / cm 3 and an average pore diameter of 85 μm are obtained. A non-woven fabric (porous substrate) was formed.

【0036】次いで、この粗不織布(多孔性基材)と密
不織布(多孔性基材)の間に、前記ポリプロピレン極細
繊維からなる一体化用不織布を積層した後、この積層物
を、パークレン中、厚さ1cmの鉄板上に載置した状態
で、この鉄板の上方12mmの所に位置する、電歪型超音
波ホーンから周波数19.5kHz、振幅50μmの超音波
を3秒間、片側づつ両側から全面的に照射し、ポリプロ
ピレン極細繊維のみを粗不織布及び密不織布の孔に侵入
させ、絡合させて、複合体を形成した。この複合体は粗
密構造を有し、フィルタとして好適であった。
Next, a non-woven fabric for integration made of the polypropylene ultrafine fibers is laminated between the coarse non-woven fabric (porous substrate) and the dense non-woven fabric (porous substrate), and the resulting laminate is placed in Parkren. Placed on an iron plate with a thickness of 1 cm, located 12 mm above the iron plate, an electrostrictive ultrasonic horn was used to apply ultrasonic waves with a frequency of 19.5 kHz and an amplitude of 50 μm for 3 seconds, one side at a time to the entire surface. Irradiation, the polypropylene ultrafine fibers alone were allowed to enter the pores of the coarse and dense nonwoven fabrics and entangled to form a composite. This composite had a dense structure and was suitable as a filter.

【0037】[0037]

【発明の効果】本発明の多孔性基材一体化用不織布は、
同種又は異種の多孔性基材の間に積層した後に、超音波
を作用させて、多孔性基材を一体化するために使用する
多孔性基材一体化用不織布であり、この多孔性基材一体
化用不織布が繊維径3μm以下の極細繊維を含んでいる
ため、超音波によって、極細繊維を多孔性基材に侵入、
絡合させることができ、容易に一体化できるものであ
る。
EFFECT OF THE INVENTION The nonwoven fabric for integrating a porous substrate of the present invention is
A non-woven fabric for integrating porous substrates, which is used to integrate ultrasonic substances by laminating it between the same or different types of porous substrates. Since the nonwoven fabric for integration contains ultrafine fibers with a fiber diameter of 3 μm or less, ultrasonic waves penetrate the ultrafine fibers into the porous substrate,
It can be entangled and easily integrated.

【0038】本発明の多孔性基材一体化用不織布の製造
方法は、2種類以上の樹脂成分からなる、極細繊維に分
割可能な分割性繊維を含む繊維ウエブを結合すると同時
に、又は結合した後に、この分割性繊維を分割して、極
細繊維を発生させる方法であるため、強度があり、極細
繊維を含む多孔性基材一体化用不織布を容易に形成でき
る。
The method for producing a nonwoven fabric for integrating with a porous substrate of the present invention is carried out at the same time as or after bonding a fiber web containing splittable fibers which are composed of two or more kinds of resin components and can be split into ultrafine fibers. Since this method is a method of dividing the splittable fibers to generate ultrafine fibers, a nonwoven fabric for integrating a porous base material having strength and containing the ultrafine fibers can be easily formed.

【0039】本発明の複合体は、同種又は異種の多孔性
基材の間に、上記の多孔性基材一体化用不織布が積層一
体化した複合体であり、この複合体は、主として、この
多孔性基材一体化用不織布の極細繊維が、多孔性基材の
孔に侵入し、絡合したものであるため、一体化前の多孔
性基材の状態を維持している。
The composite of the present invention is a composite in which the above-mentioned nonwoven fabric for integrating a porous base material is laminated and integrated between the same or different types of porous base materials. Since the ultrafine fibers of the nonwoven fabric for integrating a porous base material penetrate into the pores of the porous base material and are entangled with each other, the state of the porous base material before the integration is maintained.

【0040】本発明の複合体の製造方法は、同種又は異
種の多孔性基材の間に、上記の多孔性基材一体化用不織
布を積層した後、この積層物の少なくとも片側から、含
液状態下で超音波を作用させることにより、主として、
この多孔性基材一体化用不織布の極細繊維を多孔性基材
の孔に侵入させ、絡合させる方法であるため、容易に、
一体化前の多孔性基材の状態を維持したまま積層一体化
できる方法である。
In the method for producing a composite of the present invention, the above-mentioned nonwoven fabric for integrating porous substrates is laminated between the same or different kinds of porous substrates, and then the liquid-containing material is applied from at least one side of the laminate. By applying ultrasonic waves under the condition,
Since this is a method of infiltrating the ultrafine fibers of the nonwoven fabric for integrating a porous substrate into the pores of the porous substrate and entangled them,
This is a method in which lamination and integration can be performed while maintaining the state of the porous base material before integration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の分割性繊維の断面形状の一例FIG. 1 is an example of a cross-sectional shape of a splittable fiber of the present invention.

【図2】 本発明の分割性繊維の断面形状の他例FIG. 2 is another example of the cross-sectional shape of the splittable fiber of the present invention.

【図3】(a) 本発明の分割性繊維の断面形状の他例 (b) 本発明の分割性繊維の断面形状の他例FIG. 3 (a) Another example of the sectional shape of the splittable fiber of the present invention (b) Another example of the sectional shape of the splittable fiber of the present invention

【符号の説明】[Explanation of symbols]

A 一成分 B 他成分 A One component B Other component

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 同種又は異種の多孔性基材の間に積層し
た後に、超音波を作用させて、該多孔性基材を一体化す
るために使用する不織布であり、該不織布が繊維径3μ
m以下の極細繊維を含んでいることを特徴とする、多孔
性基材一体化用不織布。
1. A non-woven fabric, which is used to integrate ultrasonic treatment to the porous substrate after laminating it between the same or different kinds of porous substrates, and the nonwoven fabric has a fiber diameter of 3 μm.
A non-woven fabric for integrating a porous substrate, which contains ultrafine fibers of m or less.
【請求項2】 極細繊維が束の状態で絡合していること
を特徴とする請求項1記載の多孔性基材一体化用不織
布。
2. The nonwoven fabric for integrating a porous substrate according to claim 1, wherein the ultrafine fibers are entangled in a bundle.
【請求項3】 極細繊維及び/又は極細繊維の束が絡合
した繊維群が略交差し、しかも該繊維群同士の交差点に
おいても絡合していることを特徴とする、請求項1記載
の多孔性基材一体化用不織布。
3. The fiber group in which the ultrafine fibers and / or the bundles of the ultrafine fibers are entangled with each other, and the fiber groups are also entangled with each other at an intersection of the fiber groups. Nonwoven fabric for integrating porous substrates.
【請求項4】 極細繊維が延伸配向していることを特徴
とする、請求項1〜請求項3のいずれかに記載の多孔性
基材一体化用不織布。
4. The nonwoven fabric for porous substrate integration according to claim 1, wherein the ultrafine fibers are stretched and oriented.
【請求項5】 2種類以上の樹脂成分からなる、極細繊
維に分割可能な分割性繊維を含む繊維ウエブを結合する
と同時に、又は結合した後に、該分割性繊維を分割し
て、極細繊維を発生させることを特徴とする、多孔性基
材一体化用不織布の製造方法。
5. A fibrous web comprising two or more kinds of resin components and containing splittable fibers that can be split into ultrafine fibers is bonded at the same time or after the binding, the splittable fibers are split to generate ultrafine fibers. A method for producing a nonwoven fabric for integrating a porous substrate, the method comprising:
【請求項6】 分割性繊維が海島型繊維であることを特
徴とする、請求項5記載の多孔性基材一体化用不織布の
製造方法。
6. The method for producing a nonwoven fabric for integrating with a porous substrate according to claim 5, wherein the splittable fiber is a sea-island type fiber.
【請求項7】 同種又は異種の多孔性基材の間に、請求
項1〜請求項4のいずれかに記載の多孔性基材一体化用
不織布が積層一体化した複合体であり、該複合体は、主
として、該多孔性基材一体化用不織布の極細繊維が、該
多孔性基材の孔に侵入し、絡合していることを特徴とす
る複合体。
7. A composite body in which the nonwoven fabric for integrating a porous substrate according to any one of claims 1 to 4 is laminated and integrated between the same or different porous substrates, and the composite The body is a composite body in which the ultrafine fibers of the nonwoven fabric for integrating a porous substrate are mainly infiltrated and entangled in the pores of the porous substrate.
【請求項8】 同種又は異種の多孔性基材の間に、請求
項1〜請求項4のいずれかに記載の多孔性基材一体化用
不織布を積層した後、この積層物の少なくとも片側か
ら、含液状態下で超音波を作用させることにより、主と
して、該多孔性基材一体化用不織布の極細繊維を該多孔
性基材の孔に侵入させ、絡合させることを特徴とする、
複合体の製造方法。
8. The non-woven fabric for porous substrate integration according to any one of claims 1 to 4 is laminated between the same or different types of porous substrates, and then from at least one side of the laminate. Characterized in that by applying an ultrasonic wave in a liquid-containing state, the ultrafine fibers of the porous base material-integrating nonwoven fabric are mainly infiltrated into the pores of the porous base material and entangled with each other.
Method for producing composite.
JP30828895A 1995-10-31 1995-10-31 Nonwoven fabric for integrating a porous substrate, a method for producing the nonwoven fabric for integrating a porous substrate, a composite integrated with the nonwoven fabric for integrating a porous substrate, and a method for producing the composite Expired - Fee Related JP3526358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30828895A JP3526358B2 (en) 1995-10-31 1995-10-31 Nonwoven fabric for integrating a porous substrate, a method for producing the nonwoven fabric for integrating a porous substrate, a composite integrated with the nonwoven fabric for integrating a porous substrate, and a method for producing the composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30828895A JP3526358B2 (en) 1995-10-31 1995-10-31 Nonwoven fabric for integrating a porous substrate, a method for producing the nonwoven fabric for integrating a porous substrate, a composite integrated with the nonwoven fabric for integrating a porous substrate, and a method for producing the composite

Publications (2)

Publication Number Publication Date
JPH09132848A true JPH09132848A (en) 1997-05-20
JP3526358B2 JP3526358B2 (en) 2004-05-10

Family

ID=17979238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30828895A Expired - Fee Related JP3526358B2 (en) 1995-10-31 1995-10-31 Nonwoven fabric for integrating a porous substrate, a method for producing the nonwoven fabric for integrating a porous substrate, a composite integrated with the nonwoven fabric for integrating a porous substrate, and a method for producing the composite

Country Status (1)

Country Link
JP (1) JP3526358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106738A1 (en) 2005-03-31 2006-10-12 Daio Paper Corporation Paper sheet and its bonding method
CN109576908A (en) * 2018-12-29 2019-04-05 杭州协业超纤有限公司 A kind of Compound Fabric and its preparation process of super fine denier viscose fiber and elastic screen cloth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106738A1 (en) 2005-03-31 2006-10-12 Daio Paper Corporation Paper sheet and its bonding method
CN109576908A (en) * 2018-12-29 2019-04-05 杭州协业超纤有限公司 A kind of Compound Fabric and its preparation process of super fine denier viscose fiber and elastic screen cloth

Also Published As

Publication number Publication date
JP3526358B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
KR970005852B1 (en) Nonwoven fibrous hydraulically entangled non-elastic coform material and method of formation thereof
KR100366113B1 (en) Porous fibrous structure and process for producing the same
JP3621509B2 (en) Nonwoven manufacturing method
US20030207636A1 (en) Nonwoven laminate wiping product and proces for its manufacture
JP3526358B2 (en) Nonwoven fabric for integrating a porous substrate, a method for producing the nonwoven fabric for integrating a porous substrate, a composite integrated with the nonwoven fabric for integrating a porous substrate, and a method for producing the composite
JPH10325059A (en) Nonwoven fabric and its production
JP3636813B2 (en) Nonwoven fabric and method for producing the same
JP3573545B2 (en) Method for producing composite
JP2543597B2 (en) Method for producing composite non-woven fabric having openings
JP2003520307A (en) Nonwoven laminated wipe product and method of manufacturing the same
JP4047848B2 (en) Nonwoven manufacturing method
JP3305453B2 (en) Laminated non-woven structure
JPH04153351A (en) Laminated nonwoven fabric and preparation thereof
JP4224246B2 (en) Non-woven fabric for skin cleaning
JPS63219653A (en) Extremely fine multifilament nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JP2002115161A (en) Porous fiber accumulated body and method for producing the same
JP7497016B2 (en) Composite nonwoven fabric, its manufacturing method, and composite nonwoven fabric manufacturing device
JPH09268460A (en) Nonwoven fabric and its production
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure
JP3545857B2 (en) Insulating composite and manufacturing method thereof
JPH0768686A (en) Laminated nonwoven structure
JPH0589867A (en) Manufacture of separator for battery
JPH0533252A (en) Waterflow interlacing web, waterflow-interlaced nonwoven fabric and production thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120227

LAPS Cancellation because of no payment of annual fees