JPH09129962A - Vertical resonator type semiconductor laser element and its manufacture - Google Patents

Vertical resonator type semiconductor laser element and its manufacture

Info

Publication number
JPH09129962A
JPH09129962A JP28061295A JP28061295A JPH09129962A JP H09129962 A JPH09129962 A JP H09129962A JP 28061295 A JP28061295 A JP 28061295A JP 28061295 A JP28061295 A JP 28061295A JP H09129962 A JPH09129962 A JP H09129962A
Authority
JP
Japan
Prior art keywords
layer
laminated structure
laser device
type semiconductor
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28061295A
Other languages
Japanese (ja)
Other versions
JP3262310B2 (en
Inventor
Hiroyuki Uenohara
裕行 植之原
Taketaka Kohama
剛孝 小濱
Kouta Tateno
功太 舘野
Hidetoshi Iwamura
英俊 岩村
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28061295A priority Critical patent/JP3262310B2/en
Publication of JPH09129962A publication Critical patent/JPH09129962A/en
Application granted granted Critical
Publication of JP3262310B2 publication Critical patent/JP3262310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a laminated integrated vertical resonator type semiconductor element having a low threshold and a high efficiency at a high yield by forming a second laminated structure section on a first laminated structure section containing an active layer after ions are implanted into the first laminated structure section. SOLUTION: In the first crystal growing process of the manufacturing process of a vertical resonator type semiconductor laser element, a p-type DBR-shaped reflecting mirror 102, a nondoped spacer layer 103, an active layer 104 having a super- lattice structure, a nondoped spacer layer 105, and an n-type DBR-shaped reflecting mirror 106 are successively formed on a substrate 101. The number of layers constituting the topmost reflecting mirror 106 of the laser element is set so that the thickness of the mirror 106 can prevent the seepage of an electric field when the final structure of the laser element is completed and the standard extent of an ion implanted layer cannot reach the active layer and the ion implanted layer is enclosed in the DBR. Then a proton-implanted layer 110 which is increased in resistance by implanting protons is formed and a new DBR-shaped reflecting mirror 107 is formed on the first laminated structure in a second crystal growing process and a p-electrode 108 is provided on the mirror 107.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、チップ間あるい
はボード間の信号を光で結ぶ光インターコネクション
や、2次元並列信号処理を行うための光源である、垂直
共振器型半導体レーザ素子およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity type semiconductor laser device which is a light source for optical interconnection for connecting signals between chips or between boards with light and a two-dimensional parallel signal processing and its manufacture. It is about the method.

【0002】[0002]

【従来の技術】垂直共振器型半導体レーザ素子は、極微
小共振器構造による極低閾値化が可能であること、2次
元アレー化が容易であること、発光パターンが円形のた
めファイバとの高効率な結合が可能であることなどか
ら、光インターコネクションや2次元並列信号処理用の
光源として重要である。
2. Description of the Related Art A vertical cavity type semiconductor laser device is capable of achieving an extremely low threshold value due to an extremely minute cavity structure, is easy to form a two-dimensional array, and has a circular light emission pattern, so that it has a high optical density with that of a fiber. It is important as a light source for optical interconnection and two-dimensional parallel signal processing because it enables efficient coupling.

【0003】従来の垂直共振器型半導体レーザ素子の一
例を図9に示す。図9は、従来の垂直共振器型半導体レ
ーザ素子の基板結晶面に対して垂直な方向に沿った断面
図である。この素子は、p−AlGaAs基板111
(p電極118が設けられた面とは反対側の面)上に複
数の層を一括成長させたものである。すなわち、基板1
11上に、順にp−Aly Ga1-y As/Alz Ga
1-z As(0<y<z)の多層膜から構成される分布反
射(distributed Bragg refle
ctor,DBR)形反射鏡112、ノンドープ−Al
u Ga1-u Asスペーサ層113、GaAs/Alw
1-w As(u≧w)超格子構造活性層114、ノンド
ープ−Alu Ga1-u Asスペーサ層115、およびn
−Aly Ga1-y As/Alz Ga1-z As(0<y<
z)DBR形反射鏡116(最上層はn電極層を兼ね
る)を一括成長させて垂直共振器レーザ素子積層構造を
設ける。DBR形反射鏡112を構成する各層の厚さ
は、発振波長の4分の1をさらに各層の屈折率で割った
値とする。電流狭窄は、プロトンを注入して高抵抗化し
た電流狭窄層119をスペーサ層115と反射鏡116
との間に設けて行う。なお、図9中、プロトン注入によ
る電流狭窄層119上に示された領域201はプロトン
通過の際に損傷を受ける。
An example of a conventional vertical cavity type semiconductor laser device is shown in FIG. FIG. 9 is a sectional view taken along a direction perpendicular to a substrate crystal plane of a conventional vertical cavity type semiconductor laser device. This device has a p-AlGaAs substrate 111.
A plurality of layers are collectively grown on (the surface opposite to the surface on which the p electrode 118 is provided). That is, the substrate 1
On 11, sequentially p-Al y Ga 1-y As / Al z Ga
A distributed Bragg reflector composed of a multilayer film of 1-z As (0 <y <z)
ctor, DBR) type reflecting mirror 112, non-doped-Al
u Ga 1-u As spacer layer 113, GaAs / Al w G
a 1-w As (u ≧ w) superlattice structure active layer 114, non-doped-Al u Ga 1-u As spacer layer 115, and n
-Al y Ga 1-y As / Al z Ga 1-z As (0 <y <
z) A DBR type reflecting mirror 116 (the uppermost layer also serves as an n electrode layer) is grown in a batch to provide a vertical cavity laser element laminated structure. The thickness of each layer forming the DBR reflecting mirror 112 is a value obtained by further dividing a quarter of the oscillation wavelength by the refractive index of each layer. The current confinement is performed by injecting protons into the current constriction layer 119 having a high resistance to form the spacer layer 115 and the reflecting mirror 116.
It is installed between and. In FIG. 9, the region 201 shown on the current confinement layer 119 formed by the proton injection is damaged when the protons pass through.

【0004】つぎに、図10は従来の集積垂直共振器型
半導体レーザ素子の他の例を示すもので、図9と同様に
基板結晶面に対して垂直な方向に沿った断面図である。
この素子はp−AlGaAs基板34上に順にp−Al
y Ga1-y As/Alz Ga1-z As(0<y<z)の
多層膜から構成される分布反射(distribute
d B ragg relfector,DBR)形反
射鏡35、ノンドープ−Alu Ga1-u Asスペーサ層
36、GaAs/Alw Ga1-w As(u≧w)超格子
構造活性層37、ノンドープ−Alu Ga1-u Asスペ
ーサ層38、n−Aly Ga1-y As/Alz Ga1-z
As(0<y<z)DBR形反射鏡39(最上層はn電
極層を兼ねる)までの垂直共振器レーザ素子の構造上
に、さらにn−Alu Ga1-u Asクラッド層40、ノ
ンドープ−GaAs吸収層41、p−Alu Ga1-u
sクラッド層43、p+ −GaAsコンタクト層44を
一括成長する。上記構造は、垂直共振器レーザ素子20
2上に受光器203を積層集積した構造であるけれど
も、ゲートや強度変調器・位相変調器を集積した場合も
同様である。
Next, FIG. 10 shows another example of a conventional integrated vertical cavity type semiconductor laser device, which is a sectional view taken along a direction perpendicular to the crystal plane of the substrate similarly to FIG.
This device is formed on the p-AlGaAs substrate 34 in order of p-Al.
distributed reflection (distributed) composed of a multilayer film of y Ga 1-y As / Al z Ga 1-z As (0 <y <z)
d Bragg reflector (DBR) type reflecting mirror 35, non-doped-Al u Ga 1-u As spacer layer 36, GaAs / Al w Ga 1-w As (u ≧ w) superlattice structure active layer 37, non-doped-Al u Ga 1-u As spacer layer 38, n-Al y Ga 1 -y As / Al z Ga 1-z
On the structure of the vertical cavity laser device up to the As (0 <y <z) DBR type reflection mirror 39 (the uppermost layer also serves as the n electrode layer), an n-Al u Ga 1-u As clad layer 40, a non-doped layer are further provided. -GaAs absorbing layer 41, p-Al u Ga 1 -u A
The s clad layer 43 and the p + -GaAs contact layer 44 are collectively grown. The above structure has a vertical cavity laser device 20.
Although the structure is such that the light receiver 203 is laminated and integrated on top of 2, the same applies to the case where the gate and the intensity modulator / phase modulator are integrated.

【0005】上記のような構成からなる従来の集積垂直
共振器型半導体レーザ素子は、以下のような利点または
特徴を有する。すなわち、図10の素子においては、電
流狭窄の目的としてプロトン注入を用いており、メサを
形成する構造と比較して作製プロセスが容易であるとい
う利点がある。また、図10の素子においては、該素子
を作製する際、受光器の形成および垂直共振器レーザ素
子の上面電極47を形成のために上面半導体DBR39
の最上層までエッチングしてメサを形成する。その結
果、必然的に垂直共振器レーザ素子202のサイズは受
光器203よりも大きくなるけれども、閾値電流の低減
および量子効率の劣化を防ぐために発光サイズを受光サ
イズ以下に抑える必要から、垂直共振器レーザ素子に電
流狭窄構造を施すことが重要であり、図10はその一例
としてイオン注入を用いた構造を示している。
The conventional integrated vertical cavity type semiconductor laser device having the above structure has the following advantages or characteristics. That is, in the element of FIG. 10, proton injection is used for the purpose of current confinement, and there is an advantage that the manufacturing process is easier than in the structure of forming a mesa. Further, in the device of FIG. 10, when the device is manufactured, the upper surface semiconductor DBR 39 is formed for forming a light receiver and forming the upper electrode 47 of the vertical cavity laser device.
To the uppermost layer to form mesas. As a result, although the size of the vertical cavity laser element 202 is necessarily larger than that of the photodetector 203, it is necessary to suppress the emission size to be equal to or smaller than the photodetection size in order to reduce the threshold current and prevent deterioration of quantum efficiency. It is important to provide the laser element with a current confinement structure, and FIG. 10 shows a structure using ion implantation as an example.

【0006】[0006]

【発明が解決しようとする課題】しかし、図9および図
10に示したいずれの素子構造の場合においても、注入
イオンは必ずしも必要のない受光器および垂直共振器レ
ーザ素子の上面電極層を通過してしまい、特性劣化や高
抵抗化の原因となる。すなわち、図9および図10のイ
オン注入領域に至るイオン通過領域(図中、薄いハッチ
で示した領域)はイオン濃度が低いため電流が流れない
ほどの高抵抗層にはならない。しかし、結晶内にダメー
ジによるトラップ準位が生ずるために成長直後の結晶と
比較すると抵抗が上昇してしまうという問題が生ずる。
図10の構造においては受光器サイズをイオンの非注入
領域以下にすることが考えられるが、素子作製プロセス
に許容度を持たせるためには受光器の大きさをなるべく
大きく作製することが望ましい。電流狭窄の別の方法と
して、(1)埋め込み成長や(2)選択エッチングを用
いて空孔を形成する方法、(3)Al組成の差を利用し
た選択酸化も検討されている。しかしながら、(1)は
半導体DBRの各層を形成するAlGaAs界面の埋め
込み、さらに受光器を含めた層厚が5μm程度と厚い構
造の埋め込みは技術的に困難である。(2)においては
素子作製プロセスの途中の段階で半導体結晶に空孔を形
成した後の絶縁膜・電極形成等のプロセス過程で強度的
に問題がある。(3)は活性層近傍にAl酸化物が存在
することになり、その特性の経時劣化や活性層への歪み
の影響などが懸念されるという問題点がある。
However, in any of the device structures shown in FIGS. 9 and 10, the implanted ions pass through the upper electrode layers of the photodetector and the vertical cavity laser device, which are not necessarily required. This will cause deterioration of characteristics and increase in resistance. That is, the ion passage region (region indicated by a thin hatch in the drawings) reaching the ion implantation region in FIGS. 9 and 10 does not become a high resistance layer in which a current does not flow because the ion concentration is low. However, since a trap level is generated in the crystal due to damage, there arises a problem that the resistance increases as compared with the crystal just after growth.
In the structure of FIG. 10, it is possible to make the size of the photoreceiver equal to or smaller than the non-ion-implanted region, but it is desirable to make the size of the photoreceiver as large as possible in order to allow the device fabrication process to have tolerance. As other methods of current confinement, (1) buried growth, (2) method of forming vacancies using selective etching, and (3) selective oxidation utilizing difference in Al composition are also under study. However, in (1), it is technically difficult to embed the interface of AlGaAs forming each layer of the semiconductor DBR, and to embed a thick structure including the photodetector such that the layer thickness is about 5 μm. In (2), there is a problem in strength in the process of forming an insulating film / electrode after forming holes in the semiconductor crystal in the middle of the device manufacturing process. In the case of (3), the Al oxide is present in the vicinity of the active layer, and there is a problem that deterioration of the characteristics over time, influence of strain on the active layer, and the like may occur.

【0007】したがって、本発明の目的は、上記問題点
を解決し、従来の技術と比較して低閾値で高効率、かつ
歩留りにおいて極めて優れた積層集積垂直共振器型半導
体レーザ素子およびその製造方法を提供することであ
る。
Therefore, an object of the present invention is to solve the above problems and to provide a stacked integrated vertical cavity type semiconductor laser device having a low threshold value, high efficiency, and an extremely excellent yield as compared with the prior art, and a manufacturing method thereof. Is to provide.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明にもとづく垂直共振器型半導体レーザ素子の
製造方法は、活性層と、該活性層を挟む一対のスペーサ
層と、該一対のスペーサ層を挟む一対の半導体多層膜反
射鏡と、少なくても上記活性層が構成する平面上の閉領
域を囲む領域が高抵抗化された電流狭窄領域とを具備し
た積層構造体が半導体基板上に形成された垂直共振器型
半導体レーザ素子の製造方法において、上記活性層が含
まれた第1の積層構造部を上記基板上に形成する第1の
結晶成長工程と、該第1の積層構造部へイオン注入する
ことによって上記電流狭窄領域を設けるイオン注入工程
と、上記電流狭窄部を形成した後に、上記第1の積層構
造部上に第2の積層構造部を形成する第2の結晶成長工
程とを有し、さらに、上記積層構造体は上記第1の積層
構造部と上記第2の積層構造部とからなることを特徴と
する。
In order to solve the above-mentioned problems, a method for manufacturing a vertical cavity type semiconductor laser device according to the present invention comprises an active layer, a pair of spacer layers sandwiching the active layer, and a pair of the spacer layers. A semiconductor substrate having a pair of semiconductor multilayer film reflecting mirrors sandwiching the spacer layer, and at least a current confinement region in which a region surrounding a closed region on a plane formed by the active layer has a high resistance. In the method of manufacturing a vertical cavity type semiconductor laser device formed above, a first crystal growth step of forming a first laminated structure part including the active layer on the substrate, and the first laminated structure. Ion implantation step of providing the current confinement region by ion implantation into the structure portion, and second crystal forming the second laminated structure portion on the first laminated structure portion after forming the current constriction portion. With a growth process The layered structure is characterized by comprising the above first laminated structure and the second laminated structure.

【0009】好ましくは、上記第1の積層構造部は、上
記一対の半導体多層膜反射鏡のうちの一つと、上記一対
のスペーサ層のうちの一つとを有し、一方上記第2の積
層構造部は上記一対の半導体多層膜反射鏡のうちの他方
と、上記一対のスペーサ層のうちの他方とを有する。
Preferably, the first laminated structure portion has one of the pair of semiconductor multilayer film reflecting mirrors and one of the pair of spacer layers, while the second laminated structure portion. The section has the other of the pair of semiconductor multilayer film reflecting mirrors and the other of the pair of spacer layers.

【0010】好ましくは、上記半導体基板はGaAsか
らなり、また上記第1の結晶成長工程は上記第1の積層
構造部上にInGaP層の成長を行い、さらに上記第2
の結晶成長工程は上記第2の積層構造部を形成する前に
上記InGaP層を除去する。
Preferably, the semiconductor substrate is made of GaAs, and in the first crystal growth step, an InGaP layer is grown on the first laminated structure portion, and the second crystal growth step is further performed.
In the crystal growth step, the InGaP layer is removed before forming the second stacked structure portion.

【0011】好ましくは、上記半導体基板はGaAsか
らなり、また第1の結晶成長工程は上記第1の積層構造
部の成長の最後に成長装置中の加熱によって蒸発可能な
AlGaAs層またはGaAs層の成長を行い、さらに
上記第2の結晶成長工程で上記第2の積層構造部を形成
する前に、AsH3 雰囲気中またはAsビームの照射中
に該蒸発可能なAlGaAs層またはGaAs層を除去
する。
Preferably, the semiconductor substrate is made of GaAs, and in the first crystal growth step, an AlGaAs layer or a GaAs layer which can be vaporized by heating in a growth apparatus is grown at the end of the growth of the first laminated structure portion. Then, before forming the second laminated structure portion in the second crystal growth step, the evaporable AlGaAs layer or GaAs layer is removed in the AsH 3 atmosphere or during irradiation with the As beam.

【0012】好ましくは、上記イオン注入のイオン種と
して、酸素イオンを用いる。
[0012] Preferably, oxygen ions are used as the ion species for the ion implantation.

【0013】好ましくは、上記イオン注入の手段として
収束イオンビームを用いるとともに、上記第1の結晶成
長工程、上記イオン注入工程、および上記第2の結晶成
長工程を真空装置内で一貫して行う。
Preferably, a focused ion beam is used as the means for implanting ions, and the first crystal growth step, the ion implantation step, and the second crystal growth step are performed consistently in a vacuum apparatus.

【0014】好ましくは、上記積層構造体に光信号処理
用の機能素子を積層する工程をさらに有する。
Preferably, the method further comprises the step of laminating a functional element for optical signal processing on the laminated structure.

【0015】好ましくは、上記一対の半導体多層膜反射
鏡によって構成される光共振器内に光機能領域を内蔵す
る。
Preferably, an optical functional region is built in the optical resonator constituted by the pair of semiconductor multilayer film reflecting mirrors.

【0016】本発明にもとづく垂直共振器型半導体レー
ザ素子は、活性層と、該活性層を挟む一対のスペーサ層
と、該一対のスペーサ層を挟む一対の半導体多層膜反射
鏡と、少なくても上記活性層が構成する平面上の閉領域
を囲む領域が高抵抗化された電流狭窄領域とを具備した
積層構造体が半導体基板上に形成された垂直共振器型半
導体レーザ素子において、上記積層構造体は、第1回目
の結晶成長によって形成され、かつ上記活性層が含まれ
た第1の積層構造部と、該第1の積層構造部へイオン注
入することによって上記電流狭窄領域を設けた後に上記
第1の積層構造部上に再結晶成長することによって形成
された第2の積層構造部とを有することを特徴とする。
A vertical cavity type semiconductor laser device according to the present invention includes at least an active layer, a pair of spacer layers sandwiching the active layer, and a pair of semiconductor multilayer film reflecting mirrors sandwiching the pair of spacer layers. In the vertical cavity type semiconductor laser device, wherein a laminated structure including a region confining a closed region on a plane formed by the active layer and a current confinement region having a high resistance is formed on a semiconductor substrate, the laminated structure The body is formed by the first crystal growth and includes the first layered structure portion including the active layer, and the current confinement region provided by ion implantation into the first layered structure portion. It has a 2nd laminated structure part formed by performing recrystallization growth on the said 1st laminated structure part, It is characterized by the above-mentioned.

【0017】好ましくは、上記第1の積層構造部は、上
記一対の半導体多層膜反射鏡のうちの一つと、上記一対
のスペーサ層のうちの一つとを有し、一方上記第2の積
層構造部は上記一対の半導体多層膜反射鏡のうちの他方
と、上記一対のスペーサ層のうちの他方とを有する。
Preferably, the first laminated structure portion has one of the pair of semiconductor multilayer film reflecting mirrors and one of the pair of spacer layers, while the second laminated structure portion is provided. The section has the other of the pair of semiconductor multilayer film reflecting mirrors and the other of the pair of spacer layers.

【0018】好ましくは、上記積層構造体に光信号処理
用の機能素子が積層されている。
Preferably, a functional element for optical signal processing is laminated on the laminated structure.

【0019】好ましくは、上記垂直共振器型半導体の上
記一対の半導体多層膜反射鏡によって構成される光共振
器内に光機能領域が内蔵されている。
Preferably, an optical functional region is built in an optical resonator constituted by the pair of semiconductor multilayer film reflecting mirrors of the vertical resonator type semiconductor.

【0020】[0020]

【発明の実施の形態】以下に図面を参照して本発明の一
実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0021】図1は本発明にもとづく積層集積垂直共振
器型半導体レーザ素子の一例を示すもので、該素子の結
晶成長面に対して垂直な方向の断面図である。このレー
ザ素子構造は、結晶成長を2回行うことによって形成さ
れる。図中、Aの領域は第1回目の結晶成長で形成、B
の領域は第2回目の結晶成長で形成される領域を示す。
FIG. 1 shows an example of a stacked integrated vertical cavity type semiconductor laser device according to the present invention, which is a sectional view in a direction perpendicular to a crystal growth surface of the device. This laser device structure is formed by performing crystal growth twice. In the figure, the region A is formed by the first crystal growth, and the region B is
The region of indicates the region formed by the second crystal growth.

【0022】第1回目の結晶成長では、参照符号101
〜106で示される積層構造が基板101上に形成され
る。すなわち、p−AlGaAs基板101上に順にp
−Aly Ga1-y As/Alz Ga1-z As(0<y<
z)DBR形反射鏡102、ノンドープ−Alu Ga
1-u Asスペーサ層103、GaAs/Alw Ga1-w
As(u≧w)超格子構造活性層104、ノンドープ−
Alu Ga1-u Asスペーサ層105、およびn−Al
y Ga1-y As/Alz Ga1-z As(0<u<z)D
BR形反射鏡106が形成される。ここで、最上層はI
nGaPあるいはAl組成の低い層で成長を止めてお
く。また半導体レーザ素子の上面に位置するDBR形反
射鏡106の層数は、最終的にレーザ素子構造を完成さ
せたときの電界の浸み出し(浸透深さ)以上の厚さであ
って、かつイオン注入層の標準広がりが活性層に至らず
DBR内で閉じ込めることのできる厚さに相当する層数
に設定する必要がある。なお、参照符号110はプロト
ンを注入して高抵抗化したプロトン注入層である。
In the first crystal growth, reference numeral 101 is used.
The laminated structures denoted by 106 to 106 are formed on the substrate 101. That is, p is sequentially formed on the p-AlGaAs substrate 101.
-Al y Ga 1-y As / Al z Ga 1-z As (0 <y <
z) DBR type reflecting mirror 102, non-doped-Al u Ga
1-u As spacer layer 103, GaAs / Al w Ga 1-w
As (u ≧ w) superlattice structure active layer 104, non-doped-
Al u Ga 1-u As spacer layer 105 and n-Al
y Ga 1-y As / Al z Ga 1-z As (0 <u <z) D
The BR type reflecting mirror 106 is formed. Here, the top layer is I
The growth is stopped in a layer having a low nGaP or Al composition. Further, the number of layers of the DBR type reflecting mirror 106 located on the upper surface of the semiconductor laser device is equal to or larger than the leaching (penetration depth) of the electric field when the laser device structure is finally completed, and It is necessary to set the standard spread of the ion-implanted layer to the number of layers that does not reach the active layer and can be confined in the DBR. Reference numeral 110 is a proton-injection layer having a high resistance by injecting protons.

【0023】つぎに、第2回目の結晶成長として、上記
第1回目の結晶成長で形成された積層構造上に新たなD
BR形反射鏡107を形成する。さらに該DBR形反射
鏡107上にp電極を設ける。
Next, as the second crystal growth, a new D is formed on the laminated structure formed by the first crystal growth.
The BR type reflecting mirror 107 is formed. Further, a p-electrode is provided on the DBR type reflecting mirror 107.

【0024】図2は、本発明にもとづく積層集積垂直共
振器型半導体レーザ素子の他の例を示す断面図で、面発
光レーザ素子上に受光器が積層集積されている。図中、
参照符号1〜6で示される積層構造は第1回目の結晶成
長で形成される領域である。また、図中、Aの領域は第
1回目の結晶成長で形成、Bの領域は第2回目の結晶成
長で形成される領域を示す。すなわち、参照符号1はp
−AlGas基板、2はp−Aly Ga1-y As/Al
z Ga1-z AsDBR形反射鏡、3はAlu Ga1-u
sスペーサ層、4はGaAs/Alw Ga1-w As超格
子構造活性層、5はAlu Ga1-u Asスペーサ層、お
よび6はn−Aly Ga1-y As/Alz Ga1-z As
(0<y<z)DBR形反射鏡である。ここで、最上層
はInGaPあるいはAl組成の低い層で成長を止めて
おく。
FIG. 2 is a cross-sectional view showing another example of a stacked integrated vertical cavity type semiconductor laser device according to the present invention, in which a photodetector is stacked and integrated on a surface emitting laser device. In the figure,
The laminated structures denoted by reference numerals 1 to 6 are regions formed by the first crystal growth. Further, in the figure, the region A is formed by the first crystal growth, and the region B is the region formed by the second crystal growth. That is, reference numeral 1 is p
-AlGas substrate, 2 is p-Al y Ga 1-y As / Al
z Ga 1-z AsDBR type reflecting mirror, 3 is Al u Ga 1-u A
s spacer layer 4 is GaAs / Al w Ga 1-w As superlattice active layer, 5 is Al u Ga 1-u As spacer layer, and 6 is n-Al y Ga 1-y As / Al z Ga 1 -z As
(0 <y <z) DBR type reflecting mirror. Here, the uppermost layer is a layer having a low InGaP or Al composition and growth is stopped.

【0025】第2回目の結晶成長では n−Aly Ga
1-y As/Alz Ga1-z AsDBR形反射鏡7および
受光器が形成される。この受光器は参照符号8〜11で
示される積層構造からなるもので、参照符号8はn−A
u Ga1-u Asクラッド層、9はノンドープ−GaA
s吸収層、10はp−Alu Ga1-u Asクラッド層、
そして11はp+ −GaAsコンタクト層である。
[0025] In the second round of the crystal growth n-Al y Ga
The 1-y As / Al z Ga 1-z AsDBR type reflecting mirror 7 and the light receiver are formed. This light receiver has a laminated structure shown by reference numerals 8 to 11, and the reference numeral 8 is n-A.
l u Ga 1-u As cladding layer 9 is undoped -GaA
s absorbent layer, 10 p-Al u Ga 1-u As cladding layer,
11 is a p + -GaAs contact layer.

【0026】つぎに、図3にもとづいて図2に示した本
発明にもとづく積層集積垂直共振器型半導体レーザ素子
の製作工程を説明する。図3中、(a)〜(d)は各工
程での積層構造の断面形状を示したものである。
Next, the manufacturing process of the stacked integrated vertical cavity type semiconductor laser device according to the present invention shown in FIG. 2 will be described with reference to FIG. In FIG. 3, (a) to (d) show cross-sectional shapes of the laminated structure in each step.

【0027】まず、第1回目の結晶成長でp−AlGa
s基板1上に、p−Aly Ga1-yAs/Alz Ga1-z
AsDBR形反射鏡2、Alu Ga1-u Asスペーサ
層3、GaAs/Alw Ga1-w As超格子構造活性層
4、Alu Ga1-u Asスペーサ層5、およびn−Al
y Ga1-y As/Alz Ga1-z As(0<y<z)D
BR形反射鏡6を形成するとともに、最上層上にInG
aPあるいはAl組成の低い層を形成することによって
結晶成長を止める(図3(a))。つぎに、第1回目の
結晶成長で形成された積層構造の成長表面にSiO2
るいはSiNx絶縁層204を形成し、さらに厚さ5μ
m程度の厚いレジスト205でイオン注入用のマスクを
形成し、かつ酸素イオン(O+ )を注入する(図3
(b))。その後、レジスト205と絶縁層204をエ
ッチングにて除去する。なお、第1回目の結晶成長で形
成された積層構造の最上層がInGaPの場合はHCl
と純水の混合溶液、あるいはHClとH3 PO4 の混合
溶液にて下のAl組成の低い層との界面まで選択エッチ
ングにて除去する。最上層がInGaPでなくGaAs
あるいはAl組成の低いAlGaAs層の場合は、As
3 雰囲気(MOCVDやガスソースMBE、CBE装
置)あるいはAsビーム(固体ソースMBE装置)中で
熱的クリーニングを行うことによってAl組成の高い層
の表面を出す(図3(c))。引き続いて垂直共振器レ
ーザ素子の残りの上面DBR層、受光器の層を形成する
(図3(d))。
First, p-AlGa was used in the first crystal growth.
on s substrate 1, p-Al y Ga 1 -y As / Al z Ga 1-z
AsDBR reflecting mirror 2, Al u Ga 1-u As spacer layer 3, GaAs / Al w Ga 1-w As superlattice structure active layer 4, Al u Ga 1-u As spacer layer 5, and n-Al.
y Ga 1-y As / Al z Ga 1-z As (0 <y <z) D
The BR type reflector 6 is formed and InG is formed on the uppermost layer.
Crystal growth is stopped by forming a layer having a low aP or Al composition (FIG. 3A). Next, an SiO 2 or SiN x insulating layer 204 is formed on the growth surface of the laminated structure formed by the first crystal growth, and the thickness is further 5 μm.
A mask for ion implantation is formed with a resist 205 having a thickness of about m, and oxygen ions (O + ) are implanted (FIG. 3).
(B)). After that, the resist 205 and the insulating layer 204 are removed by etching. If the uppermost layer of the laminated structure formed by the first crystal growth is InGaP, HCl is used.
And a pure water mixed solution or a mixed solution of HCl and H 3 PO 4 are removed by selective etching up to the interface with the lower layer having a low Al composition. The top layer is not InGaP but GaAs
Alternatively, if the AlGaAs layer has a low Al composition, As
The surface of the layer having a high Al composition is exposed by performing thermal cleaning in an H 3 atmosphere (MOCVD, gas source MBE, CBE apparatus) or As beam (solid source MBE apparatus) (FIG. 3C). Subsequently, the remaining upper surface DBR layer of the vertical cavity laser device and the layer of the photodetector are formed (FIG. 3D).

【0028】図4の(a)〜(d)は図2に示した本発
明にもとづく積層集積垂直共振器型半導体レーザ素子の
製作工程を説明するためのものである。この図に示す方
法は図2と概略同様であるけれども、イオンの打ち込み
に収束イオンビームを用いる点が異なる。したがって、
収束イオンビームを用いたプロセスではフォトリソグラ
フィによるパターニングが必要でないため真空一貫プロ
セスが可能となっている。
FIGS. 4A to 4D are for explaining the manufacturing process of the stacked integrated vertical cavity type semiconductor laser device according to the present invention shown in FIG. The method shown in this figure is similar to that shown in FIG. 2, except that a focused ion beam is used for implanting ions. Therefore,
In the process using a focused ion beam, patterning by photolithography is not necessary, so that a vacuum integrated process is possible.

【0029】ところで、イオン注入領域は電気的に高抵
抗な領域となることは一般的に良く知られており、一方
で半導体結晶成長温度はMOCVD法で700℃前後、
MBE法でも600℃程度の高温となることが知られて
いる。しかし、本発明においては、イオン注入後2回目
の結晶成長を行うので、このような高温下に1時間前後
の成長温度にイオン注入領域がさらされた後でも高抵抗
を維持しておくことが重要である。
By the way, it is generally well known that the ion-implanted region becomes a region having high electrical resistance, while the semiconductor crystal growth temperature is about 700 ° C. by MOCVD.
It is known that the MBE method also reaches a high temperature of about 600 ° C. However, in the present invention, since the second crystal growth is performed after the ion implantation, it is possible to maintain the high resistance even after the ion implantation region is exposed to the growth temperature of about 1 hour at such a high temperature. is important.

【0030】図5は、プロトン注入ウエハのSIMS分
析結果((a)アニール前、(b)アニール後)、図6
は酸素イオン注入ウエハのSIMS分析結果((a)ア
ニール前、(b)アニール後)を示すグラフである。
FIG. 5 shows SIMS analysis results of the proton-implanted wafer ((a) before annealing, (b) after annealing), and FIG.
3 is a graph showing SIMS analysis results of an oxygen ion implanted wafer ((a) before annealing, (b) after annealing).

【0031】プロトン(水素イオン)の場合、図5のS
IMSの測定結果が示すように、750℃で1時間加熱
するとイオンの抜けに起因して抵抗値が激減してしま
い、電流狭窄の用途には適さない。しかし、本発明の酸
素イオンの場合は、図6に示すように同条件で熱処理を
行っても、その前後でイオンのピーク位置とイオン濃度
にほとんど変化がなく、従ってイオン注入後の再成長に
も十分耐えうることが実験的に実証されている。
In the case of a proton (hydrogen ion), S in FIG.
As the IMS measurement results show, heating at 750 ° C. for 1 hour drastically reduces the resistance value due to the loss of ions, which is not suitable for current constriction. However, in the case of the oxygen ions of the present invention, even if heat treatment is performed under the same conditions as shown in FIG. 6, there is almost no change in the ion peak position and the ion concentration before and after the heat treatment. Has been experimentally proved to be sufficiently durable.

【0032】図7は、図2に示した本発明にもとづく積
層集積垂直共振器型半導体レーザ素子の特性を説明する
ためのグラフである。図中、(a)は面発光レーザ素子
部の電流対光出力特性ならびに電流対比電圧特性のもの
で、実線は本発明のものを、また破線は従来の素子(図
10参照)のものを示す。本発明の素子は従来の素子の
特性と比較して直列抵抗の低減が実現され、その結果電
力変換効率が上昇している。一方、図中、(b)は受光
器部分の電流対電圧特性を示すもので、実線は本発明の
もの、波線は従来のものを示す。本発明においては素子
系を発光径に比べて十分大きくとり、なおかつ必要最低
限のイオン注入部しか存在しないため、暗電流を従来技
術のものよりも低減することができる。
FIG. 7 is a graph for explaining the characteristics of the stacked integrated vertical cavity type semiconductor laser device according to the present invention shown in FIG. In the figure, (a) shows current-optical output characteristics and current-voltage characteristics of the surface-emitting laser element part, the solid line shows the present invention, and the broken line shows the conventional element (see FIG. 10). . The element of the present invention realizes a reduction in series resistance as compared with the characteristics of the conventional element, and as a result, the power conversion efficiency is increased. On the other hand, in the figure, (b) shows the current-voltage characteristics of the light receiving portion, the solid line shows the present invention, and the broken line shows the conventional one. In the present invention, the device system is made sufficiently larger than the emission diameter, and only the minimum necessary ion-implanted portion is present, so that the dark current can be reduced as compared with the prior art.

【0033】図8は本発明にもとづく積層集積垂直共振
器型半導体レーザ素子の他の実施例を示す断面図で、面
発光レーザ素子上に受光器が積層集積されている。図
中、Aの領域は第1回目の結晶成長で形成、Bの領域は
第2回目の結晶成長で形成される領域を示す。積層構造
である。すなわち、該積層構造は、p−AlGaAs基
板18上に、順にp−Aly Ga1-y As/Alz Ga
1-z AsDBR形反射鏡19、Alu Ga1-u Asスペ
ーサ層20、GaAs/Alw Ga1-w As超格子構造
活性層21、Alu Ga1-u Asスペーサ層22、そし
てn電極層23が一括成長されてなるものである。ま
た、p−AlGaAs基板18の裏側にはp電極が形成
されている。
FIG. 8 is a sectional view showing another embodiment of a stacked integrated vertical cavity type semiconductor laser device according to the present invention, in which a photodetector is stacked and integrated on a surface emitting laser device. In the figure, the region A is formed by the first crystal growth, and the region B is the region formed by the second crystal growth. It has a laminated structure. That is, the laminated structure on the p-AlGaAs substrate 18, sequentially p-Al y Ga 1-y As / Al z Ga
1-z AsDBR type reflection mirror 19, Al u Ga 1-u As spacer layer 20, GaAs / Al w Ga 1-w As superlattice structure active layer 21, Al u Ga 1-u As spacer layer 22, and n-electrode The layer 23 is grown collectively. A p electrode is formed on the back side of the p-AlGaAs substrate 18.

【0034】さらに、この積層構造の上に、第2の結晶
成長によって受光器が形成される。第2の結晶成長によ
って形成される層は、Alu Ga1-u Asスペーサ層2
4、Alx'Ga1-x'As/Alw'Ga1-w'As超格子構
造可飽和吸収領域25、Alu Ga1-u Asスペーサ層
26、およびp−Aly Ga1-y As/Alz Ga1-z
AsDBR形反射鏡27である。なお、参照符号29は
n電極、30はp電極、31はSiNx またはSiO
2 、32は活性層電流狭窄用イオン注入領域、および3
3は可飽和吸収層用イオン注入領域である。
Further, a photodetector is formed on this laminated structure by the second crystal growth. The layer formed by the second crystal growth is the Al u Ga 1-u As spacer layer 2
4, Al x 'Ga 1- x' As / Al w 'Ga 1-w' As superlattice structure saturable absorption region 25, Al u Ga 1-u As spacer layer 26, and p-Al y Ga 1-y As / Al z Ga 1-z
It is an AsDBR type reflecting mirror 27. Reference numeral 29 is an n-electrode, 30 is a p-electrode, 31 is SiN x or SiO.
2 and 32 are ion implantation regions for active layer current constriction, and 3
Reference numeral 3 is an ion implantation region for the saturable absorption layer.

【0035】図8に示した素子の特徴は、上下に位置し
たDBR形反射鏡27および19の間にGaAs/Al
w Ga1-w As超格子構造活性層21とAlx'Ga1-x'
As/Alw'Ga1-w'As超格子構造可飽和吸収領域2
5あるいは位相調整層などが形成されていることであ
る。この場合、一回目の成長は活性層21上部のn電極
層23まで行い、電流狭窄のための酸素イオン注入32
を行った後に、上部の可飽和吸収層あるいは位相調整層
25と上面のDBR層27を形成する。このような形成
法を採ることによって、光共振器に対する各領域の有効
径を等しくすることが可能であり、閾値電流や動作駆動
パワーの無駄な増加の抑制に対して効果がある。
The characteristic of the device shown in FIG. 8 is that GaAs / Al is provided between the DBR type reflecting mirrors 27 and 19 located above and below.
w Ga 1-w As superlattice active layer 21 and the Al x 'Ga 1-x'
As / Al w 'Ga 1- w' As superlattice structure saturable absorption region 2
5 or a phase adjustment layer or the like is formed. In this case, the first growth is performed up to the n electrode layer 23 above the active layer 21, and oxygen ion implantation 32 for current confinement is performed.
After that, the saturable absorption layer or phase adjusting layer 25 on the upper side and the DBR layer 27 on the upper surface are formed. By adopting such a forming method, it is possible to equalize the effective diameters of the respective regions with respect to the optical resonator, and it is effective in suppressing an unnecessary increase in the threshold current and the operation drive power.

【0036】以上説明した積層集積垂直共振器型半導体
レーザ素子は、nドープ層へのイオン注入について述べ
たものであるが、pドープ層へのイオン注入の場合にも
同様の効果が得られる。また、AlGaAs/GaAs
系に関するものであるけれども、InGaAsP/In
P系、InGaAs/GaAs歪超格子系においても同
様の作用・効果を得ることが可能である。また面発光レ
ーザ素子に積層集積する素子として上記では受光器また
は可飽和吸収層を例として挙げたが、ゲート素子や変調
器、位相調整領域などでも同様にして作製できる。
The stacked integrated vertical cavity type semiconductor laser device described above describes the ion implantation into the n-doped layer, but the same effect can be obtained in the case of the ion implantation into the p-doped layer. Also, AlGaAs / GaAs
InGaAsP / In, although related to the system
The same action and effect can be obtained also in the P type and InGaAs / GaAs strained superlattice type. In the above description, the light receiving device or the saturable absorbing layer is used as an example of the device to be laminated and integrated on the surface emitting laser device.

【0037】[0037]

【発明の効果】以上説明した通り、本発明は、垂直共振
器型半導体レーザ素子において、一回目の成長において
垂直共振器型半導体レーザ素子の上部半導体多層膜反射
鏡の一部まで、あるいは活性層上部に位置する電極層ま
でを成長し、電流狭窄を目的として酸素イオンの注入を
行った後に一回目の成長の最上層InGaPの除去ある
いは最上層のGaAsあるいはAlGaAsをAsH3
雰囲気中あるいはAsビームを照射して熱的クリーニン
グを行った後に除去して再成長を行うことによって、低
閾値で高効率、かつ信頼性の得られる垂直共振器型半導
体レーザ素子を形成する効果がある。
As described above, according to the present invention, in the vertical cavity type semiconductor laser device, in the first growth, up to a part of the upper semiconductor multilayer film reflection mirror of the vertical cavity type semiconductor laser device or the active layer. After growing up to the upper electrode layer and implanting oxygen ions for the purpose of current confinement, the uppermost layer InGaP of the first growth is removed or the uppermost layer GaAs or AlGaAs is AsH 3
The vertical cavity type semiconductor laser device having a low threshold value, high efficiency and high reliability can be formed by removing and regrowth after performing thermal cleaning in the atmosphere or by irradiating with an As beam. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく垂直共振器型半導体レーザ素
子の一構成例を説明するための模式的断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a configuration example of a vertical cavity type semiconductor laser device according to the present invention.

【図2】本発明にもとづく垂直共振器型半導体レーザ素
子の一構成例を説明するための模式的断面図である(垂
直共振器上部に受光器を積層集積した構造)。
FIG. 2 is a schematic cross-sectional view for explaining one configuration example of a vertical cavity type semiconductor laser device according to the present invention (a structure in which photodetectors are laminated and integrated on the upper part of the vertical cavity).

【図3】本発明にもとづく垂直共振器型半導体レーザ素
子におけるイオン注入と再成長の工程を説明するための
もので、(a)、(b)、(c)、および(d)はそれ
ぞれ各工程を説明するための模式的断面図である。
FIG. 3 is a view for explaining the steps of ion implantation and regrowth in a vertical cavity type semiconductor laser device according to the present invention, in which (a), (b), (c), and (d) respectively. It is a typical sectional view for explaining a process.

【図4】本発明にもとづく垂直共振器型半導体レーザ素
子における収束イオンビームによるイオン注入と再成長
の工程を説明するためのもので、(a)、(b)、
(c)、および(d)はそれぞれ各工程を説明するため
の模式的断面図である。
FIG. 4 is a view for explaining the steps of ion implantation and regrowth by a focused ion beam in a vertical cavity type semiconductor laser device according to the present invention, (a), (b),
(C) and (d) are schematic cross-sectional views for explaining each step.

【図5】本発明にもとづく垂直共振器型半導体レーザ素
子におけるプロトン注入ウエハのSIMS分析結果を示
すグラフであって、(a)アニール前,(b)アニール
後のものである。
FIG. 5 is a graph showing SIMS analysis results of a proton-implanted wafer in a vertical cavity type semiconductor laser device according to the present invention, which is (a) before annealing and (b) after annealing.

【図6】本発明にもとづく垂直共振器型半導体レーザ素
子における酸素イオン注入ウエハのSIMS分析結果を
示すグラフであって、(a)アニール前,(b)アニー
ル後のものである。
FIG. 6 is a graph showing SIMS analysis results of an oxygen ion-implanted wafer in a vertical cavity type semiconductor laser device according to the present invention, which is (a) before annealing and (b) after annealing.

【図7】本発明にもとづく垂直共振器型半導体レーザ素
子の電流対電圧特性を示すグラフであって、(a)は垂
直共振器上部に受光器を積層集積した素子構造の面発光
レーザ素子の電流対光出力特性および電流対電圧特性、
(b)は垂直共振器上部に受光器を積層集積した素子構
造の受光器の電流対電圧特性を示す。
FIG. 7 is a graph showing current-voltage characteristics of a vertical cavity type semiconductor laser device according to the present invention, in which (a) shows a surface emitting laser device having a device structure in which a photodetector is laminated and integrated on an upper part of the vertical cavity. Current-optical output characteristics and current-voltage characteristics,
(B) shows the current-voltage characteristics of a photodetector having an element structure in which the photodetector is stacked and integrated on the vertical resonator.

【図8】本発明にもとづく垂直共振器型半導体レーザ素
子の一構成例を説明するための模式的断面図である(垂
直共振器の上下DBR内に可飽和吸収層を積層集積した
構造)。
FIG. 8 is a schematic cross-sectional view for explaining one configuration example of a vertical cavity type semiconductor laser device according to the present invention (a structure in which saturable absorption layers are laminated and integrated in upper and lower DBRs of a vertical cavity).

【図9】従来の垂直共振器型半導体レーザ素子の断面図
である。
FIG. 9 is a sectional view of a conventional vertical cavity type semiconductor laser device.

【図10】従来の積層集積垂直共振器型半導体レーザ素
子の断面図である。
FIG. 10 is a cross-sectional view of a conventional stacked integrated vertical cavity type semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 p−AlGaAs基板 2 p−Aly Ga1-y As/Alz Ga1-z AsDB
R形反射鏡 3 Alu Ga1-u Asスペーサ層 4 GaAs/Alw Ga1-w As超格子構造活性層 5 Alu Ga1-u Asスペーサ層 6 n−Aly Ga1-y As/Alz Ga1-z AsDB
R形反射鏡(一回目の成長) 7 n−Aly Ga1-y As/Alz Ga1-z AsDB
R形反射鏡(二回目の成長) 8 n−Alu Ga1-u Asクラッド層 9 ノンドープ−GaAs吸収層 10 p−Alu Ga1-u Asクラッド層 11 p+ −GaAsコンタクト層 12 p電極 13 n電極 14 SiNx またはSiO2 15 p電極 16 活性層電流狭窄用イオン注入領域 17 受光器用イオン注入領域 18 p−AlGaAs基板 19 p−Aly Ga1-y As/Alz Ga1-z AsD
BR形反射鏡 20 Alu Ga1-u Asスペーサ層 21 GaAs/Alw Ga1-w As超格子構造活性層 22 Alu Ga1-u Asスペーサ層 23 n電極層 24 Alu Ga1-u Asスペーサ層 25 Alx'Ga1-x'As/Alw'Ga1-w'As超格子
構造可飽和吸収領域 26 Alu Ga1-u Asスペーサ層 27 p−Aly Ga1-y As/Alz Ga1-z AsD
BR形反射鏡 28 p電極 29 n電極 30 p電極 31 SiNx またはSiO2 32 活性層電流狭窄用イオン注入領域 33 可飽和吸収層用イオン注入領域 34 p−AlGaAs基板 35 p−Aly Ga1-y As/Alz Ga1-z AsD
BR形反射鏡 36 Alu Ga1-u Asスペーサ層 37 GaAs/Alw Ga1-w As超格子構造活性層 38 Alu Ga1-u Asスペーサ層 39 n−Aly Ga1-y As/Alz Ga1-z AsD
BR形反射鏡 40 n−Alu Ga1-u Asクラッド層 41 ノンドープ−GaAs吸収層 42 SiNx またはSiO2 43 p−Alu Ga1-u Asクラッド層 44 p+ −GaAsコンタクト層 45 p電極 46 p電極 47 n電極 48 活性層電流狭窄用イオン注入領域 49 受光器用イオン注入領域 101 p−AlGaAs基板 102 p−Aly Ga1-y As/Alz Ga1-z As
DBR形反射鏡 103 Alu Ga1-u Asスペーサ層 104 GaAs/Alw Ga1-w As超格子構造活性
層 105 Alu Ga1-u Asスペーサ層 106 n−Aly Ga1-y As/Alz Ga1-z As
DBR形反射鏡(一回目の成長) 107 n−Aly Ga1-y As/Alz Ga1-z As
DBR形反射鏡(二回目の成長) 108 p電極 109 n電極 110 イオン注入領域 111 p−AlGaAs基板 112 p−Aly Ga1-y As/Alz Ga1-z As
DBR形反射鏡 113 Alu Ga1-u Asスペーサ層 114 GaAs/Alw Ga1-w As超格子構造活性
層 115 Alu Ga1-u Asスペーサ層 116 n−Aly Ga1-y As/Alz Ga1-z As
DBR形反射鏡(一回目の成長) 117 n−Aly Ga1-y As/Alz Ga1-z As
DBR形反射鏡(二回目の成長) 118 p電極 119 n電極 120 イオン注入領域 201 イオンが通過した領域 202 垂直共振器レーザ素子 203 受光器
1 p-AlGaAs substrate 2 p-Al y Ga 1- y As / Al z Ga 1-z AsDB
R-shaped reflector 3 Al u Ga 1-u As spacer layer 4 GaAs / Al w Ga 1- w As superlattice active layer 5 Al u Ga 1-u As spacer layer 6 n-Al y Ga 1- y As / Al z Ga 1-z AsDB
R-type reflector (first-time growth) 7 n-Al y Ga 1 -y As / Al z Ga 1-z AsDB
R-shaped mirror (second growth) 8 n-Al u Ga 1-u As clad layer 9 Undoped-GaAs absorption layer 10 p-Al u Ga 1-u As clad layer 11 p + -GaAs contact layer 12 p Electrode 13 n electrode 14 SiN x or SiO 2 15 p electrode 16 active layer current confinement ion implantation region 17 for receiver ion-implanted region 18 p-AlGaAs substrate 19 p-Al y Ga 1- y As / Al z Ga 1-z AsD
BR type reflection mirror 20 Al u Ga 1-u As spacer layer 21 GaAs / Al w Ga 1-w As superlattice structure active layer 22 Al u Ga 1-u As spacer layer 23 n electrode layer 24 Al u Ga 1-u As spacer layer 25 Al x 'Ga 1-x ' As / Al w 'Ga 1-w' As superlattice structure saturable absorption region 26 Al u Ga 1-u As spacer layer 27 p-Al y Ga 1- y As / Al z Ga 1-z AsD
BR type reflector 28 p electrode 29 n electrode 30 p electrode 31 SiN x or SiO 2 32 active layer for current confinement ion implantation region 33 saturable absorbing layer ion-implanted region 34 p-AlGaAs substrate 35 p-Al y Ga 1- y As / Al z Ga 1-z AsD
BR type reflector 36 Al u Ga 1-u As spacer layer 37 GaAs / Al w Ga 1- w As superlattice active layer 38 Al u Ga 1-u As spacer layer 39 n-Al y Ga 1- y As / Al z Ga 1-z AsD
BR shaped reflector 40 n-Al u Ga 1- u As cladding layer 41 doped -GaAs absorbing layer 42 SiN x or SiO 2 43 p-Al u Ga 1-u As cladding layer 44 p + -GaAs contact layer 45 p electrode 46 p electrode 47 n electrode 48 active layer current confinement ion implantation region 49 for receiver ion implantation region 101 p-AlGaAs substrate 102 p-Al y Ga 1- y As / Al z Ga 1-z As
DBR type reflector 103 Al u Ga 1-u As spacer layer 104 GaAs / Al w Ga 1- w As superlattice active layer 105 Al u Ga 1-u As spacer layer 106 n-Al y Ga 1- y As / Al z Ga 1-z As
DBR type reflector (first-time growth) 107 n-Al y Ga 1 -y As / Al z Ga 1-z As
DBR type reflector (second time of growth) 108 p electrode 109 n electrode 110 ion implantation region 111 p-AlGaAs substrate 112 p-Al y Ga 1- y As / Al z Ga 1-z As
DBR type reflector 113 Al u Ga 1-u As spacer layer 114 GaAs / Al w Ga 1- w As superlattice active layer 115 Al u Ga 1-u As spacer layer 116 n-Al y Ga 1- y As / Al z Ga 1-z As
DBR type reflector (first-time growth) 117 n-Al y Ga 1 -y As / Al z Ga 1-z As
DBR type reflecting mirror (second growth) 118 p electrode 119 n electrode 120 ion implantation region 201 region where ions have passed 202 vertical cavity laser device 203 photodetector

フロントページの続き (72)発明者 岩村 英俊 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 黒川 隆志 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内Front page continued (72) Inventor Hidetoshi Iwamura 3-19-3 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Inventor Takashi Kurokawa 3-19-3 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Phone Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 活性層と、該活性層を挟む一対のスペー
サ層と、該一対のスペーサ層を挟む一対の半導体多層膜
反射鏡と、少なくても前記活性層が構成する平面上の閉
領域を囲む領域が高抵抗化された電流狭窄領域とを具備
した積層構造体が半導体基板上に形成された垂直共振器
型半導体レーザ素子の製造方法において、 前記活性層が含まれた第1の積層構造部を前記基板上に
形成する第1の結晶成長工程と、 該第1の積層構造部へイオン注入することによって前記
電流狭窄領域を設けるイオン注入工程と、 前記電流狭窄領域を形成した後に、前記第1の積層構造
部上に第2の積層構造部を形成する第2の結晶成長工程
とを有し、さらに、 前記積層構造体は前記第1の積層構造部と前記第2の積
層構造部とからなることを特徴とする垂直共振器型半導
体レーザ素子の製造方法。
1. An active layer, a pair of spacer layers sandwiching the active layer, a pair of semiconductor multilayer film reflectors sandwiching the pair of spacer layers, and at least a closed region on a plane formed by the active layer. A method of manufacturing a vertical cavity type semiconductor laser device in which a laminated structure having a region confining a current and a current confinement region having a high resistance is formed on a semiconductor substrate, the first laminated layer including the active layer. A first crystal growth step of forming a structure portion on the substrate; an ion implantation step of providing the current confinement region by ion implantation into the first laminated structure portion; and, after forming the current confinement region, A second crystal growth step of forming a second stacked structure portion on the first stacked structure portion, and the stacked structure body includes the first stacked structure portion and the second stacked structure portion. Vertical joints characterized by consisting of Method of manufacturing a vessel-type semiconductor laser device.
【請求項2】 前記第1の積層構造部は、前記一対の半
導体多層膜反射鏡のうちの一つと、前記一対のスペーサ
層のうちの一つとを有し、一方前記第2の積層構造部は
前記一対の半導体多層膜反射鏡のうちの他方と、前記一
対のスペーサ層のうちの他方とを有することを特徴とす
る請求項2に記載の垂直共振器型半導体レーザ素子の製
造方法。
2. The first laminated structure portion has one of the pair of semiconductor multilayer film reflecting mirrors and one of the pair of spacer layers, while the second laminated structure portion. 3. The method for manufacturing a vertical cavity type semiconductor laser device according to claim 2, further comprising: the other of the pair of semiconductor multilayer film reflecting mirrors and the other of the pair of spacer layers.
【請求項3】 前記半導体基板はGaAsからなり、ま
た前記第1の結晶成長工程は前記第1の積層構造部上に
InGaP層の成長を行い、さらに前記第2の結晶成長
工程は前記第2の積層層構造部を形成する前に前記In
GaP層を除去することを特徴とする請求項1または2
に記載の垂直共振器型半導体レーザ素子の製造方法。
3. The semiconductor substrate is made of GaAs, the first crystal growth step is to grow an InGaP layer on the first laminated structure portion, and the second crystal growth step is to be the second crystal growth step. Before forming the laminated layer structure part of
The GaP layer is removed, wherein the GaP layer is removed.
5. A method for manufacturing a vertical cavity type semiconductor laser device according to.
【請求項4】 前記半導体基板はGaAsからなり、ま
た第1の結晶成長工程は前記第1の積層構造部の成長の
最後に成長装置中の加熱によって蒸発可能なAlGaA
s層またはGaAs層の成長を行い、さらに前記第2の
結晶成長工程で前記第2の積層構造部を形成する前に、
AsH3 雰囲気中またはAsビームの照射中に該蒸発可
能なAlGaAs層またはGaAs層を除去することを
特徴とする請求項1ないし3のいずれか一項に記載の垂
直共振器型半導体レーザ素子の製造方法。
4. The semiconductor substrate is made of GaAs, and in the first crystal growth step, AlGaA that can be evaporated by heating in a growth apparatus at the end of the growth of the first laminated structure portion.
Before growing the s layer or the GaAs layer and further forming the second laminated structure portion in the second crystal growth step,
4. The vertical cavity type semiconductor laser device according to claim 1, wherein the vaporizable AlGaAs layer or GaAs layer is removed in an AsH 3 atmosphere or during irradiation with an As beam. Method.
【請求項5】 前記イオン注入のイオン種として、酸素
イオンを用いることを特徴とする請求項1ないし4のい
ずれか一項に記載の垂直共振器型半導体レーザ素子の製
造方法。
5. The method of manufacturing a vertical cavity type semiconductor laser device according to claim 1, wherein oxygen ions are used as the ion species for the ion implantation.
【請求項6】 前記イオン注入の手段として収束イオン
ビームを用いるとともに、前記第1の結晶成長工程、前
記イオン注入工程、および前記第2の結晶成長工程を真
空装置内で一貫して行うことを特徴とする請求項1ない
し5のいずれか一項に記載の垂直共振器型半導体レーザ
素子の製造方法。
6. A focused ion beam is used as the means for implanting ions, and the first crystal growing step, the ion implanting step, and the second crystal growing step are performed consistently in a vacuum apparatus. The method for manufacturing a vertical cavity type semiconductor laser device according to claim 1, wherein the method is a semiconductor device.
【請求項7】 前記積層構造体に光信号処理用の機能素
子を積層する工程をさらに有することを特徴とする請求
項1ないし6のいずれか一項に記載の垂直共振器型半導
体レーザ素子の製造方法。
7. The vertical cavity type semiconductor laser device according to claim 1, further comprising a step of laminating a functional element for optical signal processing on the laminated structure. Production method.
【請求項8】 前記一対の半導体多層膜反射鏡によって
構成される光共振器内に光機能領域を内蔵することを特
徴とする請求項1ないし7のいずれか一項に記載の垂直
共振器型半導体レーザ素子の製造方法。
8. The vertical resonator type according to claim 1, wherein an optical functional region is built in the optical resonator formed by the pair of semiconductor multilayer film reflecting mirrors. Manufacturing method of semiconductor laser device.
【請求項9】 活性層と、該活性層を挟む一対のスペー
サ層と、該一対のスペーサ層を挟む一対の半導体多層膜
反射鏡と、少なくても前記活性層が構成する平面上の閉
領域を囲む領域が高抵抗化された電流狭窄領域とを具備
した積層構造体が半導体基板上に形成された垂直共振器
型半導体レーザ素子において、 前記積層構造体は、 第1回目の結晶成長によって形成され、かつ前記活性層
が含まれた第1の積層構造部と、 該第1の積層構造部へイオン注入することによって前記
電流狭窄領域を設けた後に前記第1の積層構造部上に再
結晶成長することによって形成された第2の積層構造部
とを有することを特徴とする垂直共振器型半導体レーザ
素子。
9. An active layer, a pair of spacer layers sandwiching the active layer, a pair of semiconductor multilayer film reflecting mirrors sandwiching the pair of spacer layers, and at least a closed region on a plane formed by the active layer. In a vertical cavity type semiconductor laser device in which a laminated structure including a region confined to a current confinement region having a high resistance is formed on a semiconductor substrate, the laminated structure is formed by a first crystal growth. And a recrystallization on the first laminated structure portion after providing the current confinement region by implanting ions into the first laminated structure portion and including the active layer. A vertical cavity type semiconductor laser device having a second laminated structure portion formed by growth.
【請求項10】 前記第1の積層構造部は、前記一対の
半導体多層膜反射鏡のうちの一つと、前記一対のスペー
サ層のうちの一つとを有し、一方前記第2の積層構造部
は前記一対の半導体多層膜反射鏡のうちの他方と、前記
一対のスペーサ層のうちの他方とを有することを特徴と
する請求項9に記載の垂直共振器型半導体レーザ素子。
10. The first laminated structure portion has one of the pair of semiconductor multilayer film reflection mirrors and one of the pair of spacer layers, while the second laminated structure portion. The vertical cavity type semiconductor laser device according to claim 9, further comprising: the other of the pair of semiconductor multilayer film reflecting mirrors and the other of the pair of spacer layers.
【請求項11】 前記積層構造体に光信号処理用の機能
素子が積層されていることを特徴とする請求項9または
10に記載の垂直共振器型半導体レーザ素子。
11. The vertical cavity type semiconductor laser device according to claim 9, wherein a functional element for optical signal processing is laminated on the laminated structure.
【請求項12】 前記垂直共振器型半導体の前記一対の
半導体多層膜反射鏡によって構成される光共振器内に光
機能領域が内蔵されていることを特徴とする請求項9な
いし11のいずれか一項に記載の垂直共振器型半導体レ
ーザ素子。
12. The optical functional region is built in an optical resonator constituted by the pair of semiconductor multilayer film reflecting mirrors of the vertical resonator type semiconductor. A vertical cavity type semiconductor laser device according to claim 1.
JP28061295A 1995-10-27 1995-10-27 Vertical cavity semiconductor laser device and method of manufacturing the same Expired - Fee Related JP3262310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28061295A JP3262310B2 (en) 1995-10-27 1995-10-27 Vertical cavity semiconductor laser device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28061295A JP3262310B2 (en) 1995-10-27 1995-10-27 Vertical cavity semiconductor laser device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09129962A true JPH09129962A (en) 1997-05-16
JP3262310B2 JP3262310B2 (en) 2002-03-04

Family

ID=17627472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28061295A Expired - Fee Related JP3262310B2 (en) 1995-10-27 1995-10-27 Vertical cavity semiconductor laser device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3262310B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230496A (en) * 1999-12-10 2001-08-24 Furukawa Electric Co Ltd:The Semiconductor laser element
JP2001244566A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Semiconductor optical element and its manufacturing method
JP2008192798A (en) * 2007-02-05 2008-08-21 Furukawa Electric Co Ltd:The Surface-emitting laser
JP2008211013A (en) * 2007-02-27 2008-09-11 Furukawa Electric Co Ltd:The Surface-emitting semiconductor laser device
JP2020068309A (en) * 2018-10-25 2020-04-30 住友電気工業株式会社 Method for manufacturing surface emitting laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230496A (en) * 1999-12-10 2001-08-24 Furukawa Electric Co Ltd:The Semiconductor laser element
JP2001244566A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Semiconductor optical element and its manufacturing method
JP2008192798A (en) * 2007-02-05 2008-08-21 Furukawa Electric Co Ltd:The Surface-emitting laser
JP2008211013A (en) * 2007-02-27 2008-09-11 Furukawa Electric Co Ltd:The Surface-emitting semiconductor laser device
JP2020068309A (en) * 2018-10-25 2020-04-30 住友電気工業株式会社 Method for manufacturing surface emitting laser

Also Published As

Publication number Publication date
JP3262310B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
EP0926786B1 (en) Vertical cavity surface-emitting laser with separate optical and current guides
JP3289920B2 (en) Top emitting surface emitting laser structure
US6222866B1 (en) Surface emitting semiconductor laser, its producing method and surface emitting semiconductor laser array
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
JP4184769B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
EP1073171B1 (en) Lateral injection vertical cavity surface-emitting laser
JPH05506333A (en) top emitting diode laser
US6526081B2 (en) Surface emitting semiconductor laser and method of fabricating the same
US8611392B2 (en) Semiconductor laser
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
US7526008B2 (en) Surface emitting laser diode
JPH06314854A (en) Surface light emitting element and its manufacture
WO2015033649A1 (en) Vertical cavity surface emitting laser and method for manufacturing same
JP3837969B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP3262310B2 (en) Vertical cavity semiconductor laser device and method of manufacturing the same
JPWO2005074080A1 (en) Surface emitting laser and manufacturing method thereof
JP2000277852A (en) Surface emitting semiconductor laser and manufacturing method
WO2021142962A1 (en) High-contrast grating vertical-cavity surface-emitting laser and manufacturing method therefor
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JPH09246652A (en) Semiconductor laser and manufacturing method thereof
JPH11112086A (en) Embedded type surface emitting laser and manufacture thereof
JP2546153B2 (en) Surface emitting device and manufacturing method thereof
JPH10200210A (en) Manufacture of surface light-emission laser
JP3722532B2 (en) Semiconductor laser device and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20111221

LAPS Cancellation because of no payment of annual fees