JPH091296A - Rapid cooling roll for production of magnet alloy - Google Patents

Rapid cooling roll for production of magnet alloy

Info

Publication number
JPH091296A
JPH091296A JP7233296A JP23329695A JPH091296A JP H091296 A JPH091296 A JP H091296A JP 7233296 A JP7233296 A JP 7233296A JP 23329695 A JP23329695 A JP 23329695A JP H091296 A JPH091296 A JP H091296A
Authority
JP
Japan
Prior art keywords
alloy
magnet
surface roughness
atomic
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7233296A
Other languages
Japanese (ja)
Other versions
JP3492823B2 (en
Inventor
Hiroki Tokuhara
宏樹 徳原
Naoyuki Ishigaki
尚幸 石垣
Michio Yamada
道夫 山田
Masami Ueda
雅己 植田
Takashi Kojima
尊 児嶋
Yukiyoshi Watanabe
幸良 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP23329695A priority Critical patent/JP3492823B2/en
Publication of JPH091296A publication Critical patent/JPH091296A/en
Application granted granted Critical
Publication of JP3492823B2 publication Critical patent/JP3492823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PROBLEM TO BE SOLVED: To obtain R-Fe-B alloy slab excellent in corrosion resistance by specifying the surface roughness near surface center part and the surface roughness near both ends of a rapid cooling roll for production of magnet respectively and specifying the relationship between both surface roughness. SOLUTION: A rapid cooling roll 1 for production of magnet alloy, by which R-Fe-B or R-Fe-B-C magnet alloy molten metal is rapidly solidified, has a surface roughness Ra2 of 0.1-10μm at a center neighborhood of part 4 in the direction of width L of the wear resistant metal surface arranged on the surface in contact with molten metal, that is, T=0.5-0.9L. Further, the surface roughness Rag near both end neighborhood part 5, that is, t=0.005-0.25L is 2-20μm, the relationship of surface roughness of each region is Ra1 >Ra2 . A base metal 2 of rapid cooling roll 1 is preferably Cu or Cu alloy of high heat conductivity, Cr, Cr alloy, Ni, Ni alloy are preferably for a wear resistant metal layer. By this method, the alloy slab, in which difference in a grain size in the width direction of slab and variance in magnetic property reduced, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、真空溶解炉にて
溶解した磁石合金溶湯をノズルより急冷ロールに注湯し
て、微細均質組織を有するR−Fe−B系またはR−F
e−B−C系磁石合金を製造するための急冷ロールの改
良に係り、溶湯に接触する急冷ロールの幅方向の中央付
近部及び両側付近部の表面を、それぞれ特定の表面粗度
となし、両側付近部の表面粗度が中央付近部の表面粗度
より大きくなるようにして、鋳片幅方向に均質微細結晶
粒を有する鋳片を鋳造することを実現した、微細均質組
織を有するR−Fe−B系またはR−Fe−B−C系磁
石合金製造用急冷ロールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-B system or R-F system having a fine homogeneous structure in which a molten magnet alloy melted in a vacuum melting furnace is poured from a nozzle into a quenching roll.
According to the improvement of the quenching roll for producing the e-B-C system magnet alloy, the surface in the vicinity of the center and both sides in the width direction of the quenching roll that comes into contact with the molten metal are each made to have a specific surface roughness, It is possible to cast a slab having homogeneous fine crystal grains in the width direction of the slab so that the surface roughness in the vicinity of both sides is higher than the surface roughness in the vicinity of the center. The present invention relates to a quenching roll for producing a Fe-B type or R-Fe-B-C type magnet alloy.

【0002】[0002]

【従来の技術】高性能永久磁石として代表的なR−Fe
−B系永久磁石(特開昭59−46008号)は、三元
系正方晶化合物の主相とRリッチ相を有する組織にて高
い磁石特性が得られ、一般家庭の各種電器製品から大型
コンピュータの周辺機器まで幅広い分野で使用され、用
途に応じた種々の磁石特性を発揮するよう種々の組成の
R−Fe−B系永久磁石が提案されている。
2. Description of the Related Art A typical R-Fe as a high performance permanent magnet
The B-type permanent magnet (Japanese Patent Laid-Open No. 59-46008) has high magnet characteristics due to the structure having the main phase of the ternary tetragonal compound and the R-rich phase. R-Fe-B based permanent magnets of various compositions have been proposed so that they can be used in a wide range of fields, including peripheral devices, and exhibit various magnet characteristics depending on the application.

【0003】前記R−Fe−B系永久磁石は極めてすぐ
れた磁気特性を有するが、耐食性、温度特性の点で問題
があり、従来よりR−Fe−B系永久磁石の耐食性の改
善のため、磁石表面に耐食性金属膜や樹脂膜を被覆する
方法が提案され(特開昭60−54406号公報、特開
昭60−63901号公報)、また磁石の磁気特性の温
度特性の改善のため、磁石組成のFeの1部をCoにて
置換することが提案(特開昭59−64733号公報)
されているが、未だ十分でなく、且つ、磁石のコスト上
昇を招来する問題があった。
The R-Fe-B system permanent magnets have extremely excellent magnetic properties, but have problems in corrosion resistance and temperature characteristics. A method of coating the surface of the magnet with a corrosion resistant metal film or a resin film has been proposed (JP-A-60-54406 and JP-A-60-63901), and in order to improve the temperature characteristics of the magnetic characteristics of the magnet, the magnet has been proposed. Proposed to replace a part of Fe in the composition with Co (Japanese Patent Laid-Open No. 59-64733).
However, there is a problem that the cost is still insufficient and the cost of the magnet increases.

【0004】最近、R−Fe−B系磁石のBの一部をC
で置換して耐食性のすぐれた境界相を生成させて、耐食
性の改善向上、温度特性の向上を図ったR−Fe−B−
C系磁石が提案(特開平3−82744号公報)されて
いる。前記R−Fe−B−C系磁石は、B量は2at%
以下であることと多量のCを含有することを特徴として
いる。
Recently, a part of B of the R-Fe-B system magnet is replaced with C
R-Fe-B- for improving the corrosion resistance and temperature characteristics by generating a boundary phase having excellent corrosion resistance by substitution with
A C-based magnet has been proposed (JP-A-3-82744). The R-Fe-BC system magnet has a B content of 2 at%.
It is characterized in that it is below and contains a large amount of C.

【0005】すなわち、Bの一部をCにて置換すると、
主相のR2Fe14B正方晶はBの一部がCにて置換され
たR2Fe14(B1-xx)正方晶になるが、結晶構造は
同じであり、また粒界相はRリッチ相から耐食性の良好
なるRリッチ相(R−Fe−C相)に変化し、Feの一
部をCoで置換したR−Fe−Co−B−C系磁石で
は、主相はR2Fe14B正方晶と同一結晶構造のR2(F
1-xCox14(B1-yy)正方晶になり、また粒界相
はRリッチ相から耐食性の良好なるRリッチ相(R−F
e−Co−C相)に変化するが、磁石中に多量のCを含
有するとCはR(希土類元素)と反応して、R−C相
(希土類炭化物)が形成しやすく、原料合金中や焼結磁
石中にR−C相が生成される。
That is, if a part of B is replaced by C,
The R 2 Fe 14 B tetragonal crystal of the main phase becomes an R 2 Fe 14 (B 1-x C x ) tetragonal crystal in which a part of B is replaced by C, but the crystal structure is the same and the grain boundary The phase changes from the R-rich phase to the R-rich phase (R-Fe-C phase) with good corrosion resistance, and in the R-Fe-Co-BC system magnet in which a part of Fe is replaced by Co, the main phase is R 2 Fe 14 B having the same crystal structure as tetragonal R 2 (F
e 1-x Co x ) 14 (B 1-y C y ) becomes a tetragonal crystal, and the grain boundary phase is from an R-rich phase to an R-rich phase (R-F) with good corrosion resistance.
e-Co-C phase), but when a large amount of C is contained in the magnet, C reacts with R (rare earth element) to easily form an RC phase (rare earth carbide), which causes An RC phase is produced in the sintered magnet.

【0006】要するに、前記R−Fe−B−C系磁石
は、RがCと反応してR−C相となり、Rが消費される
ため所要の磁気特性を得るためにはR−Fe−B系磁石
よりも多量のRを必要とする。そのため、磁気特性に寄
与しないR−C相が多いため、主相の存在量が低下して
R−Fe−B系磁石よりもBrが低下し、また高価なR
を多量に必要とするため、コストアップを招来すると共
に、含有酸素量の増加にともなって磁気特性の劣化、バ
ラツキを招来する問題があった。
In short, in the R-Fe-B-C type magnet, R reacts with C to form the R-C phase, and R is consumed, so that R-Fe-B is required to obtain the required magnetic characteristics. It requires a larger amount of R than the system magnet. Therefore, since there are many RC phases that do not contribute to the magnetic characteristics, the abundance of the main phase is reduced, Br is lower than that of the R—Fe—B based magnet, and expensive R
Since a large amount is required, the cost is increased, and there is a problem that the magnetic characteristics are deteriorated and varied with the increase of the oxygen content.

【0007】また、前記R−Fe−B−C系磁石は、合
金溶湯を鋳型に鋳込んで鋳塊を作製後、該鋳塊を粉砕、
粉末化、成型、焼結、時効処理する粉末冶金法により磁
石化したり、あるいは前記鋳塊または鋳塊の粉砕後の粗
粉を溶体化処理後、粉砕して、前記の粉末冶金法により
磁石化して、耐食性及び温度特性の改善向上を図った
が、R−Fe−B−C系磁石の磁気特性は(BH)ma
xがたかだか38MGOe程度であった。さらに、前記
R−Fe−B−C系磁石は、減磁曲線の角型性が極めて
悪く、同一寸法形状のR−Fe−B系磁石と比較する
と、温度や逆磁界に対して減磁しやすい問題があった。
In the R-Fe-B-C magnet, the molten alloy is cast in a mold to prepare an ingot, and the ingot is crushed.
Pulverization, molding, sintering, magnetizing by powder metallurgy method of aging treatment, or solution treatment of the ingot or coarse powder after crushing of the ingot, pulverizing, and magnetizing by the powder metallurgy method Although the corrosion resistance and the temperature characteristics are improved and improved, the magnetic characteristics of the R-Fe-B-C magnet are (BH) ma.
x was at most about 38 MGOe. Further, the R-Fe-B-C type magnet has extremely poor squareness of the demagnetization curve, and is demagnetized with respect to temperature and reverse magnetic field as compared with the R-Fe-B type magnet having the same size and shape. There was an easy problem.

【0008】R−Fe−B系またはR−Fe−B−C系
焼結磁石の残留磁束密度(Br)を高めるためには、
1)強磁性相であり、主相のR2Fe14B相またはR2
14(B1-xx)相の存在量を多くすること、2)焼結
体の密度を主相の理論密度まで高めること、3)さら
に、主相結晶粒の磁化容易軸方向の配向度を高めること
が要求される。
In order to increase the residual magnetic flux density (Br) of the R-Fe-B system or R-Fe-B-C system sintered magnet,
1) Ferromagnetic phase, R 2 Fe 14 B phase or R 2 F which is the main phase
possible to increase the abundance of e 14 (B 1-x C x) phase, 2) to increase the density of the sintered body to a theoretical density of the main phase, 3) further, the main phase crystal grain easy magnetization axis direction of the It is required to increase the degree of orientation.

【0009】すなわち、前記1)項の達成のためには、
磁石の組成を上記R2Fe14BまたはR2Fe14(B1-x
x)の化学量論的組成に近づけることが重要である
が、上記組成の合金を溶解し、鋳型に鋳造した合金塊
を、出発原料としてR−Fe−B系またはR−Fe−B
−C系焼結磁石を作製しようとすると、合金塊に晶出し
たα−Feや、R−rich相が局部的に遍在している
ことなどから、特に微粉砕時に粉砕が困難となり、組成
ずれを生ずる等の問題があった。
That is, in order to achieve the above item 1),
The composition of the magnet is R 2 Fe 14 B or R 2 Fe 14 (B 1-x
It is important to approach the stoichiometric composition of C x ), but the alloy ingot having the above composition melted and cast in a mold is used as a starting material for R-Fe-B system or R-Fe-B system.
When an attempt is made to produce a —C-based sintered magnet, it becomes difficult to pulverize particularly when finely pulverizing because α-Fe crystallized in the alloy lump and the R-rich phase are locally distributed. There was a problem such as deviation.

【0010】最近、鋳塊粉砕法によるR−Fe−B系合
金粉末の欠点たる結晶粒の粗大化、α−Feの残留、偏
析を防止するために、R−Fe−B系合金溶湯を双ロー
ル法により、特定板厚の鋳片となし、前記鋳片を通常の
粉末冶金法に従って、焼結磁石を製造する方法が提案
(特開昭63−317643号公報)されている。
Recently, in order to prevent coarsening of crystal grains, residual α-Fe, and segregation, which are defects of the R-Fe-B alloy powder by the ingot crushing method, an R-Fe-B alloy molten metal is added. A method has been proposed (Japanese Patent Laid-Open No. 63-317643) in which a slab having a specific plate thickness is formed by a roll method, and the slab is manufactured by a conventional powder metallurgy method.

【0011】また、R−Fe−B系合金溶湯を片ロール
を用いて、横注ぎストリップキャスト法により永久磁石
用急冷鋳片を製造する方法として、タンディッシュ先端
部の水平方向に所要幅のノズルを設け、このノズルに隣
接させて片ロールを水平方向に軸支配置し、高周波溶解
炉にて溶解した溶湯をタンディッシュに収容後、該ノズ
ルから溶湯を水平配置されて連続回転する片ロール面に
注湯して、急冷凝固させて急冷鋳片を製造する方法が提
案(特開平5−222488号公報、特開平6−846
24号公報)されている。
Further, as a method for producing a quenching cast piece for a permanent magnet by a horizontal pouring strip casting method using a single roll of R-Fe-B alloy molten metal, a nozzle having a required width in the horizontal direction at the tip of the tundish. Is provided, and one roll is horizontally supported adjacent to this nozzle, and after the molten metal melted in the high-frequency melting furnace is accommodated in the tundish, the molten roll is horizontally arranged from the nozzle and continuously rolled. A method for producing a rapidly-quenched slab by pouring the molten metal into the molten steel and rapidly solidifying it is proposed (JP-A-5-222488 and JP-A-6-846).
No. 24).

【0012】[0012]

【発明が解決しようとする課題】一方、R−Fe−B系
合金溶湯を急冷ロールにて鋳片を製造する際、磁気特性
を最適化する速度で冷却を行った場合でも、鋳片のロー
ル接触面側とその反対側での結晶粒径に差異を生じ、好
ましい結晶粒径が得られる領域が極めて狭くなり、急冷
合金鋳片の冷却方向での磁気特性が不均一となるため、
前記磁気特性のロール周速度依存性を低減するため、急
冷ロール周面の平均粗さRaを0.07μm〜5μmの
特定範囲に配することが提案(特開平4−28457号
公報)されている。
On the other hand, when a molten slab of R-Fe-B alloy is produced with a quenching roll, even if the slab is cooled at a speed that optimizes the magnetic characteristics, the slab roll is used. There is a difference in the crystal grain size on the contact surface side and the opposite side, the region where a preferable crystal grain size can be obtained is extremely narrow, and the magnetic properties in the cooling direction of the quenched alloy cast piece become non-uniform,
In order to reduce the dependency of the magnetic characteristics on the roll peripheral speed, it has been proposed to arrange the average roughness Ra of the peripheral surface of the quench roll within a specific range of 0.07 μm to 5 μm (JP-A-4-28457). .

【0013】また、鋳片ロール接触面側の冷却速度とそ
の反対側の冷却速度との差を小さくするため、銅や銅合
金等の急冷ロールに最適厚のCr等の表面層を設けて、
合金溶湯冷却時の急冷ロールにおける熱移動を制御する
ことが提案(特開平4−55042号公報)されてい
る。しかし、前記提案方法の対象となる鋳片は、平均結
晶粒径1μm以下のボンド磁石用の超急冷リボンを製造
する場合の幅(L)が2mm、厚さ45μm程度の小寸
法である。
Further, in order to reduce the difference between the cooling rate on the slab roll contact surface side and the cooling rate on the opposite side, a quenching roll of copper or copper alloy is provided with a surface layer of Cr or the like having an optimum thickness.
It has been proposed (Japanese Patent Laid-Open No. 4-55042) to control heat transfer in a quench roll during cooling of the molten alloy. However, the slab that is the target of the proposed method has a small dimension such that the width (L) in the case of producing a super-quenched ribbon for a bonded magnet having an average crystal grain size of 1 μm or less is 2 mm and a thickness is about 45 μm.

【0014】R−Fe−B系またはR−Fe−B−C系
合金鋳片を工業的に量産する場合、例えば、鋳片寸法と
しては幅(L)寸法が50mm以上、厚みが0.01〜
1.0mm程度が望ましいが、この鋳片寸法は前記提案
方法の鋳片寸法に比して25倍以上も大寸法のため、急
冷ロールにて鋳造時、鋳片の幅方向の中央部やその付近
部の冷却速度は早いが、両側付近部は冷却中に冷却ロー
ル上方に反るため、急冷ロールとの接触が不十分とな
り、鋳片の厚み方向の結晶粒径の差より、幅方向の結晶
粒径の差が大となり、中央付近部の結晶粒径より両側付
近部の結晶粒径が大となり、得られた磁石の磁気特性の
低下、バラツキを生ずる恐れがあった。
In the case of industrial mass production of R-Fe-B or R-Fe-B-C type alloy slabs, for example, the width (L) dimension of the slab is 50 mm or more and the thickness is 0.01. ~
About 1.0 mm is desirable, but this slab size is more than 25 times larger than the slab size of the proposed method, so when casting with a quenching roll, the slab center and its width direction Although the cooling rate in the vicinity is fast, the vicinity of both sides warps upwards of the cooling roll during cooling, so contact with the quenching roll becomes insufficient, and due to the difference in crystal grain size in the thickness direction of the slab, the width direction The difference in the crystal grain size becomes large, and the crystal grain size in the vicinity of both sides becomes larger than the crystal grain size in the vicinity of the center, so that there is a possibility that the magnetic properties of the obtained magnet may be deteriorated or varied.

【0015】この発明は、幅(L)寸法が50mm以
上、厚みが0.01〜1.0mm程度の大型のR−Fe
−B系またはR−Fe−B−C系磁石合金の急冷鋳片を
工業的に量産することを目的とし、鋳片の幅方向の結晶
粒径の差が少なく、得られた磁石の磁気特性の低下、バ
ラツキを低減したR−Fe−B系またはR−Fe−B−
C系磁石合金鋳片を得るための磁石合金製造用急冷ロー
ルの提供を目的としている。
The present invention is a large R-Fe having a width (L) dimension of 50 mm or more and a thickness of 0.01 to 1.0 mm.
-B or R-Fe-B-C magnet alloy for the purpose of industrial mass production of quenched slabs, the difference in crystal grain size in the width direction of the slabs is small, and the magnetic properties of the obtained magnets are small. R-Fe-B system or R-Fe-B-
It is intended to provide a quenching roll for producing a magnet alloy for obtaining a C-based magnet alloy slab.

【0016】[0016]

【課題を解決するための手段】発明者らは、鋳片幅が5
0mm以上の大寸法のR−Fe−B系またはR−Fe−
B−C系磁石合金鋳片を急冷ロールにて鋳造する際、得
られた鋳片の幅方向の中央付近部と両側付近部の結晶粒
径を均一化し、得られた磁石の磁気特性の劣化、バラツ
キを防止することを目的に、急冷ロールの構成について
種々検討した結果、急冷ロール表面に被覆された耐摩耗
性金属層の表面粗度を、合金溶湯の接触するロール面の
幅方向中央付近部より、両側付近部を特定粗度に粗くす
ることにより、結晶粒径の微細かつ均一な急冷鋳片が得
られることを知見し、この発明を完成した。
DISCLOSURE OF THE INVENTION The inventors have found that the width of a cast piece is 5
R-Fe-B system or R-Fe- with a large dimension of 0 mm or more
When a B-C magnet alloy slab is cast with a quenching roll, the crystal grain size of the obtained slab in the vicinity of the center and both sides in the width direction is made uniform to deteriorate the magnetic properties of the obtained magnet. As a result of various studies on the structure of the quenching roll for the purpose of preventing variation, the surface roughness of the wear-resistant metal layer coated on the surface of the quenching roll was measured in the vicinity of the widthwise center of the roll surface in contact with the molten alloy. The present invention has been completed by finding that a quenched slab having a fine and uniform crystal grain size can be obtained by roughening both side portions to a specific roughness from the portion.

【0017】すなわち、この発明は、R−Fe−B系あ
るいはR−Fe−B−C系磁石合金溶湯を急冷凝固させ
るための磁石合金製造用急冷ロールにおいて、合金溶湯
が接触する急冷ロール表面に設けた耐摩耗金属層の幅
(L)方向の中央付近部(T=0.5L〜0.9L)の
表面粗さRa2を0.1μm〜10μm、両側付近部
(t=0.05L〜0.25L)の表面粗さRa1を2
〜20μmとなし、各領域の表面粗さの関係を、Ra1
>Ra2となしたことを特徴とする磁石合金製造用急冷
ロールである。
That is, according to the present invention, in a quenching roll for producing a magnet alloy for quenching and solidifying an R-Fe-B type or R-Fe-B-C type magnet alloy melt, the surface of the quenching roll with which the alloy melt comes into contact. The surface roughness Ra 2 of the central portion (T = 0.5L to 0.9L) in the width (L) direction of the provided wear-resistant metal layer is 0.1 μm to 10 μm, and both side portions (t = 0.05L to 0.25 L) surface roughness Ra 1 of 2
.About.20 μm, and the relationship of the surface roughness of each region is Ra 1
> Ra 2 is a quenching roll for producing a magnet alloy.

【0018】また、この発明のR−Fe−B系磁石合金
はR10原子%〜25原子%、B2原子%〜15原子
%、Fe60原子%〜88原子%を主成分とすることを
特徴とする磁石合金製造用急冷ロールであり、また、R
−Fe−B−C系磁石合金はR10原子%〜30原子
%、B+C4原子%〜10原子%(但しB6原子%以
下、C4原子%〜10原子%)、Fe60原子%〜86
原子%を主成分とすることを特徴とする磁石合金製造用
急冷ロールである。
The R-Fe-B magnet alloy of the present invention is characterized in that it contains R10 atom% to 25 atom%, B2 atom% to 15 atom%, and Fe60 atom% to 88 atom% as main components. A quenching roll for manufacturing magnet alloys,
The —Fe—B—C magnet alloy is R10 atomic% to 30 atomic%, B + C4 atomic% to 10 atomic% (however, B6 atomic% or less, C4 atomic% to 10 atomic%), Fe60 atomic% to 86.
A quenching roll for producing a magnet alloy, which is characterized by containing atomic% as a main component.

【0019】[0019]

【発明の実施の形態】この発明による急冷ロールの作用
等を図面に基づいて詳述する。図1はこの発明の急冷ロ
ールの構成を示す模式正面説明図である。急冷ロール1
の基材2には、Cu、Cu合金、Ag、Ag合金、A
l、Al合金を用いることができるが、熱伝導度が高い
こと及び安価な点よりCu、又はCu合金が好ましい。
急冷ロールの寸法には特に制限はなく、目的に応じて適
当な寸法にすれば良いが、通常は、直径150〜200
0mm、幅50〜1000mm程度であり、ロール内部
には表面冷却用の通路を設けられており、水冷すること
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The operation of the quenching roll according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic front view showing the constitution of the quenching roll of the present invention. Quenching roll 1
The base material 2 of Cu, Cu alloy, Ag, Ag alloy, A
Although Al and Al alloys can be used, Cu or Cu alloy is preferable from the viewpoint of high thermal conductivity and low cost.
The size of the quenching roll is not particularly limited and may be an appropriate size according to the purpose, but usually the diameter is 150 to 200.
The roll has a width of about 0 mm and a width of about 50 to 1000 mm, and a passage for cooling the surface is provided inside the roll.

【0020】また、急冷ロール1の表面層の耐摩耗性金
属層3としてはCr、Cr合金、Ni、Ni合金が好ま
しく、またこれらを組み合せてもよく、表面硬度はビッ
カース硬度Hvは、500〜1200が好ましく、さら
に600〜1000が好ましい。
The wear-resistant metal layer 3 of the surface layer of the quenching roll 1 is preferably Cr, Cr alloy, Ni, Ni alloy, or may be a combination of these, and the surface hardness is 500 to Vickers hardness Hv. 1200 is preferable, and 600 to 1000 is more preferable.

【0021】この発明の急冷ロールは部位により表面粗
さを特定したことを特徴とするが、作製する鋳片の幅を
Lとした場合、合金溶湯に接触する急冷ロール1の幅方
向の0.5L〜0.9Lの範囲を幅Tの中央付近部4と
規定し、中央付近部4の表面粗さRa2を0.1μm〜
10μm、好ましくは0.15μm〜5μmとし、ま
た、急冷ロール表面の両側付近部5,5の幅tはそれぞ
れ0.05L〜0.25Lで、二か所の両側付近部5,
5の表面粗さRa1を2〜20μm、好ましくは3〜1
5μmとし、さらに、前記両側付近部5,5の表面粗さ
Ra1は中央付近部4の表面粗さRa2より大にする必要
がある。但し、領域の規定において、T+2t≧L で
ある。
The quenching roll of the present invention is characterized in that the surface roughness is specified depending on the part. When the width of the cast piece to be produced is L, the quenching roll 1 in contact with the molten alloy has a width of 0. The range of 5 L to 0.9 L is defined as the central portion 4 of the width T, and the surface roughness Ra 2 of the central portion 4 is 0.1 μm to
10 .mu.m, preferably 0.15 .mu.m to 5 .mu.m, and the widths t of the portions 5 and 5 on both sides of the surface of the quenching roll are 0.05 L to 0.25 L, respectively.
The surface roughness Ra 1 of 5 is 2 to 20 μm, preferably 3 to 1
The surface roughness Ra 1 of the portions 5 and 5 on both sides must be larger than the surface roughness Ra 2 of the portion 4 on the center. However, in the definition of the region, T + 2t ≧ L 2.

【0022】この発明において、前記表面粗さは合金組
成や鋳片の厚みに応じて、前記範囲内で適宜決定され
る。また、両側付近部5,5の幅tは鋳片幅Lに対し
て、0.05L〜0.25Lであればよいが、操業上、
鋳片とロールの位置を厳密にコントロールできないの
で、両側付近部の幅をロールの両側方向に拡大しておく
ことが好ましい。
In the present invention, the surface roughness is appropriately determined within the above range depending on the alloy composition and the thickness of the cast piece. Further, the width t of the portions 5 and 5 near both sides may be 0.05 L to 0.25 L with respect to the slab width L, but in operation,
Since the positions of the slab and the roll cannot be strictly controlled, it is preferable to widen the width in the vicinity of both sides in both directions of the roll.

【0023】この発明において、合金溶湯に接触する急
冷ロール1の中央付近部4の幅Tは、0.5L未満では
表面粗度の大きな領域、すなわち鋳片の冷却速度が遅
く、結晶粒径の成長する領域が広くなりすぎて、鋳片全
体を平均結晶粒径が大きくなり、また、0.9Lを越え
ると鋳片の両側付近部が急冷ロール上方に反ることを制
御できず、両側付近部の結晶が粗大化するので好ましく
ないため、0.5L〜0.9Lに限定する。
In the present invention, when the width T of the central portion 4 of the quenching roll 1 contacting the molten alloy is less than 0.5 L, the surface roughness is large, that is, the cooling rate of the slab is slow and the grain size The growth area becomes too wide, and the average crystal grain size of the entire slab becomes large. Also, if it exceeds 0.9 L, it is not possible to control the warp of both sides of the slab toward the upper side of the quenching roll, and the vicinity of both sides. It is not preferable because the crystal of the part becomes coarse, so it is limited to 0.5 L to 0.9 L.

【0024】また、前記中央付近部4の表面粗さRa2
を0.1〜10μmに限定した理由は、0.1μm未満
では溶湯とロール表面の濡れ性が悪く、ロール表面で溶
湯が滑るため好ましくない。また、10μmを超える
と、冷却速度が遅くなりすぎて、結晶が粗大化する恐れ
があるため、好ましくないからである。
Further, the surface roughness Ra 2 of the central portion 4 is
The reason for limiting 0.1 to 10 μm is not preferable because the wettability between the molten metal and the roll surface is poor and the molten metal slips on the roll surface when it is less than 0.1 μm. On the other hand, if it exceeds 10 μm, the cooling rate becomes too slow and the crystals may become coarse, which is not preferable.

【0025】急冷ロール1の両側付近部5,5の幅t
は、0.05L未満では鋳片の両側付近部が急冷ロール
上方に反ることを制御できず、また、0.25Lを超え
ると、ロール上方に鋳片が反ることは制御できるが、表
面粗度の大きな領域、すなわち鋳片の冷却速度が遅く、
結晶粒径の大きな領域が広くなりすぎて、鋳片全体を平
均した結晶粒径が大きくなるので、好ましくないため、
0.05L〜0.25Lに限定する。
The width t of the portions 5 and 5 near both sides of the quenching roll 1
Is less than 0.05 L, it is not possible to control the warp of both sides of the slab upward of the quenching roll, and if it exceeds 0.25 L, it is possible to control the slab warping above the roll, but Area of high roughness, that is, the cooling rate of the slab is slow,
Since the area of large crystal grain size becomes too wide, the average crystal grain size of the entire slab becomes large, which is not preferable.
It is limited to 0.05L to 0.25L.

【0026】この発明において、前記両側付近部5,5
の表面粗さRa1を2〜20μmに限定した理由は、2
μm未満では鋳片の両側付近部が急冷ロール上方に反る
ことを制御できず、また、20μmを超えると、上方に
反ることは制御できるが、冷却速度が遅くなりすぎて、
両側付近部の結晶が粗大化するので好ましくないからで
ある。
In the present invention, the both side portions 5, 5
The reason for limiting the surface roughness Ra 1 of 2 to 20 μm is 2
If it is less than μm, it is not possible to control the warp of the slab on both sides upward, and if it exceeds 20 μm, it is possible to control the warp upward, but the cooling rate becomes too slow,
This is because the crystals in the vicinity of both sides become coarse, which is not preferable.

【0027】この発明において、急冷ロール1の中央付
近部4の表面粗さRa2と、両側付近部5,5の表面粗
さRa1は、Ra1>Ra2なる如く、急冷ロール1の中
央付近部4の領域全部の表面粗さと両側付近部tの領域
全部の表面粗さをそれぞれ特定の表面粗さにしてもよ
く、あるいは、中央付近部4の中心部の表面粗さが最低
値になる如く、前記表面粗さの限定した範囲内にて両側
付近部5,5の両側部より表面粗さを漸減する如く、表
面粗さを連続的に変化するように設定することも可能で
ある。なお、中心線平均粗さRaはJISB0601に
規定されている。
In the present invention, the surface roughness Ra 2 of the portion 4 near the center of the quenching roll 1 and the surface roughness Ra 1 of the portions 5 and 5 near both sides are such that Ra 1 > Ra 2 The surface roughness of the entire area of the vicinity part 4 and the surface roughness of the entire areas of the both side vicinity parts t may be set to specific surface roughnesses, or the surface roughness of the center part of the center vicinity part 4 is set to the minimum value. As described above, it is possible to set the surface roughness to be continuously changed so that the surface roughness is gradually reduced from the both side portions of the both side vicinity portions 5 and 5 within the limited range of the surface roughness. . The center line average roughness Ra is specified in JISB0601.

【0028】この発明において、急冷ロール表面を所定
の表面粗度に形成する方法としては、予め急冷ロールの
基材表面を機械加工や、鋼球、ガラスピース、セラミッ
クスピースなどをショットブラストする方法等で基材表
面に所要の表面粗度に形成した後、耐摩耗性金属層を被
着させる方法や、基材に耐摩耗性金属層を被着した後に
この金属層の表面を前記方法にて所要の表面粗度に調整
してもよい。
In the present invention, as a method of forming the surface of the quenching roll to a predetermined surface roughness, the substrate surface of the quenching roll is machined in advance, or the method of shot blasting steel balls, glass pieces, ceramic pieces, etc. After forming the substrate surface to the required surface roughness with a method of depositing a wear-resistant metal layer, or after depositing the wear-resistant metal layer on the substrate, the surface of this metal layer by the method described above. You may adjust to the required surface roughness.

【0029】以下にこの発明において、R−Fe−B系
またはR−Fe−B−C系永久磁石を製造する合金鋳片
の好ましい合金組成を説明する。この発明の永久磁石用
合金鋳片に含有される希土類元素Rはイットリウム
(Y)を包含し、軽希土類及び重希土類を包含する希土
類元素である。
The preferred alloy composition of the alloy slab for producing the R-Fe-B system or R-Fe-B-C system permanent magnet in the present invention will be described below. The rare earth element R contained in the alloy slab for permanent magnets of the present invention is a rare earth element including yttrium (Y) and including light rare earths and heavy rare earths.

【0030】通常Rのうち1種もって足りるが、実用上
は2種類以上の混合物(ミッシュメタル、ジジム等)を
入手上の便宜等の理由により用いることができ、Sm,
Y,La,Ce,Gd等は他のR、特にNd,Pr等と
の混合物として用いることができる。なお、このRは純
希土類元素でなくてもよく、工業上入手可能な範囲で製
造上不可避な不純物を含有するものでも差し支えない。
Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons of availability, Sm,
Y, La, Ce, Gd etc. can be used as a mixture with other R, especially Nd, Pr etc. Note that R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0031】Rは、R−Fe−B系永久磁石またはR−
Fe−B−C系永久磁石を製造する合金鋳片の必須元素
であって、R−Fe−B系磁石の場合、10原子%未満
では高磁気特性、特に高保磁力が得られず、25原子%
を越えると残留磁束密度(Br)が低下して、すぐれた
特性の永久磁石が得られない。よって、Rは10原子%
〜25原子%の範囲とする。また、好ましい範囲は12
原子%〜18原子%である。
R is an R-Fe-B system permanent magnet or R-
It is an essential element of alloy slabs for producing Fe-B-C based permanent magnets, and in the case of R-Fe-B based magnets, high magnetic properties, especially high coercive force cannot be obtained at less than 10 atomic%, and 25 atomic %
If it exceeds, the residual magnetic flux density (Br) decreases, and a permanent magnet with excellent characteristics cannot be obtained. Therefore, R is 10 atomic%
-25% by atom. The preferred range is 12
It is from atomic% to 18 atomic%.

【0032】また、R−Fe−B−C系磁石の場合、R
は10原子%未満では高磁気特性、特に高保磁力が得ら
れず、30原子%を越えると残留磁束密度(Br)が低
下して、すぐれた特性の永久磁石が得られない。よっ
て、Rは10原子%〜30原子%の範囲とする。好まし
いRの範囲は12原子%〜18原子%である。
In the case of the R-Fe-B-C system magnet, R
If it is less than 10 atom%, high magnetic properties, particularly high coercive force, cannot be obtained, and if it exceeds 30 atom%, the residual magnetic flux density (Br) is lowered and a permanent magnet having excellent characteristics cannot be obtained. Therefore, R is in the range of 10 atom% to 30 atom%. The preferred range of R is 12 atom% to 18 atom%.

【0033】Bは、R−Fe−B系永久磁石を製造する
合金鋳片の必須元素であって、2原子%未満では高い保
磁力(iHc)は得られず、15%原子を越えると残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られない。よって、Bは2原子%〜15原子%の範囲
とする。Bの好ましい範囲は4原子%〜12原子%であ
る。
B is an essential element of the alloy slab for producing the R-Fe-B system permanent magnet. If it is less than 2 atom%, a high coercive force (iHc) cannot be obtained, and if it exceeds 15% atom, it remains. Since the magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 atom% to 15 atom%. The preferable range of B is 4 atom% to 12 atom%.

【0034】また、R−Fe−B−C系永久磁石におい
てはB及びCは必須元素であって、B+Cが4原子%未
満では高い保磁力(iHc)が得られず、10原子%を
越えると残留磁束密度(Br)が低下するため、すぐれ
た永久磁石が得られず、また、Bが6at%を越えると
耐食性が低下するので、好ましくなく、また、Cが4a
t%未満では耐食性が低下して好ましくなく、Cが10
at%を越えるとR−C相の量が増加して、残留磁束密
度(Br)が低下すると共に減磁曲線の角型性が劣化す
るので好ましくない。よってB+Cは4原子%〜10原
子%(但し、C4原子%〜10原子%、B6原子%以
下)の範囲とする。好ましいB+Cの範囲は6原子%〜
8原子%である。
In the R-Fe-B-C type permanent magnet, B and C are essential elements. If B + C is less than 4 atomic%, a high coercive force (iHc) cannot be obtained and exceeds 10 atomic%. And the residual magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained, and when B exceeds 6 at%, corrosion resistance decreases, which is not preferable, and C is 4a.
If it is less than t%, the corrosion resistance decreases, which is not preferable, and C is 10
When it exceeds at%, the amount of the RC phase increases, the residual magnetic flux density (Br) decreases, and the squareness of the demagnetization curve deteriorates, which is not preferable. Therefore, B + C is in the range of 4 atom% to 10 atom% (however, C4 atom% to 10 atom% and B6 atom% or less). The preferred range of B + C is 6 atom% to
8 atomic%.

【0035】Feは、R−Fe−B系永久磁石またはR
−Fe−B−C系永久磁石を製造する合金鋳片の必須元
素であって、R−Fe−B系磁石の場合60原子%未満
では残留磁束密度(Br)が低下し、88%原子を超え
ると高い保磁力が得られないので、Feは60原子%〜
88原子%に限定する。好ましいFeの範囲は70原子
%〜84原子%である。
Fe is an R--Fe--B system permanent magnet or R
It is an essential element of alloy slabs for producing —Fe—B—C type permanent magnets, and in the case of R—Fe—B type magnets, the residual magnetic flux density (Br) decreases if it is less than 60 atom%, and 88% atom If it exceeds, a high coercive force cannot be obtained, so Fe is 60 atomic%
It is limited to 88 atom%. The preferable range of Fe is 70 atomic% to 84 atomic%.

【0036】また、R−Fe−B−C系磁石の場合、F
eは60原子%未満では残留磁束密度(Br)が低下
し、86原子%を越えると高い保磁力が得られないの
で、Feは60原子%〜86原子%に限定する。好まし
いFeの範囲は74原子%〜82原子%である。
Further, in the case of the R-Fe-BC system magnet, F
When e is less than 60 atomic%, the residual magnetic flux density (Br) is reduced, and when it exceeds 86 atomic%, a high coercive force cannot be obtained, so Fe is limited to 60 atomic% to 86 atomic%. The preferable range of Fe is 74 atom% to 82 atom%.

【0037】また、R−Fe−B系磁石あるいはR−F
e−B−C系磁石のFeの一部をCo、Niの1種又は
2種で置換可能であり、これは永久磁石の温度特性を向
上させる効果及び耐食性を向上させる効果が得られるた
めであるが、Co、Niの1種又は2種はFeの50%
を越えると高い保磁力が得られず、すぐれた永久磁石が
得られない。よって、Co、Niの1種又は2種の置換
量はFeの50%を上限とする。
Further, R-Fe-B system magnet or R-F
Part of Fe in the e-B-C magnet can be replaced with one or two kinds of Co and Ni, because the effect of improving the temperature characteristics of the permanent magnet and the effect of improving corrosion resistance can be obtained. However, one or two of Co and Ni are 50% of Fe.
If it exceeds, a high coercive force cannot be obtained, and an excellent permanent magnet cannot be obtained. Therefore, the upper limit of the substitution amount of one or two of Co and Ni is 50% of Fe.

【0038】この発明によるR−Fe−B系合金鋳片に
おいて、高い残留磁束密度と高い保磁力を共に有するす
ぐれた永久磁石を得るためには、R12原子%〜16原
子%、B5原子%〜8原子%、Fe76原子%〜83原
子%が好ましい。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the R-Fe-B type alloy slab according to the present invention, R12 atom% to 16 atom% and B5 atom% to 8 atomic% and Fe76-83 atomic% are preferable.

【0039】この発明によるR−Fe−B−C系合金鋳
片において、高い残留磁束密度、高い保磁力と共に減磁
曲線の角型性、高耐食性を共に有する高性能磁石を得る
ためには、R13原子%〜17原子%、B+C=6原子
%〜8原子%(但し、B2原子%〜4原子%、C4原子
%〜6原子%)、Fe75原子%〜81原子%が好まし
い。
In order to obtain a high-performance magnet having a high residual magnetic flux density, a high coercive force, a squareness of a demagnetization curve, and a high corrosion resistance in the R-Fe-B-C type alloy slab according to the present invention, R13 atomic% to 17 atomic%, B + C = 6 atomic% to 8 atomic% (however, B2 atomic% to 4 atomic%, C4 atomic% to 6 atomic%) and Fe75 atomic% to 81 atomic% are preferable.

【0040】また、この発明によるR−Fe−B系合金
鋳片は、R、B、Feの他、O2、C、Ca、Mgなど
の工業的生産上不可避的不純物の存在を許容できるが、
Bの一部を4.0原子%以下のC、3.5原子%以下の
P、2.5原子%以下のS、3.5原子%以下のCuの
うち少なくとも1種、合計量で4.0原子%以下で置換
することにより、磁石合金の製造性改善、低価格化が可
能である。
Further, the R-Fe-B type alloy slab according to the present invention can tolerate the presence of impurities inevitable in industrial production such as O 2 , C, Ca and Mg in addition to R, B and Fe. ,
Part of B is at least one of 4.0 at% or less of C, 3.5 at% or less of P, 2.5 at% or less of S, and 3.5 at% of Cu or less, and a total amount of 4 By substituting at 0.0 atomic% or less, it is possible to improve the manufacturability and reduce the cost of the magnet alloy.

【0041】また、R−Fe−B−C系鋳片は、R、
B、FeおよびCの他、O2、Ca、Mgなどの工業的
生産上不可避的不純物の存在を許容できるが、Bの一部
を3.5原子%以下のP、2.5原子%以下のS、3.
5原子%以下のCuのうち少なくとも1種、合計量で
4.0原子%以下で置換することにより、磁石合金の製
造性改善、低価格化が可能である。
The R-Fe-B-C type slab has R,
In addition to B, Fe and C, the presence of impurities unavoidable in industrial production such as O 2 , Ca, and Mg can be tolerated, but a part of B is 3.5 atomic% or less P, 2.5 atomic% or less. S, 3.
By substituting at least one of Cu of 5 atomic% or less with a total amount of 4.0 atomic% or less, it is possible to improve the manufacturability of the magnet alloy and reduce the cost.

【0042】さらに、前記R、B、Fe合金またはR、
B、C、Fe合金あるいは前記合金にCoを含有するR
−Fe−B合金またはR−Fe−B−C合金に、9.5
原子%以下のAl、4.5原子%以下のTi、9.5原
子%以下のV、8.5原子%以下のCr、8.0原子%
以下のMn、5原子%以下のBi、12.5原子%以下
のNb、10.5原子%以下のTa、9.5原子%以下
のMo、9.5原子%以下のW、2.5原子%以下のS
b、7原子%以下のGe、3.5原子%以下のSn、
5.5原子%以下のZr、5.5原子%以下のHfのう
ち少なくとも1種添加含有させることにより、永久磁石
合金の高保磁力が可能になる。
Further, the R, B, Fe alloy or R,
B, C, Fe alloy or R containing Co in the above alloy
-Fe-B alloy or R-Fe-B-C alloy, 9.5
Atom% or less Al, 4.5 atom% or less Ti, 9.5 atom% or less V, 8.5 atom% or less Cr, 8.0 atom%
Mn below, Bi at 5 atomic% or less, Nb at 12.5 atomic% or less, Ta at 10.5 atomic% or less, Mo at 9.5 atomic% or less, W at 9.5 atomic% or less, 2.5 S of atomic% or less
b, Ge of 7 atomic% or less, Sn of 3.5 atomic% or less,
By adding at least one of Zr of 5.5 atomic% or less and Hf of 5.5 atomic% or less, a high coercive force of the permanent magnet alloy becomes possible.

【0043】この発明のR−Fe−B系あるいはR−F
e−B−C系永久磁石において、結晶相は主相が正方晶
であることが不可欠であり、特に、微細で均一な合金粉
末を得て、すぐれた磁気特性を有する耐食性のすぐれた
焼結永久磁石を作製するのに効果的である。
R-Fe-B system or R-F of the present invention
In the e-B-C system permanent magnet, it is indispensable that the main phase of the crystal phase is a tetragonal crystal, and in particular, a fine and uniform alloy powder is obtained, and sintering having excellent magnetic properties and excellent corrosion resistance is performed. It is effective for producing permanent magnets.

【0044】[0044]

【実施例】【Example】

実施例1 この発明による急冷ロールには、基材がCu合金(99
wt%Cu−1wt%Cr)からなり、表面層には層厚
30μm、硬度Hv900のCr層を設けた径500m
m、長さ300mmの水冷急冷ロールを用い、溶湯に接
触する幅Tが70mmの中央付近部の表面粗さRa2
2μm、幅t15mmの両側付近部の表面粗さRa1
7μmに加工した。
Example 1 In a quenching roll according to the present invention, a base material is a Cu alloy (99
wt% Cu-1 wt% Cr), and the surface layer is provided with a Cr layer having a layer thickness of 30 μm and hardness Hv900 and a diameter of 500 m.
Using a water-cooled quenching roll having a length of m and a length of 300 mm, the surface roughness Ra 2 in the vicinity of the center having a width T of 70 mm in contact with the molten metal was processed to 2 μm, and the surface roughness Ra 1 in the vicinity of both sides of the width t 15 mm was processed to 7 μm. .

【0045】真空溶解炉にて、30.5Nd−1.0D
y−1.0B−0.9Co−balFe(wt%)の磁
石組成になる如く溶解後、前記急冷ロールを回転数80
rpmにて回転させながら、前記溶湯をノズルより注湯
して、幅100mm、厚み0.41mm〜0.45m
m、平均値0.43mm、長さ50〜300mm程度の
急冷鋳片を得た。得られた鋳片は、樹脂状晶組織で中央
付近部、両側付近部の平均短軸結晶粒径を表1に示す。
30.5Nd-1.0D in a vacuum melting furnace
After melting so as to obtain a magnet composition of y-1.0B-0.9Co-balFe (wt%), the quenching roll was rotated at a rotation speed of 80.
While rotating at rpm, the molten metal is poured from a nozzle to have a width of 100 mm and a thickness of 0.41 mm to 0.45 m.
m, an average value of 0.43 mm, and a length of about 50 to 300 mm were obtained. The obtained cast piece has a resinous crystal structure, and the average short-axis crystal grain size in the vicinity of the center and in the vicinity of both sides is shown in Table 1.

【0046】前記鋳片を公知の方法で粗粉砕、微粉砕し
て、平均粒度3.5μmの合金粉末を得た後、磁場強度
15kOeで、加圧力1.0ton/cm2にて成型
後、1060℃で3時間の条件にて焼結後、600℃に
1時間の時効処理を行い、永久磁石を得た。得られた永
久磁石の磁気特性を表2に示す。
The slab was coarsely pulverized and finely pulverized by a known method to obtain an alloy powder having an average particle size of 3.5 μm, which was then molded at a magnetic field strength of 15 kOe and a pressing force of 1.0 ton / cm 2 , After sintering at 1060 ° C. for 3 hours, aging treatment was performed at 600 ° C. for 1 hour to obtain a permanent magnet. Table 2 shows the magnetic properties of the obtained permanent magnets.

【0047】比較例1 実施例1と同一組成の合金溶湯を用い、実施例1と同一
構成の径500mmの水冷急冷ロールにおいて、溶湯に
接触する急冷ロール表面の幅Tが70mmの中央付近部
の表面粗さRa2及び幅tが15mmの両側付近部の表
面粗さRa1をともに2μmに加工後、実施例1と同一
条件にて急冷鋳片を得た。
Comparative Example 1 Using a molten alloy having the same composition as in Example 1, and using a water-cooled rapid cooling roll having the same structure as in Example 1 and a diameter of 500 mm, the width T of the surface of the rapid cooling roll contacting the molten metal was about 70 mm in the vicinity of the center. After processing the surface roughness Ra 2 and the surface roughness Ra 1 at both sides near the width t of 15 mm to 2 μm, a quenched slab was obtained under the same conditions as in Example 1.

【0048】得られた急冷鋳片の寸法は、幅100mm
×厚み0.39mm〜0.43mm、平均値0.41m
m、長さ50〜300mm程度であった。得られた鋳片
の中央付近部及び両側付近部の平均短軸結晶粒径を表1
に示す。前記鋳片を実施例1と同一条件にて磁石化して
得られた永久磁石の磁気特性を表2に示す。
The size of the obtained quenched slab is 100 mm in width.
× Thickness 0.39 mm to 0.43 mm, average value 0.41 m
m, and the length was about 50 to 300 mm. Table 1 shows the average minor axis crystal grain sizes in the vicinity of the center and both sides of the obtained slab.
Shown in Table 2 shows the magnetic characteristics of the permanent magnets obtained by magnetizing the cast pieces under the same conditions as in Example 1.

【0049】実施例2 実施例1と同一材質、寸法及び表面粗さを有する急冷ロ
ールを使用した。真空溶解炉にて12.8Nd−1.5
Dy−4.4C−10.1Co−68Fe−3.2B
(at%)の磁石組成になるごとく、溶解後、前記急冷
ロールを回転数80rpmにて回転させながら、前記溶
湯をノズルより注湯して、幅100mm、厚み0.27
mm〜0.32mm、平均厚さ0.30mm、長さ60
〜300mm程度の急冷鋳片を得た。得られた鋳片は樹
脂状晶組織であり、幅方向の中央付近部(Ra1)及び
両側付近部(Ra2)の平均短軸結晶粒径を表1に示
す。
Example 2 A quenching roll having the same material, size and surface roughness as in Example 1 was used. 12.8Nd-1.5 in vacuum melting furnace
Dy-4.4C-10.1Co-68Fe-3.2B
After being melted so that the magnet composition was (at%), the melt was poured from a nozzle while rotating the quenching roll at a rotation speed of 80 rpm, and the width was 100 mm and the thickness was 0.27.
mm-0.32 mm, average thickness 0.30 mm, length 60
A quenched slab of about 300 mm was obtained. The obtained slab had a resinous crystal structure, and Table 1 shows the average short-axis crystal grain size in the central portion (Ra 1 ) and both side portions (Ra 2 ) in the width direction.

【0050】前記鋳片を公知の方法で粗粉砕、微粉砕し
て、平均粒度3.2μmの合金粉末を得た後、磁場強度
15kOeで、加圧力1.0ton/cm2にて成型
後、1040℃で3時間の条件にて焼結後、900℃に
1時間の時効処理を行い、永久磁石を得た。得られた永
久磁石の磁気特性及び耐食性試験結果を表2に示す。耐
食性試験は80℃×90%RH×500時間の条件で放
置後、単位面積当たりの酸化増量で表す。
The slab was coarsely pulverized and finely pulverized by a known method to obtain an alloy powder having an average particle size of 3.2 μm, which was then molded with a magnetic field strength of 15 kOe and a pressing force of 1.0 ton / cm 2 . After sintering at 1040 ° C. for 3 hours, aging treatment was performed at 900 ° C. for 1 hour to obtain a permanent magnet. Table 2 shows the magnetic properties and corrosion resistance test results of the obtained permanent magnets. The corrosion resistance test is represented by the increase in oxidation amount per unit area after standing under the condition of 80 ° C. × 90% RH × 500 hours.

【0051】比較例2 実施例2と同一組成の合金溶湯を用い、実施例1と同一
構成の径500mmの水冷急冷ロールにおいて、溶湯に
接触する急冷ロール表面の幅Tが70mmの中央付近部
の表面粗さRa2及び幅tが15mmの両側付近部の表
面粗さRa1がともに2μmに加工後、実施例2と同一
条件にて急冷鋳片を得た。
Comparative Example 2 A molten alloy having the same composition as in Example 2 was used, and in a water-cooled quenching roll having the same structure as in Example 1 and a diameter of 500 mm, the width T of the surface of the quenching roll in contact with the molten metal was about 70 mm in the vicinity of the center. After the surface roughness Ra 2 and the surface roughness Ra 1 in the vicinity of both sides having a width t of 15 mm were both set to 2 μm, a quenched slab was obtained under the same conditions as in Example 2.

【0052】得られた急冷鋳片の寸法は、幅100mm
×厚み0.30mm〜0.35mm、平均厚み0.32
mm、長さ50〜300mm程度であった。得られた鋳
片の中央付近部及び両側付近部の平均短軸結晶粒径を表
1に示す。前記鋳片を実施例2と同一条件にて磁石化し
て得られた永久磁石の磁気特性及び耐食性試験結果を表
2に示す。耐食性の試験条件は実施例2と同一条件であ
る。
The size of the obtained quenched slab is 100 mm in width.
× Thickness 0.30 mm to 0.35 mm, average thickness 0.32
mm, and the length was about 50 to 300 mm. Table 1 shows the average minor axis crystal grain sizes in the vicinity of the center and the vicinity of both sides of the obtained slab. Table 2 shows the magnetic properties and corrosion resistance test results of permanent magnets obtained by magnetizing the cast pieces under the same conditions as in Example 2. The test conditions for corrosion resistance are the same as in Example 2.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【発明の効果】この発明は、急冷ロール表面に被覆され
た耐摩耗性金属層の表面粗度を、合金溶湯の接触するロ
ール面の幅方向の幅Tからなる中央付近部の特定粗度R
2より、幅t,tからなる両側付近部を特定粗度Ra1
に粗くすることにより、鋳片幅が50mm以上、厚みが
0.01〜1.0mm程度の大型のR−Fe−B系ある
いはR−Fe−B−C系磁石合金の急冷鋳片を工業的に
量産する場合でも、実施例に明らかなように、鋳片の幅
方向の結晶粒径の差が少なく、得られた磁石の磁気特性
の低下、バラツキを低減しあるいは耐食性のすぐれたR
−Fe−B系またはR−Fe−B−C系合金鋳片を得る
ことができる。
According to the present invention, the surface roughness of the wear-resistant metal layer coated on the surface of the quenching roll is determined by the specific roughness R near the center of the width T of the roll surface in contact with the molten alloy.
than a 2, identify the sides near portion consisting width t, t roughness Ra 1
By quenching to a large size, a quenching cast piece of a large R-Fe-B system or R-Fe-B-C series magnet alloy having a cast piece width of 50 mm or more and a thickness of about 0.01 to 1.0 mm is industrially produced. Even in the case of mass production, as is clear from the examples, the difference in crystal grain size in the width direction of the cast slab is small, the magnetic properties of the obtained magnet are reduced, the variation is reduced, or the corrosion resistance is excellent.
It is possible to obtain a -Fe-B-based or R-Fe-B-C-based alloy slab.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の急冷ロールの構成を示す模式正面説
明図である。
FIG. 1 is a schematic front view showing the structure of a quenching roll of the present invention.

【符号の説明】[Explanation of symbols]

1 急冷ロール 2 基材 3 摩耗性金属層 4 中央付近部 5 両側付近部 1 Quenching roll 2 Base material 3 Abrasive metal layer 4 Central area 5 Both sides area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 雅己 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内 (72)発明者 児嶋 尊 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内 (72)発明者 渡辺 幸良 大阪府吹田市南吹田2丁目19番1号 住友 特殊金属株式会社吹田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Ueda 2-19-1 Minami Suita, Suita City, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Suita Works (72) Inventor Takashi Kojima 2-19 Minami Suita City, Suita City, Osaka Prefecture No. 1 Sumitomo Special Metals Co., Ltd. Suita Works (72) Inventor Yukiyoshi Watanabe 2-19-1 Minami Suita, Suita City, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Suita Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁石合金溶湯を急冷凝固させるための磁
石合金製造用急冷ロールにおいて、合金溶湯が接触する
急冷ロール表面の耐摩耗金属層の幅(L)方向の中央付
近部(T=0.5L〜0.9L)の表面粗さRa2
0.1μm〜10μm、両側付近部(t=0.05L〜
0.25L)の表面粗さRa1を2〜20μmとなし、
各領域の表面粗さの関係を、Ra1>Ra2となした磁石
合金製造用急冷ロール。
1. A quenching roll for producing a magnet alloy for quenching and solidifying a magnet alloy melt, in the vicinity of the center (T = 0. 0) in the width (L) direction of the wear-resistant metal layer on the surface of the quench roll which the alloy melt contacts. Surface roughness Ra 2 of 5 L to 0.9 L) is 0.1 μm to 10 μm, and both side portions (t = 0.05 L
0.25 L) surface roughness Ra 1 of 2 to 20 μm,
A quenching roll for producing a magnet alloy in which the relation of the surface roughness of each region is Ra 1 > Ra 2 .
【請求項2】 請求項1において、磁石合金がR−Fe
−B系磁石合金またはR−Fe−B−C系磁石合金であ
る磁石合金製造用急冷ロール。
2. The magnet alloy according to claim 1, wherein the magnet alloy is R-Fe.
A quenching roll for producing a magnet alloy which is a -B magnet alloy or an R-Fe-BC magnet alloy.
【請求項3】 請求項2において、R−Fe−B系磁石
合金はR10原子%〜25原子%、B2原子%〜15原
子%、Fe60原子%〜88原子%の主成分からなる磁
石合金製造用急冷ロール。
3. The magnet alloy manufacturing method according to claim 2, wherein the R-Fe-B based magnet alloy is composed of R10 atomic% to 25 atomic%, B2 atomic% to 15 atomic% and Fe60 atomic% to 88 atomic% as main components. Quenching roll for.
【請求項4】 請求項2において、R−Fe−B−C系
磁石合金はR10原子%〜30原子%、B+C4原子%
〜10原子%(但し、B6原子%以下、C4〜10原子
%)、Fe60原子%〜86原子%の主成分からなる磁
石合金製造用急冷ロール。
4. The R-Fe-B-C based magnet alloy according to claim 2, wherein R is 10 atom% to 30 atom% and B + C is 4 atom%.
A quenching roll for producing a magnet alloy, which comprises a main component of 10 at% (however, B6 at% or less, C4 to 10 at%) and Fe at 60 at% to 86 at%.
JP23329695A 1995-04-11 1995-08-18 Quenching roll for magnet alloy production Expired - Lifetime JP3492823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23329695A JP3492823B2 (en) 1995-04-11 1995-08-18 Quenching roll for magnet alloy production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-111126 1995-04-11
JP11112695 1995-04-11
JP23329695A JP3492823B2 (en) 1995-04-11 1995-08-18 Quenching roll for magnet alloy production

Publications (2)

Publication Number Publication Date
JPH091296A true JPH091296A (en) 1997-01-07
JP3492823B2 JP3492823B2 (en) 2004-02-03

Family

ID=26450593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23329695A Expired - Lifetime JP3492823B2 (en) 1995-04-11 1995-08-18 Quenching roll for magnet alloy production

Country Status (1)

Country Link
JP (1) JP3492823B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711793B1 (en) * 2005-09-02 2007-04-30 주식회사 포스코 Casting roll for twin-roll strip caster and cast strip manufactured using the same
KR100770342B1 (en) * 2006-07-11 2007-10-25 주식회사 포스코 Casting roll of strip caster
US7442262B2 (en) 2001-12-18 2008-10-28 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
WO2011050417A1 (en) * 2009-10-30 2011-05-05 Bluescope Steel Limited Method and apparatus for controlling variable shell thickness in cast strip
KR101243253B1 (en) * 2010-12-24 2013-03-13 주식회사 포스코 Casting roll of twin roll strip caster
JP5908836B2 (en) * 2010-07-02 2016-04-26 株式会社三徳 Method for producing alloy cast for rare earth sintered magnet
US9649691B2 (en) 2012-01-24 2017-05-16 Santoku Corporation Method of producing rare earth alloy flakes
WO2022143780A1 (en) 2020-12-30 2022-07-07 烟台正海磁性材料股份有限公司 Rare earth permanent magnet, and preparation method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442262B2 (en) 2001-12-18 2008-10-28 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
US7571757B2 (en) 2001-12-18 2009-08-11 Showa Denko K.K. Alloy flake for rare earth magnet, production method thereof, alloy powder for rare earth sintered magnet, rare earth sintered magnet, alloy powder for bonded magnet and bonded magnet
KR100711793B1 (en) * 2005-09-02 2007-04-30 주식회사 포스코 Casting roll for twin-roll strip caster and cast strip manufactured using the same
KR100770342B1 (en) * 2006-07-11 2007-10-25 주식회사 포스코 Casting roll of strip caster
JP2008264875A (en) * 2007-04-16 2008-11-06 Grirem Advanced Materials Co Ltd Rare earth alloy cast sheet and method for producing the same
WO2011050417A1 (en) * 2009-10-30 2011-05-05 Bluescope Steel Limited Method and apparatus for controlling variable shell thickness in cast strip
US9744589B2 (en) 2009-10-30 2017-08-29 Nucor Corporation Method and apparatus for controlling variable shell thickness in cast strip
US8960265B2 (en) 2009-10-30 2015-02-24 Nucor Corporation Method and apparatus for controlling variable shell thickness in cast strip
US8960264B2 (en) 2009-10-30 2015-02-24 Nucor Corporation Method and apparatus for controlling variable shell thickness in cast strip
JP5908836B2 (en) * 2010-07-02 2016-04-26 株式会社三徳 Method for producing alloy cast for rare earth sintered magnet
KR101243253B1 (en) * 2010-12-24 2013-03-13 주식회사 포스코 Casting roll of twin roll strip caster
US9649691B2 (en) 2012-01-24 2017-05-16 Santoku Corporation Method of producing rare earth alloy flakes
WO2022143780A1 (en) 2020-12-30 2022-07-07 烟台正海磁性材料股份有限公司 Rare earth permanent magnet, and preparation method therefor

Also Published As

Publication number Publication date
JP3492823B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US8961868B2 (en) Nanocomposite bulk magnet and process for producing same
CN108417334B (en) R-T-B sintered magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
EP1479787B2 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP4106099B2 (en) Method for producing slab for R-Fe-B magnet alloy
JP4121039B2 (en) Thin plate magnet with fine crystal structure
JP3492823B2 (en) Quenching roll for magnet alloy production
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
WO1998018141A1 (en) Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder
JP2003181696A (en) Press apparatus and method for manufacturing magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JPH10317110A (en) Raw material alloy for rare earth magnet and its production
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet
JP3721831B2 (en) Rare earth magnet alloy and method for producing the same
WO2019220950A1 (en) Cast alloy flakes for r-t-b rare earth sintered magnet
JP2002175908A (en) Permanent magnet having plural ferromagnetic phases, and its manufacturing method
JP2005270988A (en) Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet
JP3077995B2 (en) Permanent magnet material, cooling roll for producing permanent magnet material, and method for producing permanent magnet material
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP3953768B2 (en) R-Fe-B-C magnet alloy slab with excellent corrosion resistance
JP3445405B2 (en) Manufacturing method of alloy slab and scraper for manufacturing alloy slab
JP7409285B2 (en) Rare earth magnet and its manufacturing method
JP2003213383A (en) Rare earth alloy, production method therefor and permanent magnet
JP2007201102A (en) Iron group rare-earth permanent magnet and manufacturing method therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

EXPY Cancellation because of completion of term