JPH09129431A - Low loss oxide magnetic material and manufacture thereof - Google Patents

Low loss oxide magnetic material and manufacture thereof

Info

Publication number
JPH09129431A
JPH09129431A JP7306855A JP30685595A JPH09129431A JP H09129431 A JPH09129431 A JP H09129431A JP 7306855 A JP7306855 A JP 7306855A JP 30685595 A JP30685595 A JP 30685595A JP H09129431 A JPH09129431 A JP H09129431A
Authority
JP
Japan
Prior art keywords
oxide
mol
cao
raw material
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7306855A
Other languages
Japanese (ja)
Inventor
Yoshikazu Fujimura
美一 藤村
Hiroshi Oyanagi
浩 大柳
Yoshitaka Yasuda
吉孝 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7306855A priority Critical patent/JPH09129431A/en
Publication of JPH09129431A publication Critical patent/JPH09129431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost and low loss oxide magnetic material having a high performance inspite of using an iron inexpensive iron oxide material containing a high content of impurities. SOLUTION: Mn-Zn ferrite showing an excellent Pcv value can be obtained by using an inexpensive iron oxide material containing P2 O5 of 0.01 to 0.1wt.%, preferably 0.01 to 0.05wt.% as impurities, and by containing Fe2 O3 of 52 to 54mol%, Mn O of 33 to 37mol%, ZnO of 9 to 15mol% as main components, SiO2 of 0.005 to 0.025wt.%, CaO of 0.02 to 0.10wt.%, Cr2 O3 of 0.1 to 3.0wt.% as subcomponents, further at least one kind of Ta2 O5 and Nb2 O5 not exceeding 0.08wt.% (exclusive of 0) in its total volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低損失酸化物磁性材料
及びその製造方法に関し、特に、スイッチング電源等の
各種電源用トランス材として用いられるMn−Zn系フ
ェライト及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss oxide magnetic material and a method for producing the same, and more particularly to a Mn-Zn ferrite used as a transformer material for various power sources such as a switching power source and a method for producing the same. .

【0002】[0002]

【従来の技術】近年、各種電子機器の小型・軽量化に伴
い、スイッチング電源についても更なる小型・軽量化が
求められており、それらのトランス材として一般的に用
いられるMn−Zn系フェライトについては、安価で且
つ高性能なものが求められている。
2. Description of the Related Art In recent years, with the reduction in size and weight of various electronic devices, further reduction in size and weight of switching power supplies has been demanded, and Mn-Zn type ferrite generally used as a transformer material thereof has been demanded. Are required to be inexpensive and have high performance.

【0003】高特性なフェライトを製造するためには、
なるべく不純物が少ない高純度な原料を用いることが望
ましい。特に、酸化鉄原料においては、フェライト全体
の約7割を重量比で占めることから、高純度な原料を使
用するのが一般的である。
In order to produce high-performance ferrite,
It is desirable to use a high-purity raw material containing as few impurities as possible. Particularly, in the iron oxide raw material, about 70% of the whole ferrite is occupied by the weight ratio, so that it is general to use a high-purity raw material.

【0004】フェライトは、含有される不純物にその特
性が大きく依存する。中でも、特にP25が多量に含ま
れていると、著しい異常粒成長を引き起こし、磁気特性
は著しく劣化し、高性能化は困難となる。
The characteristics of ferrite greatly depend on the impurities contained therein. Above all, particularly when a large amount of P 2 O 5 is contained, remarkable abnormal grain growth is caused, magnetic properties are significantly deteriorated, and it becomes difficult to achieve high performance.

【0005】即ち、P25を多量に含有する酸化鉄原料
を用いた場合、P25の存在により、焼結体組織に異常
粒成長等の組織不整を生ずるため、ヒステリシス損失が
著しく劣化する。それだけではなく、P25はCaOと
反応した複合酸化物として組織中(三重点)に遍在する
ことにより、粒界層中のCaOが減少することで、粒界
層の形成が不十分となり、電気抵抗が低下し、渦電流損
失も著しく劣化する。
That is, when an iron oxide raw material containing a large amount of P 2 O 5 is used, the presence of P 2 O 5 causes structural irregularities such as abnormal grain growth in the sintered body structure, resulting in significant hysteresis loss. to degrade. Not only that, P 2 O 5 is ubiquitously present in the structure (triple point) as a complex oxide that has reacted with CaO, and CaO in the grain boundary layer decreases, resulting in insufficient formation of the grain boundary layer. Therefore, the electric resistance is lowered, and the eddy current loss is significantly deteriorated.

【0006】従って、これまでは、P25をはじめ、P
bO、CuO、SiO2等の不純物を多量に含有してい
る市販の安価な酸化鉄原料を使用して、高性能なMn−
Znフェライトを製造することはできず、高純度ではあ
るが、高価な酸化鉄原料を使用せざる得なかった。
Therefore, up to now, P 2 O 5 and P
Using a commercially available inexpensive iron oxide raw material containing a large amount of impurities such as bO, CuO, and SiO 2 , high-performance Mn-
Zn ferrite could not be produced and had to use an expensive iron oxide raw material although it had high purity.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、従来
の欠点を解決し、不純物含有量の多い安価な酸化鉄原料
を用いても高性能を有する低コストな低損失酸化物磁性
材料及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the drawbacks of the prior art and to provide a low-cost low-loss oxide magnetic material which has high performance even when an inexpensive iron oxide raw material containing a large amount of impurities is used. It is to provide the manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明者らは、種々の検
討を行った結果、P25を0.01〜0.1wt%含有し
た安価な酸化鉄原料粉末を用いた場合でも、組成とし
て、主成分をFe23:52〜54mol%、MnO:
33〜37mol%、ZnO:9〜15mol%とし、
副成分として、SiO2:0.005〜0.025wt
%、CaO:0.02〜0.10wt%、Cr23:0.
1〜3.0wt%を加え、更にTa25及びNb25
うち、少なくとも1種を、その総量で0.08wt%以
下(Oを含まず)含有させることで、高性能化を図るこ
とができることを見い出したものである。
As a result of various studies, the inventors of the present invention have found that even if an inexpensive iron oxide raw material powder containing 0.01 to 0.1 wt% of P 2 O 5 is used, In terms of composition, the main components are Fe 2 O 3 : 52 to 54 mol% and MnO:
33-37 mol%, ZnO: 9-15 mol%,
As an accessory component, SiO 2 : 0.005 to 0.025 wt
%, CaO: 0.02~0.10wt%, Cr 2 O 3: 0.
1 to 3.0 wt% is added, and at least one of Ta 2 O 5 and Nb 2 O 5 is contained in a total amount of 0.08 wt% or less (not including O) to improve performance. It is a finding that can be achieved.

【0009】即ち、本発明は、主成分として52〜54
mol%の酸化第二鉄(Fe23)、33〜37mol
%の酸化マンガン(MnO)、9〜15mol%の酸化
亜鉛(ZnO)からなり、副成分として0.005〜0.
025wt%の二酸化珪素(SiO2)、0.02〜0.
10wt%の酸化カルシウム(CaO)、0.1〜3.0
wt%の三酸化クロム(Cr23)、0.007〜0.0
7wt%の五酸化リン(P25)を含有し、更に五酸化
タンタル(Ta25)及び五酸化ニオブ(Nb25)の
うち、少なくとも1種を、その総量で0.08wt%以
下(Oを含まず)含有することを特徴とする低損失酸化
物磁性材料である。
That is, according to the present invention, the main components are 52 to 54.
mol% ferric oxide (Fe 2 O 3 ), 33 to 37 mol
% Manganese oxide (MnO), 9 to 15 mol% zinc oxide (ZnO), and 0.005 to 0.
025wt% of silicon dioxide (SiO 2), 0.02~0.
10 wt% calcium oxide (CaO), 0.1-3.0
wt% chromium trioxide (Cr 2 O 3 ), 0.007 to 0.0
7 wt% of phosphorus pentoxide (P 2 O 5 ) is contained, and at least one of tantalum pentoxide (Ta 2 O 5 ) and niobium pentoxide (Nb 2 O 5 ) is added in a total amount of 0.08 wt. % Or less (not containing O) is a low loss oxide magnetic material.

【0010】又、本発明は、0.01〜0.1wt%のP
25を含有する酸化鉄原料を使用し、焼結体の主成分組
成が52〜54mol%の酸化第二鉄(Fe23)、3
3〜37mol%の酸化マンガン(MnO)、9〜15
mol%の酸化亜鉛(ZnO)よりなり、副成分として
0.005〜0.025wt%の二酸化珪素(Si
2)、0.02〜0.10wt%の酸化カルシウム(C
aO)、0.1〜3.0wt%の三酸化クロム(Cr
23)、更に五酸化タンタル(Ta25)、五酸化ニオ
ブ(Nb25)のうち、少なくとも1種を、その総量で
0.08wt%以下(0を含まず)含有するように所定
の原料を配合し、混合し、予焼し、造粒した後、成形、
焼結することを特徴とする低損失酸化物磁性材料の製造
方法である。
The present invention also provides 0.01-0.1 wt% P
Iron oxide raw material containing 2 O 5 is used, and the main component composition of the sintered body is 52 to 54 mol% ferric oxide (Fe 2 O 3 ), 3
3-37 mol% manganese oxide (MnO), 9-15
Consists of mol% zinc oxide (ZnO), and 0.005-0.025 wt% silicon dioxide (Si
O 2 ), 0.02 to 0.10 wt% calcium oxide (C
aO), 0.1-3.0 wt% chromium trioxide (Cr
2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), and niobium pentoxide (Nb 2 O 5 ), at least one of which is contained in a total amount of 0.08 wt% or less (not including 0). After mixing the specified raw materials with, mixing, pre-baking and granulating, molding,
A method for producing a low-loss oxide magnetic material, which is characterized by sintering.

【0011】ここで、本発明において、主成分としてF
23を52〜54mol%、MnOを33〜37mo
l%、ZnOを9〜15mol%とした理由は、通常、
電源用トランス材は、60〜100℃程度の環境下で使
用されるため、主成分組成に大きく依存する電力損失の
温度特性が、この温度範囲では負である必要があり、そ
のためには、この組成範囲が最も適しており、しかも、
低損失であるからである。
Here, in the present invention, F as a main component
52 to 54 mol% of e 2 O 3 and 33 to 37 mo of MnO
The reason for setting 1% and ZnO to 9 to 15 mol% is usually
Since the power transformer material is used in an environment of about 60 to 100 ° C., the temperature characteristic of power loss that largely depends on the main component composition needs to be negative in this temperature range. The composition range is most suitable, and
This is because the loss is low.

【0012】又、SiO2を0.005〜0.025wt
%、CaOを0.02〜0.10wt%とした理由は、下
限値未満では、粒界層の形成が不十分になり、電気抵抗
が低下し、渦電流損失が劣化するためである。逆に、上
限値を超えた領域では、組織コントロールが困難にな
り、特性が劣化するためである。
Further, SiO 2 is 0.005 to 0.025 wt.
%, CaO is set to 0.02 to 0.10 wt% because if the amount is less than the lower limit, the formation of the grain boundary layer becomes insufficient, the electric resistance decreases, and the eddy current loss deteriorates. On the contrary, in the region where the upper limit is exceeded, it becomes difficult to control the structure and the characteristics deteriorate.

【0013】又、Ta25,Nb25の総量を0.08w
t%以下(Oを含まず)とした理由は、0.08wt%
を越えた領域では、粒成長のコントロールが困難であ
り、低損失化が図れないためである。
The total amount of Ta 2 O 5 and Nb 2 O 5 is 0.08 w.
The reason for setting t% or less (excluding O) is 0.08 wt%
This is because it is difficult to control the grain growth and the loss cannot be reduced in a region exceeding the range.

【0014】又、酸化鉄中に含有するP25の量を0.
01〜0.1wt%とした理由は、0.01wt%未満の
原料は高価格であるため、本発明の目的にそぐわないた
めである。更に、0.1wt%を越えた領域では、組織
コントロールが困難となり、低損失化が図れないためで
ある。なお、この時、P25を0.01〜0.05wt%
の範囲で含有する原料を用いる方が、他の不純物含有量
も少なく、比較的、容易に低損失化が図れるため、より
好ましい。
Further, the amount of P 2 O 5 contained in iron oxide is set to 0.
The reason why the content is set to 01 to 0.1 wt% is that the raw material of less than 0.01 wt% is expensive and does not meet the purpose of the present invention. Further, in the region where the amount exceeds 0.1 wt%, it becomes difficult to control the structure, and the loss cannot be reduced. At this time, the P 2 O 5 content was 0.01 to 0.05 wt%.
It is more preferable to use the raw material contained in the range since the content of other impurities is small and the loss can be relatively easily reduced.

【0015】又、本発明において、Cr23を添加する
ことで、粒成長を制御することが極めて容易となり、異
常粒成長が発生せず、均一な組織が得られるため、ヒス
テリシス損失の低減が可能となる。更に、組織制御が容
易となることで、粒界層の形成が促進され、渦電流損失
の改善が容易となる。更に、高性能化を図る手段とし
て、Ta25,Nb25を適量加えることで、より一層
粒界層の電気抵抗が向上し、渦電流損失の低減を図るこ
とができる。
Further, in the present invention, by adding Cr 2 O 3 , it becomes extremely easy to control the grain growth, abnormal grain growth does not occur, and a uniform structure is obtained, so that the hysteresis loss is reduced. Is possible. Further, the ease of controlling the structure promotes the formation of the grain boundary layer and facilitates the improvement of the eddy current loss. Further, by adding an appropriate amount of Ta 2 O 5 and Nb 2 O 5 as a means for improving performance, the electrical resistance of the grain boundary layer is further improved, and eddy current loss can be reduced.

【0016】なお、上記の副成分の範囲とすることで、
コアロスが650kw/m3のものが得られるが、より
高性能化を図るためには、500kw/m3以下のコア
ロスが得られる副成分の範囲とすることが望ましい。
By setting the range of the above subcomponents,
A core loss of 650 kw / m 3 can be obtained, but in order to achieve higher performance, it is desirable to set the range of the accessory component to obtain a core loss of 500 kw / m 3 or less.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて実施例を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to examples.

【0018】(実施例1)市販されている酸化鉄原料
で、P25の含有量が0.03wt%の原料を用いて、
52.6Fe23−35.7MnO−11.7ZnO(m
ol%)となるよう、Mn34及びZnOの原料粉末と
共にボ−ルミルで混合し、得られた混合粉末を950℃
の大気中で2時間仮焼した。次に、この仮焼粉末に対し
て、SiO2を0.002〜0.035wt%、CaO
を0.06wt%、Ta25を0.03wt%、Cr23
を0.5wt%添加し、又、SiO2を0.01wt
%、CaOを0.01〜0.15wt%、Ta25を0.
03wt%、Cr23を0.5wt%添加し、ボ−ルミ
ルで解砕を行った。更に、バインダ−としてPVAを
0.5wt%添加し、スプレ−ドライヤ−で乾燥・造粒
した。得られた造粒体をφ30×φ20×t10mmの
トロイダル形状に加圧成形した後、焼結し、焼結体を得
た。
Example 1 A commercially available iron oxide raw material having a P 2 O 5 content of 0.03 wt% was used.
52.6Fe 2 O 3 -35.7MnO-11.7ZnO ( m
so as to obtain a mixed powder obtained by mixing the raw material powders of Mn 3 O 4 and ZnO with a ball mill to obtain a mixed powder of 950 ° C.
Calcined in the atmosphere for 2 hours. Next, 0.002 to 0.035 wt% of SiO 2 and CaO were added to the calcined powder.
0.06 wt%, Ta 2 O 5 0.03 wt%, Cr 2 O 3
Of 0.5 wt% and SiO 2 of 0.01 wt%
%, 0.01 to 0.15 wt% of CaO and 0.1% of Ta 2 O 5 .
03 wt% and Cr 2 O 3 of 0.5 wt% were added, and the mixture was crushed with a ball mill. Further, 0.5 wt% of PVA was added as a binder, dried and granulated with a spray dryer. The obtained granules were pressure-molded into a toroidal shape of φ30 × φ20 × t10 mm and then sintered to obtain a sintered body.

【0019】又、同様の方法により、同主成分組成で、
Cr23及びTa25を添加しない従来材を作製し、比
較サンプルとした。又、この時のP25、 SiO2
CaOの含有量は、それぞれ0.02、0.01、0.0
6wt%である。
Further, by the same method, with the same main component composition,
A conventional material without adding Cr 2 O 3 and Ta 2 O 5 was prepared as a comparative sample. Also, at this time, P 2 O 5 , SiO 2 ,
The contents of CaO are 0.02, 0.01 and 0.0, respectively.
It is 6 wt%.

【0020】図1に、の場合のCaO量の添加量が
0.06wt%の時のSiO2の添加量とコアロス
(PCV)の関係を、又、図2に、の場合のSiO2
添加量が0.01wt%の時のCaOの添加量とコアロ
ス(PCV)の関係を示す。
[0020] Figure 1, the amount and relation between core loss (P CV) amount of the amount of CaO of SiO 2 when the 0.06 wt% in the case of, also, in Figure 2, the SiO 2 in the case of The relationship between the addition amount of CaO and the core loss ( PCV ) when the addition amount is 0.01 wt% is shown.

【0021】図1より、SiO2の添加量が0.005〜
0.025wt% の範囲でコアロス(PCV)が改善され
ているのがわかる。又、図2より、CaOの添加量が
0.02〜0.10wt%の範囲で、コアロス(PCV)が
改善されているのがわかる。
From FIG. 1, the amount of SiO 2 added is 0.005
It can be seen that the core loss (P CV ) is improved in the range of 0.025 wt%. Further, it can be seen from FIG. 2 that the core loss (P CV ) is improved when the added amount of CaO is in the range of 0.02 to 0.10 wt%.

【0022】(実施例2)市販されている酸化鉄原料
で、P25の含有量が0.01〜0.15wt%の含有量
の原料を用いて、実施例1と同様な方法により、同主成
分組成でSiO2、CaO、Cr23、Ta25の含有
量が、それぞれ0.01、 0.06、0.5、0.03w
t%の粉末を作製し、焼結した。
Example 2 A commercially available iron oxide raw material having a P 2 O 5 content of 0.01 to 0.15 wt% was used in the same manner as in Example 1. , With the same main component composition, the contents of SiO 2 , CaO, Cr 2 O 3 and Ta 2 O 5 were 0.01, 0.06, 0.5 and 0.03 w, respectively.
A t% powder was made and sintered.

【0023】図3に、P25量とPCVの関係を示す。図
3より、P25が0.1wt%以上の含有量でPCVが著
しく増大しているのが分かる。
FIG. 3 shows the relationship between the amount of P 2 O 5 and P CV . From FIG. 3, it can be seen that P CV remarkably increases when the content of P 2 O 5 is 0.1 wt% or more.

【0024】(実施例3)市販されている酸化鉄原料
で、P25の含有量が0.03wt%の原料を用いて、
実施例1と同様な方法により、同主成分組成でCr23
の含有量が0.01〜4.0wt%の粉末を作製した。こ
の時のSiO2、 CaO、Ta25の含有量は、それぞ
れ0.01、0.06、0.05wt%である。次に、こ
の粉末を実施例1と同形状の金型を用いて成形し、焼結
し、焼結体を得た。
Example 3 A commercially available iron oxide raw material having a P 2 O 5 content of 0.03 wt% was used.
By the same method as in Example 1, Cr 2 O 3 having the same main component composition was prepared.
A powder having a content of 0.01 to 4.0 wt% was prepared. At this time, the contents of SiO 2 , CaO, and Ta 2 O 5 are 0.01, 0.06, and 0.05 wt%, respectively. Next, this powder was molded using a mold having the same shape as in Example 1 and was sintered to obtain a sintered body.

【0025】図4に、得られた焼結体のCr23量とP
CVの関係を示す。図4より、Cr23量が0.1〜3.0
wt%の範囲でコアロス(Pcv)が改善されているのが
わかる。
FIG. 4 shows the Cr 2 O 3 content and P of the obtained sintered body.
The relationship of CV is shown. From FIG. 4, the amount of Cr 2 O 3 is 0.1 to 3.0.
It can be seen that the core loss (P cv ) is improved in the wt% range.

【0026】(実施例4)市販されている酸化鉄原料
で、P25の含有量が0.03wt%の原料を用いて、
実施例1と同様な方法により、同主成分組成でTa25
とNb25を、それぞれ0〜0.10wt%の範囲で添
加して粉末を作製した。この時のSiO2、CaO、C
23の含有量は、それぞれ0.01、0.06、0.5
wt%である。次に、この粉末を実施例1と同形状の金
型を用いて成形し、焼結し、焼結体を得た。
Example 4 A commercially available iron oxide raw material having a P 2 O 5 content of 0.03 wt% was used.
By the same method as in Example 1, Ta 2 O 5 having the same main component composition was prepared.
And Nb 2 O 5 were added in the range of 0 to 0.10 wt% to prepare a powder. At this time, SiO 2 , CaO, C
The contents of r 2 O 3 were 0.01, 0.06 and 0.5, respectively.
wt%. Next, this powder was molded using a mold having the same shape as in Example 1 and was sintered to obtain a sintered body.

【0027】表1に、Ta25,Nb25量を変化させ
た時のPcv値を示す。なお、従来材の値は、実施例1で
作製したものを示した。
Table 1 shows P cv values when the amounts of Ta 2 O 5 and Nb 2 O 5 were changed. The values of the conventional materials are those produced in Example 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より、Ta25,Nb25の総量が
0.08wt%以下(0を含まず)では、コアロス(P
cv)が改善されていることがわかる。
From Table 1, when the total amount of Ta 2 O 5 and Nb 2 O 5 is 0.08 wt% or less (not including 0), the core loss (P
You can see that cv ) has been improved.

【0030】[0030]

【発明の効果】本発明は、従来、ほとんど使用されなか
った安価な酸化鉄原料を用いても、高性能を有するMn
−Zn系フェライトが得られ、しかも、大幅なコスト低
減が図れるので、工業的にも有益である。
INDUSTRIAL APPLICABILITY According to the present invention, even if an inexpensive iron oxide raw material which has been rarely used in the past is used, Mn having high performance is obtained.
Since -Zn-based ferrite can be obtained and the cost can be significantly reduced, it is industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるMn−ZnフェライトのSi
2量とコアロス(PCV)との関係を示す図。
FIG. 1 Si of Mn—Zn ferrite in Example 1
Diagram showing the relationship between the amount of O 2 and core loss (P CV).

【図2】実施例1におけるMn−ZnフェライトのCa
O量とコアロス(PCV)との関係を示す図。
FIG. 2 Ca of Mn—Zn ferrite in Example 1
The figure which shows the relationship between O amount and core loss ( PCV ).

【図3】実施例2における酸化物鉄原料中のP25量と
Mn−Znフェライトのコアロス(PCV)との関係を示
す図。
FIG. 3 is a diagram showing the relationship between the amount of P 2 O 5 in the iron oxide raw material and the core loss (P CV ) of Mn—Zn ferrite in Example 2.

【図4】実施例3におけるMn−ZnフェライトのCr
23量とコアロス(PCV)との関係を示す図。
FIG. 4 Cr of Mn—Zn ferrite in Example 3
Diagram showing the relationship between the 2 O 3 amount and the core loss (P CV).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主成分として52〜54mol%の酸化
第二鉄(Fe23)、33〜37mol%の酸化マンガ
ン(MnO)、9〜15mol%の酸化亜鉛(ZnO)
からなり、0.005〜0.025wt%の二酸化珪素
(SiO2)、0.02〜0.10wt%の酸化カルシウ
ム(CaO)、0.1〜3.0wt%の三酸化クロム(C
23)、0.007〜0.07wt%の五酸化リン(P
25)を含有し、更に五酸化タンタル(Ta25)及び
五酸化ニオブ(Nb25)のうち、少なくとも1種を、
その総量で0.08wt%以下(Oを含まず)含有する
ことを特徴とする低損失酸化物磁性材料。
1. 52 to 54 mol% ferric oxide (Fe 2 O 3 ), 33 to 37 mol% manganese oxide (MnO), and 9 to 15 mol% zinc oxide (ZnO) as main components.
Of 0.005 to 0.025 wt% silicon dioxide (SiO 2 ), 0.02 to 0.10 wt% of calcium oxide (CaO), and 0.1 to 3.0 wt% of chromium trioxide (C).
r 2 O 3 ), 0.007 to 0.07 wt% phosphorus pentoxide (P
2 O 5 ) and at least one of tantalum pentoxide (Ta 2 O 5 ) and niobium pentoxide (Nb 2 O 5 )
A low loss oxide magnetic material, characterized in that the total content thereof is 0.08 wt% or less (not including O).
【請求項2】 0.01〜0.1wt%のP25を含有す
る酸化鉄原料を使用し、焼結体の主成分組成が52〜5
4mol%の酸化第二鉄(Fe23)、33〜37mo
l%の酸化マンガン(MnO)、9〜15mol%の酸
化亜鉛(ZnO)よりなり、副成分として0.005〜
0.025wt%の二酸化珪素(SiO2)、0.02〜
0.10wt%の酸化カルシウム(CaO)、0.1〜
3.0wt%の三酸化クロム(Cr23)、更に五酸化
タンタル(Ta25)、五酸化ニオブ(Nb25)のう
ち、少なくとも1種を、その総量で0.08wt%以下
(0を含まず)含有するように所定の原料を配合し、混
合し、予焼し、造粒した後、成形、焼結することを特徴
とする低損失酸化物磁性材料の製造方法。
2. An iron oxide raw material containing 0.01 to 0.1 wt% P 2 O 5 is used, and the main component composition of the sintered body is 52 to 5
4 mol% of ferric oxide (Fe 2 O 3), 33~37mo
1% manganese oxide (MnO), 9 to 15 mol% zinc oxide (ZnO), and 0.005 as an accessory component.
0.025 wt% silicon dioxide (SiO 2 ), 0.02-
0.10 wt% calcium oxide (CaO), 0.1-
The total amount of chromium trioxide (Cr 2 O 3 ) of 3.0 wt%, tantalum pentoxide (Ta 2 O 5 ), and niobium pentoxide (Nb 2 O 5 ) was 0.08 wt% in total. A method for producing a low-loss oxide magnetic material, which comprises blending, mixing, pre-calcining, granulating, shaping, and sintering a predetermined raw material so as to contain the following (not including 0).
JP7306855A 1995-10-30 1995-10-30 Low loss oxide magnetic material and manufacture thereof Pending JPH09129431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7306855A JPH09129431A (en) 1995-10-30 1995-10-30 Low loss oxide magnetic material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7306855A JPH09129431A (en) 1995-10-30 1995-10-30 Low loss oxide magnetic material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09129431A true JPH09129431A (en) 1997-05-16

Family

ID=17962066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7306855A Pending JPH09129431A (en) 1995-10-30 1995-10-30 Low loss oxide magnetic material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09129431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238617A (en) * 1997-12-19 1999-08-31 Tdk Corp Manganese-zinc based ferrite

Similar Documents

Publication Publication Date Title
WO2004028997A1 (en) Ferrite material
JPH07230909A (en) Manganese-zinc ferrite core and its manufacture
JP4711897B2 (en) MnCoZn ferrite and transformer core
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JP2001261344A (en) Mn-zn ferrite and method of producing the same
JP4279923B2 (en) MnMgCuZn ferrite material
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JPH09129431A (en) Low loss oxide magnetic material and manufacture thereof
JP5845137B2 (en) Method for producing Mn-Zn ferrite
KR100290233B1 (en) method for fabricating Mn-Zn ferrite core
JP7406022B1 (en) MnZnCo ferrite
JPH06333719A (en) Ni-zn soft ferrite
JP3181321B2 (en) Manganese-zinc ferrite material and method of manufacturing magnetic core for high frequency power transformer
JPH09180926A (en) Low loss oxide magnetic material
JPH08236336A (en) Low-loss oxide magnetic material
JP3552794B2 (en) Method for producing low-loss oxide magnetic material
JP2939035B2 (en) Soft magnetic oxide substance
JPH05198419A (en) Oxide magnetic material
JP2007197255A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
WO2023182133A1 (en) MnZn-BASED FERRITE
JP3617070B2 (en) Low loss ferrite manufacturing method
JP2000091114A (en) High permeability oxide magnetic material
JPH08293409A (en) Low loss oxide magnetic material and its manufacture
JPH11255558A (en) Production of manganese-zinc-based ferrite core

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921