JPH07230909A - Manganese-zinc ferrite core and its manufacture - Google Patents

Manganese-zinc ferrite core and its manufacture

Info

Publication number
JPH07230909A
JPH07230909A JP6021191A JP2119194A JPH07230909A JP H07230909 A JPH07230909 A JP H07230909A JP 6021191 A JP6021191 A JP 6021191A JP 2119194 A JP2119194 A JP 2119194A JP H07230909 A JPH07230909 A JP H07230909A
Authority
JP
Japan
Prior art keywords
mol
manganese
ferrite core
fe2o3
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6021191A
Other languages
Japanese (ja)
Other versions
JP3454316B2 (en
Inventor
Tsunehiro Yamazaki
恒裕 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP02119194A priority Critical patent/JP3454316B2/en
Publication of JPH07230909A publication Critical patent/JPH07230909A/en
Application granted granted Critical
Publication of JP3454316B2 publication Critical patent/JP3454316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a low-loss manganese-zinc ferrite core having high permeability and high resistance, and its manufacturing method. CONSTITUTION:This core is made up of a material having a main component composed of 45-48.6mol% of Fe2O3, Mn2O3 of a molar ratio whose sum with the mole percentage of Fe2O3 is approximately 50mol%, 28-50mol% of MnO, and the remaining ZnO, and 0.01-0.5wt.% of a subcomponent including SiO2 and CaO, and Fe<2+> is less than 1mol% (other than 0mol%). By making the sum of Fe2O3 and Mn2O3 approximately 50mol% in spite of Fe2O3<50mol%, perfect spinel structure can be adopted and it is beneficial to the magnetic characteristic. By selecting sintering conditions, the production of Fe<2+> in a sintering process is lessened, and Mn<3+> of an Mn component supplementing the shortage of Fe2O3 in place of Fe<2+>, and consequently the production of Fe<2+> is suppressed. And it becomes possible to make the resistance higher by bringing in the grain boundary high-resistance phases of SiO2 and CaO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏向ヨーク用コアに好
適なマンガン亜鉛系フェライトコア及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manganese-zinc ferrite core suitable for a deflection yoke core and a method for manufacturing the same.

【0002】[0002]

【従来の技術】偏向ヨーク用コアとしては、近年、従来
よりも増して高透磁率(高飽和磁束密度),低損失(低
コアロス)等の特性が要求されてきており、かつ、巻線
を直接コアに巻装できるように、高抵抗も同時に要求さ
れるようになってきている。
2. Description of the Related Art In recent years, deflection yoke cores have been required to have characteristics such as high permeability (high saturation magnetic flux density) and low loss (low core loss) more than ever before. High resistance is also required at the same time so that it can be directly wound around the core.

【0003】高透磁率及び低損失を得るためには、一般
的に、酸化鉄(Fe2 3 )>50モル%組成のマンガ
ン亜鉛(MnZn)系フェライトを用いて、酸素分圧の
制御を行い、1モル%以上の2価の鉄イオン(Fe2+
を生成させている。しかしながら、この組成系のフェラ
イトの抵抗は、Fe2 3 <50モル%組成のフェライ
ト(1×108 Ω)に比して1×104 Ωと著しく低く
なるという欠点がある(後述する表1,2参照)。ま
た、このフェライトで高抵抗化も試みられているが、そ
の一例の表面酸化処理法では表面抵抗は向上するが、表
面・内部における残留応力が磁気特性を劣化させてしま
うため、実用的でなくなる。また、表面に絶縁層をコー
ティングする方法は実用化されているが、コスト高とな
る。
In order to obtain high magnetic permeability and low loss, manganese zinc (MnZn) -based ferrite having a composition of iron oxide (Fe 2 O 3 )> 50 mol% is generally used to control the oxygen partial pressure. 1 mol% or more of divalent iron ion (Fe 2+ )
Is being generated. However, the resistance of the ferrite of this composition system is 1 × 10 4 Ω, which is remarkably low as compared with the ferrite (1 × 10 8 Ω) having a composition of Fe 2 O 3 <50 mol% (see the table below). 1 and 2). In addition, it has been attempted to increase the resistance with this ferrite, but the surface oxidation treatment method of that example improves the surface resistance, but it is not practical because residual stress on the surface and inside deteriorates the magnetic characteristics. . Further, although a method of coating an insulating layer on the surface has been put into practical use, the cost is high.

【0004】また、高抵抗を有するフェライトコアとし
ては、Fe2 3 <50モル%組成のニッケル亜鉛(N
iZn)系及びマグネシウム亜鉛(MgZn)系フェラ
イトが実用化されている。しかしながら、この組成系の
フェライトコアロスは、Fe2 3 >50モル%組成の
MnZn系フェライト(飽和磁束密度=510mT,コ
アロス=3kW/m3 )に比して飽和磁束密度が300
mTと低く、コアロスは40kW/m3 と高くなるとい
う欠点がある(後述する表1,2参照)。
Further, as a ferrite core having a high resistance, nickel zinc (N 2 having a composition of Fe 2 O 3 <50 mol% is used).
iZn) -based and magnesium zinc (MgZn) -based ferrites have been put to practical use. However, the ferrite core loss of this composition system has a saturation magnetic flux density of 300 as compared with MnZn ferrite (saturation magnetic flux density = 510 mT, core loss = 3 kW / m 3 ) of Fe 2 O 3 > 50 mol% composition.
It has a drawback that it is as low as mT and the core loss is as high as 40 kW / m 3 (see Tables 1 and 2 described later).

【0005】なお、Fe2 3 <50モル%組成のMn
Zn系フェライトでは、磁気特性が劣り、抵抗に関して
も十分な値が得られないために実用化されていない。
Fe 2 O 3 <50 mol% composition of Mn
Zn-based ferrite has not been put to practical use because its magnetic properties are inferior and sufficient resistance cannot be obtained.

【0006】また、本発明と目的が相違するが、Fe2
3 <50モル%組成のフェライトとして、35乃至4
8モル%のFe2 3 、22乃至50モル%のMnO及
び15乃至30モル%のZnOの組成からなる高密度フ
ェライトが知られている(特開昭48−57193号公
報)。また、48乃至50モル%のFe2 3 、11モ
ル%のZnO及び残部のMnOからなるMnZnフェラ
イトに1.3乃至1.5モル%の酸化コバルトを添加し
たフェライト磁心も知られている(特公昭52−475
3公報)。
Although the object is different from that of the present invention, Fe 2
As a ferrite having a composition of O 3 <50 mol%, 35 to 4
A high-density ferrite having a composition of 8 mol% Fe 2 O 3 , 22 to 50 mol% MnO and 15 to 30 mol% ZnO is known (JP-A-48-57193). Also known is a ferrite magnetic core in which 1.3 to 1.5 mol% of cobalt oxide is added to MnZn ferrite composed of 48 to 50 mol% of Fe 2 O 3 , 11 mol% of ZnO and the balance of MnO ( Japanese Patent Publication No. 52-475
3 gazette).

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
のフェライトコアは、高透磁率及び低損失を達成できて
も高抵抗が得られず、高抵抗を達成できても高透磁率及
び低損失が得られないため、近年、偏向ヨーク用コアに
要求される高透磁率,低損失及び高抵抗を満足すること
ができないという問題があった。
As described above, in the conventional ferrite core, high resistance is not obtained even if high permeability and low loss can be achieved. Even if high resistance is achieved, high permeability and low permeability are achieved. Since no loss can be obtained, there has been a problem in recent years that the high permeability, low loss and high resistance required for the deflection yoke core cannot be satisfied.

【0008】また、特開昭48−57193号公報に開
示された高密度フェライトは、Fe2 3 不足分をMn
3+が占めた場合に、35<Fe2 3 <48モル%の組
成範囲においては、焼成過程にて真空部を設け高密度化
されているため1O4 Ω程度に留まっている。また、F
2 3 <45モル%の組成範囲においては、高飽和磁
束密度及び低コアロスが失われるため、実用に耐えな
い。
In the high-density ferrite disclosed in Japanese Patent Laid-Open No. 48-57193, the Fe 2 O 3 deficiency is reduced to Mn.
In the composition range of 35 <Fe 2 O 3 <48 mol% when 3+ occupies, the density is set to about 1 O 4 Ω because a vacuum portion is provided in the firing process to increase the density. Also, F
In the composition range of e 2 O 3 <45 mol%, high saturation magnetic flux density and low core loss are lost, so that it cannot be put to practical use.

【0009】また、特公昭52−4753公報に開示さ
れたフェライト磁心は、Fe2 3不足分をMn3+が占
めた場合、48<Fe2 3 <50モル%の組成範囲に
おいては、Fe2 3 量が多く、前述のMn成分による
価数制御が不完全な組成領域となってしまうためにFe
2+生成量が急激に増加し高抵抗性は損なわれてしまう。
Further, in the ferrite core disclosed in Japanese Patent Publication No. 52-4753, when Mn 3+ occupies the Fe 2 O 3 deficiency, in the composition range of 48 <Fe 2 O 3 <50 mol%, Since the amount of Fe 2 O 3 is large and the valence control by the above-mentioned Mn component is incomplete, the composition region becomes Fe.
The amount of 2+ produced sharply increases and high resistance is impaired.

【0010】そこで、本発明は、上記事情に鑑みてなさ
れたものであり、高透磁率,低損失及び高抵抗を有する
マンガン亜鉛系フェライトコア及びその製造方法を提供
することを目的とするものである。
Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manganese-zinc ferrite core having a high magnetic permeability, a low loss, and a high resistance, and a method for manufacturing the same. is there.

【0011】[0011]

【課題を解決するための手段】請求項1記載のマンガン
亜鉛系フェライトコアは、45乃至48.6モル%のF
2 3 、Fe2 3 との和が略50モル%となるモル
比のMn2 3 、28乃至50モル%のMnO及び残部
のZnOからなる主成分と、SiO2 及びCaOを含む
0.01乃至0.5重量%の副成分とを有する材料から
なり、Fe2+を1モル%以下(0モル%を除く)とした
ことを特徴とするものである。
A manganese-zinc-based ferrite core according to claim 1 has an F content of 45 to 48.6 mol%.
e 2 O 3 and Fe 2 O 3 are contained in a molar ratio of about 50 mol% Mn 2 O 3 , 28 to 50 mol% MnO and the balance ZnO, and SiO 2 and CaO. It is characterized in that it is made of a material having 0.01 to 0.5% by weight of an accessory component, and Fe 2+ is 1 mol% or less (excluding 0 mol%).

【0012】請求項2記載のマンガン亜鉛系フェライト
コアの製造方法は、45乃至48.6モル%のFe2
3 、Fe2 3 との和が略50モル%となるモル比のM
23 、28乃至50モル%のMnO及び残部のZn
Oからなる主成分と、SiO2 及びCaOを含む0.0
1乃至0.5重量%の副成分とを有する材料からなるマ
ンガン亜鉛系フェライトコアの製造方法であって、焼成
条件の選定によりFe2+を1モル%以下(0モル%を除
く)としたことを特徴とするものである。
A method for producing a manganese-zinc-based ferrite core according to claim 2 is 45 to 48.6 mol% of Fe 2 O.
3 , the molar ratio of M such that the sum of Fe 2 O 3 and Fe 2 O 3 is approximately 50 mol%.
n 2 O 3 , 28 to 50 mol% MnO and balance Zn
0.0 including a main component of O and SiO 2 and CaO
A method for producing a manganese-zinc-based ferrite core made of a material having 1 to 0.5% by weight of an accessory component, wherein Fe 2+ is set to 1 mol% or less (excluding 0 mol%) by selecting firing conditions. It is characterized by that.

【0013】請求項3記載のマンガン亜鉛系フェライト
コアの製造方法は、最高保持温度における酸素分圧を1
乃至100%で焼成を行うものである。
In the method for producing a manganese-zinc-based ferrite core according to claim 3, the oxygen partial pressure at the maximum holding temperature is 1
The firing is performed at 100% to 100%.

【0014】[0014]

【作用】請求項1記載のマンガン亜鉛系フェライトコア
の作用を図1乃至図3を参照して説明する。図1はFe
2 3 量とコアロスとの関係図、図2はFe2 3 量と
飽和磁束密度との関係図、図3はFe2 3 と接触抵抗
との関係図である。
The operation of the manganese-zinc-based ferrite core according to claim 1 will be described with reference to FIGS. 1 to 3. Figure 1 shows Fe
2 is a relationship diagram between the amount of 2 O 3 and core loss, FIG. 2 is a relationship diagram between the amount of Fe 2 O 3 and saturation magnetic flux density, and FIG. 3 is a relationship diagram between Fe 2 O 3 and contact resistance.

【0015】上記構成のマンガン亜鉛系フェライトコア
によれば、Fe2 3 <50モル%でありながらFe2
3 とMn2 3 との和を略50モル%とすることによ
り、Mnの価数が制御され、完全なスピネル構造を採
れ、磁気特性上有利となる。また、焼成条件の選定によ
り、焼成過程でFe2+の生成が少なくなり、Fe2+の代
わりにFe2 3 の不足分を補うMn成分のMn3+が生
成され、結果的に抵抗の低下を招くFe2+の生成が抑制
される。また、SiO2 及びCaOの粒界高抵抗相を導
入することにより、高抵抗化を進めることができる。
According to the manganese-zinc-based ferrite core having the above-described structure, Fe 2 O 3 <50 mol% but Fe 2
By setting the sum of O 3 and Mn 2 O 3 to about 50 mol%, the valence of Mn is controlled, and a complete spinel structure is adopted, which is advantageous in terms of magnetic properties. Also, by selecting the firing conditions, the production of Fe 2+ is reduced in the firing process, and Mn 3+ of Mn component that supplements the shortage of Fe 2 O 3 is produced instead of Fe 2+ , and as a result, the resistance of The production of Fe 2+ which causes a decrease is suppressed. In addition, by introducing a grain boundary high resistance phase of SiO 2 and CaO, it is possible to promote high resistance.

【0016】なお、Fe2 3 <45モル%とすると、
図1に示すようにコアロス(Pcv)が12kW/m3
以上となり、図2に示すように飽和磁束密度(Bs)が
320mT以下となって、本発明が目的とする高飽和磁
束密度及び低コアロスが達成できなくなり、実用に耐え
ないものとなる。48.6モル%<Fe2 3 とする
と、図3に示すように、接触抵抗が急激に低下する。こ
のため、Fe2 3 を45乃至48.6モル%の範囲と
する。
When Fe 2 O 3 <45 mol%,
As shown in FIG. 1, the core loss (Pcv) is 12 kW / m 3
As described above, the saturation magnetic flux density (Bs) becomes 320 mT or less as shown in FIG. 2, and the high saturation magnetic flux density and the low core loss which are the objects of the present invention cannot be achieved, and it becomes unusable for practical use. When 48.6 mol% <Fe 2 O 3 , the contact resistance sharply decreases as shown in FIG. Therefore, the Fe 2 O 3 content is in the range of 45 to 48.6 mol%.

【0017】さらに、SiO2 及びCaOを含む副成分
を0.01重量%以下とすると、SiO2 及びCaOの
粒界高抵抗相は全体の抵抗に影響を与えるため、高抵抗
化の効果が少なくなる。SiO2 及びCaOを含む副成
分が0.5重量%を越えると、粒界相の厚みが増してフ
ェライト粒の磁気的相互作用が弱まり、優れた磁気特性
(高飽和磁束密度,低コアロス,高透磁率)を得られな
くなり、また、粒界相を成す成分は低融点物質が主であ
るため、フェライトの生成過程及び構造に影響を与える
ようになる。このため、SiO2 及びCaOを含む副成
分を上記範囲とする。
When the amount of the sub-components containing SiO 2 and CaO is 0.01% by weight or less, the grain boundary high resistance phase of SiO 2 and CaO affects the overall resistance, so that the effect of increasing the resistance is small. Become. When the amount of the subcomponents including SiO 2 and CaO exceeds 0.5% by weight, the thickness of the grain boundary phase increases and the magnetic interaction of ferrite grains is weakened, resulting in excellent magnetic properties (high saturation magnetic flux density, low core loss, high The magnetic permeability) cannot be obtained, and the component forming the grain boundary phase is mainly a low melting point substance, so that it affects the formation process and structure of ferrite. Therefore, the subcomponents containing SiO 2 and CaO are set within the above range.

【0018】また、Fe2+が1モル%を越えると、電子
の移動が容易となって、フェライト自体の抵抗が低下す
るため、Fe2+を1モル%以下とする。
If Fe 2+ exceeds 1 mol%, the movement of electrons is facilitated and the resistance of the ferrite itself is lowered. Therefore , Fe 2+ is set to 1 mol% or less.

【0019】従って、上記構成により、Fe2 3 >5
0モル%組成のMnZn系フェライトに近い高透磁率
(飽和磁束密度)及び低損失(コアロス)を有するもの
となり、Fe2 3 <50モル%組成のNiZn系フェ
ライト及びMgZn系フェライト並みの抵抗を持つよう
になる。
Therefore, with the above structure, Fe 2 O 3 > 5
It has a high magnetic permeability (saturation magnetic flux density) and a low loss (core loss) close to that of a 0 mol% composition MnZn ferrite, and has a resistance comparable to that of a NiZn ferrite and a MgZn ferrite having a Fe 2 O 3 <50 mol% composition. To have.

【0020】請求項2記載のマンガン亜鉛系フェライト
コアの製造方法によれば、上記組成比の材料を焼成条件
の選定によりFe2+を1モル%以下(0モル%を除く)
とすることにより、請求項1記載と同様に、Fe2 3
>50モル%組成のMnZn系フェライトに近い高透磁
率(飽和磁束密度)及び低損失(コアロス)を有するも
のとなり、Fe2 3 <50モル%組成のNiZn系フ
ェライト及びMgZn系フェライト並みの抵抗を持つよ
うになる。
According to the method for producing a manganese-zinc-based ferrite core according to claim 2, Fe 2+ is 1 mol% or less (excluding 0 mol%) by selecting firing conditions for the material having the above composition ratio.
Therefore, as in the case of claim 1, Fe 2 O 3
It has a high magnetic permeability (saturation magnetic flux density) and a low loss (core loss) close to that of a MnZn ferrite having a composition of> 50 mol%, and has a resistance comparable to that of a NiZn ferrite and a MgZn ferrite having a composition of Fe 2 O 3 <50 mol%. To have.

【0021】請求項3記載のマンガン亜鉛系フェライト
コアの製造方法によれば、最高保持温度における酸素分
圧を1乃至100%で焼成を行うことにより、Fe2+
抑制し、高抵抗性が失われなくなる。すなわち、Fe2+
1モル%以下を満足するための酸素分圧は、最高保持温
度によって異なり、フェライトの焼成に必要な最高保持
温度は、通常1000乃至1400℃であり、この温度
条件でFe2+1モル%以下を満足するためには、酸素分
圧を1%以上で行う必要がある。酸素分圧が1%に達し
ないと、Fe2+の生成が著しく増加してフェライト自体
の抵抗が低下する。このため、酸素分圧を1%以上で行
う。
According to the method for producing a manganese-zinc-based ferrite core according to claim 3, by firing at an oxygen partial pressure of 1 to 100% at the maximum holding temperature, Fe 2+ is suppressed and high resistance is obtained. It will not be lost. That is, Fe 2+
The oxygen partial pressure for satisfying 1 mol% or less depends on the maximum holding temperature, and the maximum holding temperature required for firing ferrite is usually 1000 to 1400 ° C. Under this temperature condition, Fe 2+ 1 mol% or less In order to satisfy the above condition, it is necessary to carry out the oxygen partial pressure at 1% or more. If the oxygen partial pressure does not reach 1%, the production of Fe 2+ will remarkably increase and the resistance of the ferrite itself will decrease. Therefore, the oxygen partial pressure is set to 1% or more.

【0022】[0022]

【実施例】以下、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0023】<実施例1><Example 1>

【0024】この実施例1のマンガン亜鉛(MnZn)
系フェライトコアは、48.6モル%の酸化鉄(Fe2
3 )、酸化鉄(Fe2 3 )との和が50モル%±
0.5モル%となるモル比例えば1.4モル%の酸化マ
ンガン(III)(Mn2 3)、41モル%の酸化マ
ンガン(II)(MnO)及び残部の9モル%の酸化亜
鉛(ZnO)からなる主成分と、0.03重量%の二酸
化ケイ素(SiO2 )及び0.1重量%の酸化カルシウ
ム(CaO)を含む副成分とを有する材料からなり、2
価の鉄イオン(Fe2+)を1モル%以下(0モル%を除
く)としたものである。
Manganese zinc (MnZn) of this Example 1
The ferrite core is composed of 48.6 mol% iron oxide (Fe 2
O 3 ), the sum of iron oxide (Fe 2 O 3 ) is 50 mol% ±
For example, 1.4 mol% of manganese (III) oxide (Mn 2 O 3 ), 41 mol% of manganese (II) oxide (MnO) and the balance of 9 mol% of zinc oxide ( ZnO) and a material having a main component of 0.03 wt% silicon dioxide (SiO 2 ) and 0.1 wt% of calcium oxide (CaO).
Valuate iron ion (Fe 2+ ) is 1 mol% or less (excluding 0 mol%).

【0025】この実施例1の一製造方法を説明する。One manufacturing method of the first embodiment will be described.

【0026】まず、前記各粉末原料を前記組成比に秤量
採取して機械的に混合した後、その混合粉末を700乃
至1100℃にて所定時間の仮焼成を行い、その仮焼成
粉末を粉砕した後、適切な大きさの粒に造粒する。この
ようにして造粒された粉末を所望の形状に加圧成形した
後、その成形体をバッチ炉にて焼成することにより、実
施例1のMnZn系フェライトコアが得られる。
First, each of the powder raw materials was weighed and sampled in the composition ratio and mechanically mixed, and then the mixed powder was calcined at 700 to 1100 ° C. for a predetermined time, and the calcined powder was pulverized. After that, it is granulated into particles of an appropriate size. The MnZn-based ferrite core of Example 1 is obtained by press-molding the powder thus granulated into a desired shape and then firing the molded body in a batch furnace.

【0027】前記焼成条件は、図4に示すように、大気
中で昇温した後、同じく大気中で最高保持温度(例えば
温度1000乃至1300℃)における酸素分圧を一定
の1乃至100%(例えば10%)で長時間(例えば2
時間)行い、最終目標生成物を生成した後は、大気及び
窒素等の不活性ガス中で最高保持温度における生成物の
構造,価数等を変化させず室温まで冷却を行う。この冷
却過程で生成されるFe2+,Mn2+等の酸化を防ぐため
に、各温度Tにおける酸素分圧(平衡酸素分圧)PO2
を Log(PO2 [%])=α/T[°K]+β
(α,βは定数) に従って制御する。これにより、Fe2+を抑制してFe
2+を1モル%以下にすることができ、高抵抗性が失われ
なくなる。なお、酸素分圧を一定とする長時間処理によ
り、元素の価数変化等を終了させ、目的の生成物(スピ
ネル構造物)を得ることができる。
As shown in FIG. 4, the firing conditions are as follows: after the temperature is raised in the atmosphere, the oxygen partial pressure at the maximum holding temperature (for example, a temperature of 1000 to 1300 ° C.) in the atmosphere is constant at 1 to 100% ( For example, 10% for a long time (for example, 2
After producing the final target product, the product is cooled to room temperature in the atmosphere and an inert gas such as nitrogen without changing the structure and valence of the product at the maximum holding temperature. In order to prevent oxidation of Fe 2+ , Mn 2+, etc. generated in this cooling process, oxygen partial pressure (equilibrium oxygen partial pressure) PO 2 at each temperature T
Log (PO 2 [%]) = α / T [° K] + β
(Α and β are constants). As a result, Fe 2+ is suppressed and Fe
2+ can be 1 mol% or less, and high resistance is not lost. By the long-term treatment with a constant oxygen partial pressure, the change in valence of the element or the like can be terminated and the desired product (spinel structure) can be obtained.

【0028】このようにして得られた実施例1の効果を
表1を参照して説明する。表1は実施例1とFe2 3
<50モル%組成のNiZn系フェライトコア(従来
例)との特性の比較を示すものである。
The effects of Example 1 thus obtained will be described with reference to Table 1. Table 1 shows Example 1 and Fe 2 O 3
It shows a comparison of characteristics with a NiZn-based ferrite core having a composition of <50 mol% (conventional example).

【0029】[0029]

【表1】 [Table 1]

【0030】この表1から明らかなように、実施例1は
従来例に比して飽和磁束密度を20%程度向上させるこ
とができるので、安価なフェライトコアを提供すること
が可能となる。
As is clear from Table 1, Example 1 can improve the saturation magnetic flux density by about 20% as compared with the conventional example, so that an inexpensive ferrite core can be provided.

【0031】<実施例2><Example 2>

【0032】この実施例2のMnZn系フェライトコア
は、47.0モル%のFe2 3 、Fe2 3 との和が
50モル%±0.5モル%となるモル比例えば3.0モ
ル%のMn2 3 、34モル%のMnO及び残部の16
モルのZnOからなる主成分と、0.06重量%のSi
2 及び0.08重量%のCaOを含む副成分とを有す
る材料からなり、Fe2+を1モル%以下(0モル%を除
く)としたものである。なお、この実施例2は、実施例
1と同様に製造される。
The MnZn-based ferrite core of Example 2 has a molar ratio such that the sum of 47.0 mol% of Fe 2 O 3 and Fe 2 O 3 is 50 mol% ± 0.5 mol%, for example, 3.0. Mol% Mn 2 O 3 , 34 mol% MnO and balance 16
Main component consisting of moles of ZnO and 0.06% by weight of Si
It is made of a material having O 2 and an auxiliary component containing 0.08% by weight of CaO, and Fe 2+ is 1 mol% or less (excluding 0 mol%). The second embodiment is manufactured in the same manner as the first embodiment.

【0033】この実施例2の効果を表2及び図5を参照
して説明する。表2は偏向ヨーク用コアに適用した場合
の実施例2とFe2 3 <50モル%組成のMgZn系
フェライトコア(従来例)とFe2 3 >50モル%組
成のMnZn系フェライトコア(従来例)との特性の比
較を示すものである。図5はCRTディスプレイにおけ
るコアロスと温度上昇との関係図である。
The effect of the second embodiment will be described with reference to Table 2 and FIG. Table 2 shows Example 2 when applied to a deflection yoke core, a MgZn-based ferrite core of Fe 2 O 3 <50 mol% composition (conventional example) and a MnZn-based ferrite core of Fe 2 O 3 > 50 mol% composition ( It shows a comparison of characteristics with the conventional example). FIG. 5 is a relationship diagram between core loss and temperature rise in a CRT display.

【0034】[0034]

【表2】 [Table 2]

【0035】この表2から明らかなように、実施例2に
よれば、従来例と比較してコアロスを大幅に改善できる
ため、図5に示すように、CRTディスプレイにおける
高周波化・大画面化等からくるコアの発熱を従来材に比
べて5℃程度低下させることができる。
As is clear from Table 2, according to the second embodiment, the core loss can be greatly improved as compared with the conventional example. Therefore, as shown in FIG. 5, the CRT display has a higher frequency and a larger screen. The heat generated from the core can be reduced by about 5 ° C. as compared with the conventional material.

【0036】以上詳述した各実施例によれば、混合原料
比率の選択と焼成条件及び焼成時の酸素分圧の適当な選
択により、Fe2 3 <50モル%でありながらFe2
3とMn2 3 の和を略50モル%とすることによ
り、Mnの価数が制御され、完全なスピネル構造を採
れ、磁気特性上有利となる。また、焼成条件の選定によ
り、焼成過程でFe2+の生成が少なくなり、Fe2+の代
わりにFe2 3 の不足分を補うMn成分の3価のマン
ガンイオン(Mn3+)が生成され、結果的に抵抗の低下
を招くFe2+の生成が抑制される。また、SiO2 及び
CaOの粒界高抵抗相を導入することにより、高抵抗化
を進めることができ、このときフェライト成分がFe2
3 >50モル%組成のMnZn系フェライトと較べて
安定であるため、粒界−粒内における相互反応が発生し
難く、粒界相の量を増加させることができる。この結
果、従来、磁気特性が劣り抵抗も低いとされていた45
乃至48.6モル%のFe2 3 の組成において、Fe
2+の生成を1モル%以下とする組成設計・焼成条件の選
定及び粒界高抵抗相の積極的な導入により、高抵抗化を
実現でき、冷却過程における酸化防止のために酸素分圧
制御を行うことにより、従来劣ると考えられていたFe
2 3 <50モル%組成のMnZn系フェライトのコア
ロス低減を実現することができたので、Fe2 3 <5
0モル%組成のNiZn系フェライト及びMgZn系フ
ェライト並みの抵抗(1×107 乃至6×107 Ω)を
持ち、Fe2 3 >50モル%組成のMnZn系フェラ
イトに近い飽和磁束密度(320乃至410mT)及び
コアロス(5.8乃至12kW/m3 )を有するマンガ
ン亜鉛系フェライトコア及びその製造方法を提供するこ
とができる(図1,図2,図3参照)。
According to the embodiments described above in detail, by appropriate selection of the selection and firing conditions and firing at an oxygen partial pressure of the mixed materials ratios, yet Fe 2 O 3 <50 mol% Fe 2
By setting the sum of O 3 and Mn 2 O 3 to about 50 mol%, the valence of Mn is controlled, and a complete spinel structure is adopted, which is advantageous in terms of magnetic properties. Also, by selecting the firing conditions, the production of Fe 2+ is reduced during the firing process, and trivalent manganese ion (Mn 3+ ) of Mn component that supplements the shortage of Fe 2 O 3 is produced instead of Fe 2+. As a result, the production of Fe 2+ that causes a decrease in resistance is suppressed. Further, by introducing a grain boundary high resistance phase of SiO 2 and CaO, the resistance can be increased, and at this time, the ferrite component is Fe 2
Since it is more stable than MnZn-based ferrite having a composition of O 3 > 50 mol%, it is difficult to cause a grain boundary-intra-grain interaction, and the amount of grain boundary phase can be increased. As a result, the magnetic properties were conventionally poor and the resistance was low.
In the composition of Fe 2 O 3 of 48.6 mol% to Fe
High resistance can be realized by composition design, selection of firing conditions and active introduction of grain boundary high resistance phase so that generation of 2+ is 1 mol% or less, and oxygen partial pressure control to prevent oxidation in the cooling process. Fe, which was conventionally considered to be inferior,
Since core loss reduction of MnZn-based ferrite having a composition of 2 O 3 <50 mol% was realized, Fe 2 O 3 <5
0 has a NiZn-based ferrite and MgZn ferrite par resistor mole percent composition (1 × 10 7 to 6 × 10 7 Ω), Fe 2 O 3> 50 saturation magnetic flux density close to MnZn ferrite mole percent composition (320 To 410 mT) and core loss (5.8 to 12 kW / m 3 ) and a method for producing the same can be provided (see FIGS. 1, 2 and 3).

【0037】なお、本発明は、上記実施例に限定され
ず、種々に変形実施できる。
The present invention is not limited to the above embodiment, but can be modified in various ways.

【0038】[0038]

【発明の効果】以上詳述した本発明によれば、以下の効
果を奏する。
According to the present invention described in detail above, the following effects can be obtained.

【0039】請求項1記載の発明によれば、Fe2 3
<50モル%でありながらFe2 3 とMn2 3 との
和を略50モル%とし、SiO2 及びCaOの粒界高抵
抗相を導入し、Fe2+を1モル%以下(0モル%を除
く)としたので、高透磁率,低損失及び高抵抗を有する
マンガン亜鉛系フェライトコアを提供することができ
る。
According to the invention of claim 1, Fe 2 O 3
Despite being <50 mol%, the sum of Fe 2 O 3 and Mn 2 O 3 is set to about 50 mol%, a grain boundary high resistance phase of SiO 2 and CaO is introduced, and Fe 2+ is 1 mol% or less (0 (Except for mol%), it is possible to provide a manganese-zinc ferrite core having high magnetic permeability, low loss and high resistance.

【0040】請求項2記載の発明によれば、上記組成比
の材料を焼成条件の選定によりFe2+を1モル%以下
(0モル%を除く)としているので、高透磁率,低損失
及び高抵抗を有するマンガン亜鉛系フェライトコアの製
造方法を提供することができる。
According to the invention described in claim 2, since Fe 2+ is set to 1 mol% or less (excluding 0 mol%) in the material having the above composition ratio by selecting the firing conditions, high permeability, low loss and It is possible to provide a method for producing a manganese-zinc based ferrite core having high resistance.

【0041】請求項3記載の発明によれば、最高保持温
度における酸素分圧を1乃至100%で焼成を行ってい
るので、Fe2+を抑制し、高抵抗性が失われなくなる。
According to the third aspect of the invention, since the firing is carried out at an oxygen partial pressure of 1 to 100% at the maximum holding temperature, Fe 2+ is suppressed and high resistance is not lost.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe2 3 量とコアロスとの関係図Fig. 1 Relationship between Fe 2 O 3 content and core loss

【図2】Fe2 3 量と飽和磁束密度との関係図[Fig. 2] Relationship between Fe 2 O 3 content and saturation magnetic flux density

【図3】Fe2 3 と接触抵抗との関係図[Fig. 3] Relationship between Fe 2 O 3 and contact resistance

【図4】焼成条件を示す図FIG. 4 is a diagram showing firing conditions.

【図5】CRTディスプレイにおけるコアロスと温度上
昇との関係図
FIG. 5 is a relationship diagram between core loss and temperature rise in a CRT display.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 41/02 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 41/02 D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 45乃至48.6モル%のFe2 3
Fe2 3 との和が略50モル%となるモル比のMn2
3 、28乃至50モル%のMnO及び残部のZnOか
らなる主成分と、SiO2 及びCaOを含む0.01乃
至0.5重量%の副成分とを有する材料からなり、Fe
2+を1モル%以下(0モル%を除く)としたことを特徴
とするマンガン亜鉛系フェライトコア。
1. 45 to 48.6 mol% Fe 2 O 3 ,
Mn 2 in a molar ratio such that the sum of Fe 2 O 3 and Fe 2 O 3 is approximately 50 mol%.
O 3 , a material containing 28 to 50 mol% of MnO and the balance of ZnO and 0.01 to 0.5% by weight of sub-components containing SiO 2 and CaO.
A manganese-zinc-based ferrite core, characterized in that 2+ is 1 mol% or less (excluding 0 mol%).
【請求項2】 45乃至48.6モル%のFe2 3
Fe2 3 との和が略50モル%となるモル比のMn2
3 、28乃至50モル%のMnO及び残部のZnOか
らなる主成分と、SiO2 及びCaOを含む0.01乃
至0.5重量%の副成分とを有する材料とからなるマン
ガン亜鉛系フェライトコアの製造方法であって、焼成条
件の選定によりFe2+を1モル%以下(0モル%を除
く)としたことを特徴とするマンガン亜鉛系フェライト
コアの製造方法。
2. 45 to 48.6 mol% Fe 2 O 3 ,
Mn 2 in a molar ratio such that the sum of Fe 2 O 3 and Fe 2 O 3 is approximately 50 mol%.
Manganese-zinc-based ferrite core made of a material containing O 3 , 28 to 50 mol% of MnO and the balance ZnO, and 0.01 to 0.5% by weight of sub-components containing SiO 2 and CaO. The method for producing a manganese-zinc-based ferrite core, wherein Fe 2+ is set to 1 mol% or less (excluding 0 mol%) by selecting firing conditions.
【請求項3】 前記焼成条件は、最高保持温度における
酸素分圧を1乃至100%で行うものである請求項2記
載のマンガン亜鉛系フェライトコアの製造方法。
3. The method for producing a manganese zinc-based ferrite core according to claim 2, wherein the firing condition is that the oxygen partial pressure at the maximum holding temperature is 1 to 100%.
JP02119194A 1994-02-18 1994-02-18 Manganese zinc based ferrite core and method for producing the same Expired - Fee Related JP3454316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02119194A JP3454316B2 (en) 1994-02-18 1994-02-18 Manganese zinc based ferrite core and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02119194A JP3454316B2 (en) 1994-02-18 1994-02-18 Manganese zinc based ferrite core and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07230909A true JPH07230909A (en) 1995-08-29
JP3454316B2 JP3454316B2 (en) 2003-10-06

Family

ID=12048073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02119194A Expired - Fee Related JP3454316B2 (en) 1994-02-18 1994-02-18 Manganese zinc based ferrite core and method for producing the same

Country Status (1)

Country Link
JP (1) JP3454316B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210598B1 (en) 1998-08-19 2001-04-03 Minebea Co., Ltd. Mn-Zn ferrite
US6296791B1 (en) 1999-04-05 2001-10-02 Minebea Co., Ltd. Process for producing Mn-Zn ferrite
EP1138649A2 (en) 2000-02-08 2001-10-04 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
EP1138648A2 (en) 2000-02-08 2001-10-04 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
JP2002118014A (en) * 2000-10-12 2002-04-19 Tdk Corp Sintered ferrite compact for clamp filter, and its manufacturing method
US6403017B1 (en) 1999-04-05 2002-06-11 Minebea Co., Ltd. Process for producing Mn-Zn ferrite
US6461531B2 (en) 2000-03-22 2002-10-08 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
US6468441B1 (en) 2000-03-15 2002-10-22 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
EP1447825A2 (en) * 2003-02-12 2004-08-18 Minebea Co., Ltd. Mn-Zn ferrite containing Fe2O3
JP2004315312A (en) * 2003-04-17 2004-11-11 Jfe Steel Kk Mn-zn-based ferrite
US6984338B2 (en) * 2003-02-12 2006-01-10 Minebea Co., Ltd. Mn-Zn ferrite containing less than 50 mol % Fe2O3
US7101488B2 (en) 2003-02-14 2006-09-05 Minebea Co., Ltd. Electromagnetic wave absorber formed of Mn-Zn ferrite
US7108799B2 (en) 2003-02-14 2006-09-19 Minebea Co., Ltd. Electromagnetic wave absorber formed of Mn-Zn ferrite
CN104446410A (en) * 2014-11-04 2015-03-25 横店集团东磁股份有限公司 Manganese-zinc ferrite and preparation method thereof
CN111138179A (en) * 2019-12-25 2020-05-12 江门安磁电子有限公司 Broadband high-impedance manganese-zinc ferrite material and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210598B1 (en) 1998-08-19 2001-04-03 Minebea Co., Ltd. Mn-Zn ferrite
US6403017B1 (en) 1999-04-05 2002-06-11 Minebea Co., Ltd. Process for producing Mn-Zn ferrite
US6296791B1 (en) 1999-04-05 2001-10-02 Minebea Co., Ltd. Process for producing Mn-Zn ferrite
US6547984B2 (en) 2000-02-08 2003-04-15 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
EP1138649A3 (en) * 2000-02-08 2002-05-15 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
EP1138648A2 (en) 2000-02-08 2001-10-04 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
US6436308B2 (en) 2000-02-08 2002-08-20 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
EP1138649A2 (en) 2000-02-08 2001-10-04 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
US6468441B1 (en) 2000-03-15 2002-10-22 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
US6461531B2 (en) 2000-03-22 2002-10-08 Minebea Co., Ltd. Mn-Zn ferrite and production process thereof
JP2002118014A (en) * 2000-10-12 2002-04-19 Tdk Corp Sintered ferrite compact for clamp filter, and its manufacturing method
EP1447825A3 (en) * 2003-02-12 2006-04-12 Minebea Co., Ltd. Mn-Zn ferrite containing less than 50 mol% Fe2O3
EP1447825A2 (en) * 2003-02-12 2004-08-18 Minebea Co., Ltd. Mn-Zn ferrite containing Fe2O3
US6984337B2 (en) 2003-02-12 2006-01-10 Minebea Co., Ltd. Mn—Zn ferrite containing less than 50 mol% Fe2O3
US6984338B2 (en) * 2003-02-12 2006-01-10 Minebea Co., Ltd. Mn-Zn ferrite containing less than 50 mol % Fe2O3
US7101488B2 (en) 2003-02-14 2006-09-05 Minebea Co., Ltd. Electromagnetic wave absorber formed of Mn-Zn ferrite
US7108799B2 (en) 2003-02-14 2006-09-19 Minebea Co., Ltd. Electromagnetic wave absorber formed of Mn-Zn ferrite
JP2004315312A (en) * 2003-04-17 2004-11-11 Jfe Steel Kk Mn-zn-based ferrite
CN104446410A (en) * 2014-11-04 2015-03-25 横店集团东磁股份有限公司 Manganese-zinc ferrite and preparation method thereof
CN111138179A (en) * 2019-12-25 2020-05-12 江门安磁电子有限公司 Broadband high-impedance manganese-zinc ferrite material and preparation method thereof

Also Published As

Publication number Publication date
JP3454316B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3454316B2 (en) Manganese zinc based ferrite core and method for producing the same
KR100627117B1 (en) Ferrite Material
JP2917706B2 (en) Oxide magnetic material
JP2005243794A (en) Method of manufacturing composite sintered magnetic material
JPH06310321A (en) Oxide magnetic substance material
JP3597673B2 (en) Ferrite material
JPH06310320A (en) Oxide magnetic substance material
JP2855990B2 (en) Oxide magnetic material
JP4279923B2 (en) MnMgCuZn ferrite material
US3415751A (en) Manganese-zinc ferrites
JP2000340419A (en) Manganese zinc system ferrite core and its manufacture
JP3597666B2 (en) Mn-Ni ferrite material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP3790606B2 (en) Mn-Co ferrite material
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JPH11307336A (en) Manufacture of soft magnetic ferrite
JPH10270229A (en) Mn-ni ferrite material
JPH0544804B2 (en)
JPH06333719A (en) Ni-zn soft ferrite
JP2532159B2 (en) Transformer core for high frequency power supply
JPH07315919A (en) Production of high permeability oxide magnetic material
JPH05198419A (en) Oxide magnetic material
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
JPH08148323A (en) Production of oxide magnetic material and molding
JP3771941B2 (en) Low loss ferrite manufacturing method and low loss ferrite

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030708

LAPS Cancellation because of no payment of annual fees