JPH09128006A - Controller with phase compensation function - Google Patents

Controller with phase compensation function

Info

Publication number
JPH09128006A
JPH09128006A JP28229695A JP28229695A JPH09128006A JP H09128006 A JPH09128006 A JP H09128006A JP 28229695 A JP28229695 A JP 28229695A JP 28229695 A JP28229695 A JP 28229695A JP H09128006 A JPH09128006 A JP H09128006A
Authority
JP
Japan
Prior art keywords
controller
compensator
phase
time constant
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28229695A
Other languages
Japanese (ja)
Other versions
JP3267841B2 (en
Inventor
Yasuhiro Mayumi
康弘 真弓
Naoki Yagi
直樹 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28229695A priority Critical patent/JP3267841B2/en
Publication of JPH09128006A publication Critical patent/JPH09128006A/en
Application granted granted Critical
Publication of JP3267841B2 publication Critical patent/JP3267841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a controller with phase compensation function in which the adjustment is easy and stability is improved by including the product of the quotient that a stabilizing compensator time constant is divided by an integration time constant and the inverse number of process estimated gain by the transfer function of a PI controller. SOLUTION: When disturbance ΔG exists after the closed loop composed of a PI controller and a phase compensator 1, the fluctuation corresponding to the disturbance ΔG is detected in an actual measured value Y and an error is caused in the cancellation with the predictive value of the fluctuation after the useless time for controlled variable. With the error kept in effect, the feedback to the PI controller 4 is performed. At this stage, in order to corporate with the compensation signal from the phase compensator 1, the transfer function G (s) c of the PI controller 4 includes the product of the quotient that a stabilizing compensation time constant is divided by an integration time constant and the inverse number of process estimated again. Therefore, if this controller is used, the adjustment of a control constant is easy and the stability for a model error is also improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は位相補償機能つき制
御装置に関する。さらに詳しくは、整定時間を短くし、
プロセスの安定性を向上させることが可能な位相補償機
能つき制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device with a phase compensation function. More specifically, shorten the settling time,
The present invention relates to a control device with a phase compensation function that can improve process stability.

【0002】[0002]

【従来の技術】従来、プロセスにむだ時間を含む系、た
とえば炉温の制御、圧延機の板厚の制御などにおいてむ
だ時間を含むプロセスの位相補償のためにスミス補償器
が用いられている。従来のスミス補償器を用いた制御装
置の一例のブロック線図を図6に示す。図6において、
11は、位相補償器であるスミス補償器であり、13は
制御対象、14はPIコントローラである。
2. Description of the Related Art Conventionally, a Smith compensator has been used for phase compensation of a system including a dead time in a system including a dead time in a process, such as control of a furnace temperature and control of a plate thickness of a rolling mill. FIG. 6 shows a block diagram of an example of a control device using a conventional Smith compensator. In FIG.
Reference numeral 11 is a Smith compensator which is a phase compensator, 13 is a control target, and 14 is a PI controller.

【0003】以下、圧延機の板厚を制御するためにスミ
ス補償器を用いた制御装置について説明する。まず圧延
機の出側に設置した厚み計により、圧延材の出側板厚偏
差を検出する。検出された値は、PIコントローラ14
に入力され、PIコントローラ14では、比例演算処
理、積分演算処理、または比例積分演算処理することに
より、制御量を求める。PIコントローラ14により求
められた前記制御量を位相補償器であるスミス補償器1
1に入力したのち、さらにスミス補償器11で求められ
た補償信号をPIコントローラ14にフィードバックす
る。板厚偏差があらかじめ設定された板厚偏差設定
「0」となるまで、フィードバックまでの一連の工程が
繰り返される。ところで、スミス補償器11は、むだ時
間を含む系においては、図6に示されるように制御対象
に応じてあらかじめ推定したむだ時間推定伝達関数e
-Ts、プロセス推定伝達関数G(s)ps、およびプロ
セス推定ゲインKsを構成要素としている。すなわち、
従来のスミス補償器11は、制御量に対するむだ時間後
の変動を予測し、実測定値Yを相殺することによって制
御ゲイン過大による過制御(ハンチングなどの不安定現
象)を防止している。
A control device using a Smith compensator for controlling the strip thickness of the rolling mill will be described below. First, the deviation of the strip thickness on the delivery side of the rolled material is detected by a thickness gauge installed on the delivery side of the rolling mill. The detected value is the PI controller 14
And the PI controller 14 obtains the control amount by performing proportional calculation processing, integral calculation processing, or proportional integral calculation processing. The control amount obtained by the PI controller 14 is the Smith compensator 1 which is a phase compensator.
After being input to 1, the compensation signal obtained by the Smith compensator 11 is fed back to the PI controller 14. A series of steps up to feedback are repeated until the plate thickness deviation reaches a preset plate thickness deviation setting "0". By the way, in the system including the dead time, the Smith compensator 11 estimates the dead time estimation transfer function e in advance according to the controlled object as shown in FIG.
-Ts, it is a process estimating the transfer function G (s) ps, and process estimator gain K s components. That is,
The conventional Smith compensator 11 predicts the variation after the dead time with respect to the control amount and cancels the actual measurement value Y to prevent over-control (an unstable phenomenon such as hunting) due to excessive control gain.

【0004】このスミス補償器を用いた制御装置におい
ては、PIコントローラ14の伝達関数G(s)cは積
分時定数TiとトータルゲインKoを用いて、次式(1)
で表される。また、制御対象13のプロセス伝達関数
は、制御対象によって異なる時定数Tpを用いて3次遅
れ関数で近似される(次式(2)参照)。
In the controller using the Smith compensator, the transfer function G (s) c of the PI controller 14 is calculated by the following equation (1) using the integral time constant T i and the total gain K o.
It is represented by Further, the process transfer function of the controlled object 13 is approximated by a third-order lag function using a time constant T p that varies depending on the controlled object (see the following equation (2)).

【0005】[0005]

【数1】 (Equation 1)

【0006】[0006]

【発明が解決しようとする課題】前記従来のスミス補償
器を用いた制御装置を、圧延機の板厚制御のようにむだ
時間が大きく、時定数が小さいものに適用するばあいに
は、圧延機の低速領域において板厚精度は向上する反
面、高速領域においては精度はあがらない。また、従来
の制御装置は、既設のPI制御ループ内にスミス補償器
を追加するため、制御定数(トータルゲインKoおよび
積分定数)を再調整する必要があるが、オンラインでこ
れらの調整をすることが困難であるという問題があるう
えに、モデル誤差に対する安定性がわるいという問題が
ある。
When the control device using the conventional Smith compensator is applied to a rolling mill having a large dead time and a small time constant, such as the thickness control of a rolling mill, the Although the plate thickness accuracy is improved in the low speed region of the machine, the accuracy is not improved in the high speed region. Further, in the conventional control device, since the Smith compensator is added in the existing PI control loop, it is necessary to readjust the control constants (total gain Ko and integral constant), but these adjustments should be made online. However, there is a problem that the stability against model error is poor.

【0007】また、炉温制御のようにむだ時間が小さ
く、時定数が大きいものに適用するばあいには、式
(1)でむだ時間Tが0に近づくことから、PID(比
例微分および積分)制御と同等の制御しか行えず、制御
性がわるいという問題がある。
Further, when applied to a furnace temperature control that has a small dead time and a large time constant, since the dead time T approaches 0 in the equation (1), the PID (proportional derivative and integral ) There is a problem that controllability is poor because only control equivalent to control can be performed.

【0008】本発明はこのような問題を解決し、調整が
容易で、安定性の向上した位相補償機能つき制御装置を
提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a control device with a phase compensation function which is easy to adjust and has improved stability.

【0009】[0009]

【課題を解決するための手段】本発明の位相補償機能つ
き制御装置は、PIコントローラからの制御信号に対し
てあらかじめ推定されているプロセス推定ゲインを位相
補償器に入力し、えられる出力を前記PIコントローラ
にフィードバックし、制御目標値に対して測定値の位相
補償をする位相補償手段と、前記位相補償器に含まれる
安定補償器によって系を安定に補償する安定補償手段と
からなり、前記PIコントローラの伝達関数が安定補償
器時定数と積分時定数との商と、前記プロセス推定ゲイ
ンの逆数との積を含むことを特徴とするむだ時間を有す
るプロセスの制御に用いられる位相補償機能つき制御装
置である。
A control device with a phase compensation function according to the present invention inputs a process estimation gain estimated in advance with respect to a control signal from a PI controller to a phase compensator, and outputs the obtained output. It comprises a phase compensating means for feeding back to the PI controller and compensating the phase of the measured value with respect to the control target value, and a stable compensating means for stably compensating the system by the stable compensator included in the phase compensator. Control with phase compensation function used for control of process with dead time, characterized in that transfer function of controller includes product of quotient of stable compensator time constant and integral time constant and reciprocal of process estimation gain It is a device.

【0010】[0010]

【発明の実施の形態】つぎに図面を参照しながら本発明
の位相補償機能つき制御装置の一実施例を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a control device with a phase compensation function of the present invention will be described with reference to the drawings.

【0011】図1は本発明の位相補償機能つき制御装置
の一実施例のブロック線図である。図1において、1は
位相補償器であり、2は安定補償器であり、3は制御対
象であり、4はPIコントローラである。ここで安定補
償器2は、安定性を確保するために一次遅れ伝達関数で
表し、その伝達関数G(s)hは、安定補償器時定数T
hを用いて次式(3)で表されており、安定補償時定数
hを調整することにより、制御系としての安定性を確
保している。
FIG. 1 is a block diagram of an embodiment of a control device with a phase compensation function of the present invention. In FIG. 1, 1 is a phase compensator, 2 is a stability compensator, 3 is a control target, and 4 is a PI controller. Here, the stability compensator 2 is represented by a first-order lag transfer function in order to ensure stability, and its transfer function G (s) h is a stability compensator time constant T.
It is expressed by the following equation (3) using h , and the stability as a control system is secured by adjusting the stability compensation time constant T h .

【0012】[0012]

【数2】 (Equation 2)

【0013】位相補償器1は、プロセス推定伝達関数G
(s)Ps(図1では、プロセス伝達関数G(s)ps
とむだ時間推定伝達関数e-Tsの積で表わす)、安定補
償器2の伝達関数G(s)h、およびプロセス推定ゲイ
ンKsを構成要素としている。
The phase compensator 1 has a process estimation transfer function G
(S) Ps (process transfer function G (s) ps in FIG. 1)
It is represented by the product of the dead time estimation transfer function e −Ts ), the transfer function G (s) h of the stable compensator 2, and the process estimation gain K s .

【0014】本発明の位相補償機能つき制御装置を、む
だ時間が大きく、かつ、時定数が小さいプロセス、たと
えば圧延機の板厚の制御などに用いるばあいの制御方法
をつぎに説明する。
A control method when the control device with a phase compensation function of the present invention is used for a process having a long dead time and a small time constant, for example, control of the strip thickness of a rolling mill, will be described below.

【0015】まず、板厚計で板厚を検出し(検出工程は
図示せず)、検出された値が図1のPIコントローラ4
に入力される。板厚を検出する際には、むだ時間の計算
に用いるための板の速度を計るための板速計でトラッキ
ングする。入力された値に基づいて、PIコントローラ
4では比例演算処理、積分演算処理、または比例積分演
算処理を行う。演算処理が行われたのちに、位相補償器
1(安定補償器2を含む)に入力してえられた出力をP
Iコントローラ4にフィードバックする。これら一連の
動作を所望の板厚になるまで繰り返す。
First, the plate thickness is detected by a plate thickness meter (the detection process is not shown), and the detected value is the PI controller 4 shown in FIG.
Is input to When detecting the plate thickness, tracking is performed by a plate speed meter for measuring the speed of the plate used for calculating the dead time. Based on the input value, the PI controller 4 performs a proportional calculation process, an integral calculation process, or a proportional-integral calculation process. After the arithmetic processing is performed, the output obtained by inputting to the phase compensator 1 (including the stability compensator 2) is P
Feedback to the I controller 4. These series of operations are repeated until the desired plate thickness is reached.

【0016】前記PIコントローラ4と位相補償器1か
らなる閉ループ以降に外乱ΔGがあるばあいには、実測
定値Yに外乱ΔG分の変動が検出されることになり、制
御量に対するむだ時間後の変動の予測値との相殺に誤差
を生じる。その誤差を発生したままPIコントローラ4
にフィードバックする。これら一連の動作を所望の板厚
になるまで繰り返す。
If there is a disturbance ΔG after the closed loop consisting of the PI controller 4 and the phase compensator 1, a fluctuation of the actual measurement value Y corresponding to the disturbance ΔG will be detected. There is an error in offsetting the predicted value of the fluctuation. PI controller 4 with the error generated
Feedback to These series of operations are repeated until the desired plate thickness is reached.

【0017】ここで、位相補償器1(安定補償器2を含
む)からの補償信号との協調をとるために、PIコント
ローラ4の伝達関数G(s)cは、プロセス推定ゲイン
s、積分時定数Tiおよび安定補償器時定数Thを用い
て、次式(4)のように一義的に定められる。
Here, in order to coordinate with the compensation signal from the phase compensator 1 (including the stability compensator 2), the transfer function G (s) c of the PI controller 4 is calculated by the process estimation gain K s and the integral. Using the time constant T i and the stability compensator time constant T h , it is uniquely determined as in the following equation (4).

【0018】[0018]

【数3】 (Equation 3)

【0019】すなわち、PIコントローラ4の伝達関数
G(s)cが、安定補償時定数Thを積分時定数Tiで除
した商(Th/Ti)とプロセス推定ゲインKsの逆数
(1/Ks)との積を含んでいる。
That is, the transfer function G (s) c of the PI controller 4 is calculated by dividing the stability compensation time constant T h by the integration time constant T i (T h / T i ) and the reciprocal of the process estimation gain K s ( 1 / K s ).

【0020】ただし、プロセス推定ゲインKsを一例で
説明すると、モータの端子電圧(入力)とモータの回転
数出力との関係のようなゲインをあらかじめ計算する
か、または実設備で測定して制御装置内で設定してい
る。
However, the process estimation gain K s will be described by way of example. The gain such as the relationship between the terminal voltage (input) of the motor and the output of the rotation speed of the motor is calculated in advance or is measured and controlled in actual equipment. It is set in the device.

【0021】また、圧延機の板厚の制御または炉温制御
に本発明の安定補償器を用いるばあい、前述の安定補償
器時定数Thは、(1/2)Ti<Th<2Tiの範囲程度
に設定されている。
When the stability compensator of the present invention is used for controlling the plate thickness of the rolling mill or the furnace temperature, the above-mentioned stability compensator time constant T h is (1/2) T i <T h < It is set in the range of 2T i .

【0022】式(3)、および式(4)に基づくと、図
1は図2のように変形することが可能である。すなわ
ち、図2は図1の等価ブロック線図である。
Based on the equations (3) and (4), FIG. 1 can be modified as shown in FIG. That is, FIG. 2 is an equivalent block diagram of FIG.

【0023】図2のように変形できるので、等価的にオ
ープンループの制御とすることができる。このため、従
来のスミス法に比べて調整が容易である。しかも、等価
的にオープンループの制御であるため、スミス補償器の
閉ループ系と比べて位相遅れ量がスミス法より少なくな
り、よりプロセスが安定である。
Since it can be modified as shown in FIG. 2, it is possible to equivalently perform open loop control. Therefore, the adjustment is easier as compared with the conventional Smith method. Moreover, since the control is equivalently an open loop control, the phase delay amount is smaller than that of the Smith method as compared with the closed loop system of the Smith compensator, and the process is more stable.

【0024】図3にK=Ks=0.5、t=T=1、Ti
=0.1、Th=0.2としたばあいにおいて、モデル
推定誤差がないばあいの応答曲線を、従来のスミス補償
器を用いたばあいの応答曲線と比較して示す。図3の曲
線Aは本発明の制御装置を用いたばあいの応答曲線であ
り、曲線Bは従来のスミス補償器を用いたばあいの応答
曲線である。縦軸と横軸はそれぞれステップ量と時間を
示している。図3に示されるように、スミス補償器を用
いたばあいに整定時間が2.2秒程度であったものが、
本発明の制御装置を用いたばあいには、整定時間が1.
8秒程度に短縮された。すなわち、整定時間が約20%
程度改善され、より安定になっていることがわかる。
In FIG. 3, K = Ks = 0.5, t = T = 1, T i
= 0.1 and T h = 0.2, the response curve without the model estimation error is shown in comparison with the response curve with the conventional Smith compensator. Curve A in FIG. 3 is a response curve when the controller of the present invention is used, and curve B is a response curve when a conventional Smith compensator is used. The vertical axis and the horizontal axis represent the step amount and time, respectively. As shown in FIG. 3, when the Smith compensator was used, the settling time was about 2.2 seconds.
When the control device of the present invention is used, the settling time is 1.
It was shortened to about 8 seconds. That is, the settling time is about 20%
It can be seen that the degree has been improved and is more stable.

【0025】図4は、K=Ks=0.5、t=T=1、
i=0.1、Th=0.2とし、モデル推定誤差が発生
したばあいの応答曲線を従来のスミス補償器を用いたば
あいの応答曲線と比較して示す。縦軸と横軸はそれぞれ
ステップ量と時間を示している。図3で適用した推定定
数と比較して、推定定数を20%増加させている。図3
のばあいと同様に、曲線Aは本発明の制御装置を用いた
ばあいの応答曲線であり、曲線Bは従来のスミス補償器
を用いたばあいの応答曲線である。図4に示されるよう
に、スミス補償器を用いたばあいには振れ幅も大きく発
散気味であるのに対して、本発明の制御装置を用いたば
あいには振れ幅も小さく収束傾向であり安定性がよくな
ったことがわかる。
In FIG. 4, K = Ks = 0.5, t = T = 1,
With T i = 0.1 and T h = 0.2, the response curve when a model estimation error occurs is shown in comparison with the response curve when a conventional Smith compensator is used. The vertical axis and the horizontal axis represent the step amount and time, respectively. The estimated constant is increased by 20% compared to the estimated constant applied in FIG. FIG.
Similar to the case, curve A is the response curve when using the controller of the present invention and curve B is the response curve when using the conventional Smith compensator. As shown in FIG. 4, when the Smith compensator is used, the swing width is large and tends to diverge, whereas when the controller of the present invention is used, the swing width is small and tends to converge. It can be seen that the stability has improved.

【0026】本発明の位相補償機能つき制御装置を、た
とえば炉温の制御のようにむだ時間が小さく、時定数の
大きいものに用いるばあいにも図1の制御系が用いられ
る。このばあいにも、等価的にオープンループの制御で
あるため、位相遅れ量が通常のPI制御より少なくな
り、制御性が向上する。
The control system of FIG. 1 is also used when the controller with phase compensation function of the present invention is used for a furnace having a small dead time and a large time constant, such as a furnace temperature control. In this case as well, since the control is equivalently an open loop control, the amount of phase delay is smaller than that of the normal PI control, and the controllability is improved.

【0027】図5にK=Ks=0.5、t=T=1、Ti
=10、Th=22としたばあいのステップ応答曲線
を、従来のスミス補償器を用いたばあいの応答曲線と比
較して示す。縦軸と横軸はそれぞれステップ量と時間を
示している。図5の曲線Aは本発明の制御装置を用いた
ばあいの応答曲線であり、曲線Bは従来のスミス補償器
を用いたばあいの応答曲線である。図5に示されるよう
に、整定時間が約20%程度改善されて制御性が向上し
ていることがわかる。
In FIG. 5, K = Ks = 0.5, t = T = 1, T i
= 10 and T h = 22, the step response curve is shown in comparison with the response curve using the conventional Smith compensator. The vertical axis and the horizontal axis represent the step amount and time, respectively. Curve A in FIG. 5 is a response curve when the controller of the present invention is used, and curve B is a response curve when a conventional Smith compensator is used. As shown in FIG. 5, it is understood that the settling time is improved by about 20% and the controllability is improved.

【0028】[0028]

【発明の効果】本発明によれば、制御装置を等価的にオ
ープンループと考えることができるので、むだ時間が大
きく、時定数が小さいものに本発明の位相補償機能つき
制御装置を用いれば、制御定数の調整が容易で、モデル
誤差のあるものに対しても安定性がよい。
According to the present invention, since the control device can be considered as an open loop equivalently, if the control device with the phase compensation function of the present invention is used for a device having a large dead time and a small time constant, The control constants are easy to adjust and the stability is good even for those with model errors.

【0029】むだ時間が小さく、時定数が大きいものに
本発明の位相補償機能つき制御装置を用いれば、制御性
が向上する。
If the controller with a phase compensation function of the present invention is used for a device having a small dead time and a large time constant, the controllability is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかわる位相補償機能つき
制御装置を示すブロック線図である。
FIG. 1 is a block diagram showing a control device with a phase compensation function according to an embodiment of the present invention.

【図2】図1の位相補償機能つき制御装置の等価的なブ
ロック線図である。
FIG. 2 is an equivalent block diagram of the control device with the phase compensation function of FIG.

【図3】モデル推定誤差がないばあいに、本発明の一実
施例にかかわる位相補償機能つき制御装置を圧延機の板
厚の制御に用いるばあいの応答曲線と従来のスミス補償
器を用いるばあいの応答曲線を比較して示す図である。
FIG. 3 shows a response curve when a controller with a phase compensation function according to an embodiment of the present invention is used to control the strip thickness of a rolling mill and a conventional Smith compensator when there is no model estimation error. It is a figure which compares and shows the response curve of Ai.

【図4】モデル推定誤差が発生したばあいに、本発明の
一実施例にかかわる位相補償機能つき制御装置を圧延機
の板厚の制御に用いるばあいの応答曲線と従来のスミス
補償器を用いるばあいの応答曲線を比較して示す図であ
る。
FIG. 4 is a graph showing a case where a controller having a phase compensation function according to an embodiment of the present invention is used to control the strip thickness of a rolling mill when a model estimation error occurs, and a response curve and a conventional Smith compensator are used. It is a figure which compares and shows the response curve of the case.

【図5】本発明の一実施例にかかわる位相補償機能つき
制御装置を炉温の制御に用いるばあいの応答曲線と従来
のスミス補償器を用いるばあいの応答曲線を比較して示
す図である。
FIG. 5 is a diagram showing a comparison between a response curve when a control device with a phase compensation function according to an embodiment of the present invention is used for controlling furnace temperature and a response curve when a conventional Smith compensator is used.

【図6】従来のスミス補償器を用いた制御装置のブロッ
ク線図である。
FIG. 6 is a block diagram of a control device using a conventional Smith compensator.

【符号の説明】[Explanation of symbols]

1 位相補償器 2 安定補償器 3 制御対象 4 PIコントローラ 1 Phase compensator 2 Stability compensator 3 Control target 4 PI controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 PIコントローラからの制御信号に対し
てあらかじめ推定されているプロセス推定ゲインを位相
補償器に入力し、えられる出力を前記PIコントローラ
にフィードバックし、制御目標に対して測定値の位相補
償をする位相補償手段と、前記位相補償器に含まれる安
定補償器によって系を安定に補償する安定補償手段とか
らなり、前記PIコントローラの伝達関数が、安定補償
器時定数を積分時定数で除した商と前記プロセス推定ゲ
インの逆数との積を含むことを特徴とするむだ時間を有
するプロセスの制御に用いられる位相補償機能つき制御
装置。
1. A process estimation gain pre-estimated for a control signal from a PI controller is input to a phase compensator, and an obtained output is fed back to the PI controller to obtain a phase of a measured value with respect to a control target. Comprising a phase compensating means for compensating and a stable compensating means for stably compensating the system by a stable compensator included in the phase compensator, and the transfer function of the PI controller uses the stable compensator time constant as an integral time constant. A controller with a phase compensation function used for controlling a process having a dead time, characterized by including a product of a quotient obtained by division and a reciprocal of the process estimation gain.
JP28229695A 1995-10-30 1995-10-30 Controller with phase compensation function Expired - Fee Related JP3267841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28229695A JP3267841B2 (en) 1995-10-30 1995-10-30 Controller with phase compensation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28229695A JP3267841B2 (en) 1995-10-30 1995-10-30 Controller with phase compensation function

Publications (2)

Publication Number Publication Date
JPH09128006A true JPH09128006A (en) 1997-05-16
JP3267841B2 JP3267841B2 (en) 2002-03-25

Family

ID=17650583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28229695A Expired - Fee Related JP3267841B2 (en) 1995-10-30 1995-10-30 Controller with phase compensation function

Country Status (1)

Country Link
JP (1) JP3267841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259223B1 (en) 1997-08-13 2001-07-10 Saab Ab Method and apparatus for phase compensation in a vehicle control system
US20100237819A1 (en) * 2009-03-18 2010-09-23 Nikon Corporation Control Systems and Methods for Compensating for Effects of a Stage Motor
CN111299330A (en) * 2018-12-12 2020-06-19 东芝三菱电机产业系统株式会社 Mathematical model calculation device and control device for rolling production line

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259223B1 (en) 1997-08-13 2001-07-10 Saab Ab Method and apparatus for phase compensation in a vehicle control system
US20100237819A1 (en) * 2009-03-18 2010-09-23 Nikon Corporation Control Systems and Methods for Compensating for Effects of a Stage Motor
US8853988B2 (en) * 2009-03-18 2014-10-07 Nikon Corporation Control systems and methods for compensating for effects of a stage motor
CN111299330A (en) * 2018-12-12 2020-06-19 东芝三菱电机产业系统株式会社 Mathematical model calculation device and control device for rolling production line
CN111299330B (en) * 2018-12-12 2022-03-22 东芝三菱电机产业系统株式会社 Mathematical model calculation device and control device for rolling production line

Also Published As

Publication number Publication date
JP3267841B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
KR0135586B1 (en) Gain adaptive control device
WO2016042589A1 (en) Control apparatus
JP3812157B2 (en) Method and apparatus for stabilizing control of rolling mill
JP2003001310A (en) Plate thickness control system for continuous rolling mill
JP3267841B2 (en) Controller with phase compensation function
KR100398765B1 (en) Method of controlling board thickness, calculating passing schedule, and board thickness controller for continuous rolling machine
KR101536461B1 (en) Apparatus for controlling slab width and method for the same
JP3319356B2 (en) Method and apparatus for controlling thickness of material to be rolled by rolling mill
JP6781411B2 (en) Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment
JP3501982B2 (en) Sheet width control device
JP2000288613A (en) Automatic gage control method for rolling mill
JPH04187315A (en) Method for controlling strip thickness and tension between stands of continuous rolling mill
KR100293213B1 (en) Method for controlling thickness of steel sheet at exit side of hot finish rolling mill
JPH0232041B2 (en)
JPH0871627A (en) Controller
JPH08155522A (en) Method for controlling hot continuous finishing mill
JP2885544B2 (en) Dead time compensation controller
JP3389903B2 (en) Metal strip rolling control method
JPS6343164B2 (en)
JP3448210B2 (en) Closed loop process controller including PID regulator
JP2960878B2 (en) Temperature control method and temperature control device in rolling mill
JPH0231604B2 (en)
JPH10312201A (en) Process controller for closed loop system including pid adjuster
JP3071300B2 (en) Looper height control device
JPH07284832A (en) Controlling method and device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

LAPS Cancellation because of no payment of annual fees