JPH09126961A - Concentration measuring method - Google Patents

Concentration measuring method

Info

Publication number
JPH09126961A
JPH09126961A JP30677695A JP30677695A JPH09126961A JP H09126961 A JPH09126961 A JP H09126961A JP 30677695 A JP30677695 A JP 30677695A JP 30677695 A JP30677695 A JP 30677695A JP H09126961 A JPH09126961 A JP H09126961A
Authority
JP
Japan
Prior art keywords
measured
liquid
sample
membrane
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30677695A
Other languages
Japanese (ja)
Other versions
JP3582188B2 (en
Inventor
Yoshio Hashizume
義雄 橋爪
Akio Karigome
昭夫 刈米
Ryuzo Hayashi
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP30677695A priority Critical patent/JP3582188B2/en
Publication of JPH09126961A publication Critical patent/JPH09126961A/en
Application granted granted Critical
Publication of JP3582188B2 publication Critical patent/JP3582188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to perform the highly accurate measurement of a sample, which is liable to be contaminated, by a constitution, wherein a specified opening and closing mechanism is provided in a flow path, the opening is performed at a constant time interval for obtaining a specified liquid sending amount and the dissolved transferred quantity is detected by the specified procedure. SOLUTION: A pump 3 is driven, and liquid such as buffer liquid is made to flow through the lower-side flow path of a separating mechanism 9. An on/off valve 4 is opened during the time, wherein sample liquid to be measured flows through the upper-side flow path of the separating mechanism 9 by a specified amount, five times or more of the volume of the flow path. The output of a detector 11 during the time period is read out. In this output reading, data collection is started with the time point when the contact of the sample and a separating film 10 is started as a starting point. After the contact with the film 10 is finished, the data to the point where the output decreases are stored, and the maximum point and the minimum point of the output are obtained. Furthermore, S/N can be also improved by averaging the outputs in the vicinities of the maximum and minimum points.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液体試料、特に発酵
液などを分析する場合に、検出器の汚染を防ぎ、濁りの
影響を受けず試料消費量を少なくでき、高精度かつ保守
が簡単な分析装置に関するものである。
FIELD OF THE INVENTION The present invention prevents contamination of a detector when analyzing a liquid sample, especially a fermented liquor, can reduce the sample consumption without being affected by turbidity, and is highly accurate and easy to maintain. The present invention relates to an analyzer.

【0002】[0002]

【従来の技術】従来濃度測定装置において、被測定試料
液を定量注入バルブに導き、該バルブに一定量の被測定
試料液を貯留し、定量注入バルブの流路を切り替えて、
別途送液系に一定量の試料を流入させて、なんらかの分
離、反応後特定化合物を検出する方法が多く用いられて
いる。この代表例は液体クロマトグラフ、フローインジ
ェクション装置などである。しかし、たとえば発酵液の
ような汚染が著しい試料場合、定量注入バルブがつまっ
たり、検出器が汚染されて精度が低下するという問題点
があった。それを防ぐために、発酵液などの被測定試料
液に含まれる微生物や固形物が検出部に至らないように
被測定試料液をフィルターでろ過し、ろ液を分析する形
式の装置が従来多く用いられてきた。この方式では、フ
ィルターが目詰まりし、頻繁にフィルターの交換が必要
で保守が困難であり、またフィルターを使い捨てにする
方式も存在するが分析コストの上昇をもたらす欠点があ
った。このため膜両面に別個の液体が流通するように
し、被測定試料液と膜の別面に流れる液体が膜をはさん
で接する際に被測定試料液の一部もしくは被測定試料液
に溶解した化学物質の一部を膜を介して転溶させ、この
転溶した被測定試料液もしくは化学物質を検知する形式
の装置がある。
2. Description of the Related Art In a conventional concentration measuring device, a sample solution to be measured is introduced into a quantitative injection valve, a fixed amount of the sample solution to be measured is stored in the valve, and the flow path of the quantitative injection valve is switched.
A method of separately injecting a fixed amount of a sample into a liquid delivery system and detecting a specific compound after some separation and reaction is often used. Typical examples are liquid chromatographs and flow injection devices. However, in the case of a highly contaminated sample such as a fermented liquid, there has been a problem that the metering valve is clogged and the detector is contaminated and the accuracy is lowered. In order to prevent this, a device of the type that analyzes the filtrate by filtering the sample liquid to be measured with a filter so that microorganisms and solids contained in the sample liquid to be measured such as the fermentation liquid do not reach the detection unit has been often used. Has been. In this method, the filter is clogged, frequent replacement of the filter is difficult and maintenance is difficult, and there is also a method of disposing the filter as a single use, but it has a drawback of increasing the analysis cost. For this reason, separate liquids are allowed to flow on both sides of the membrane, and when the sample liquid to be measured and the liquid flowing on the other side of the film are in contact with each other across the membrane, they are dissolved in a part of the sample liquid to be measured or the sample liquid to be measured. There is an apparatus of a type in which a part of a chemical substance is transferred through a membrane and the transferred sample liquid or chemical substance to be measured is detected.

【0003】[0003]

【発明が解決しようとする課題】前記の転溶方式はフィ
ルターでのろ過方式に比べて目詰まりはしにくいが、膜
の特性変動により測定値の変化が起きる可能性があり、
従来高精度測定が困難であるとされてきた。また膜を介
して溶液または物質が移動するのに時間がかかり、測定
に長時間を要すると同時に試料消費量が多くなる欠点が
あった。また膜の特性により転溶される物質量がほぼ決
定されており、測定濃度範囲が検出器のダイナミックレ
ンジだけではなく、膜の特性によっても決定され、試料
の適用範囲が限定され、或は試料の測定出来る濃度範囲
が限定されてしまい、応用範囲がせまいものであった。
The above-mentioned phase transfer method is less likely to cause clogging than the filtration method using a filter, but there is a possibility that a change in the measured value may occur due to a change in the characteristics of the membrane.
Conventionally, it has been difficult to measure with high precision. Further, it takes a long time for the solution or the substance to move through the membrane, which requires a long time for the measurement, and at the same time, the sample consumption amount increases. In addition, the amount of substance that can be redissolved is almost determined by the characteristics of the membrane, and the concentration range to be measured is determined not only by the dynamic range of the detector but also by the characteristics of the membrane, limiting the application range of the sample, or The concentration range that can be measured was limited, and the application range was narrow.

【0003】[0003]

【課題を解決するための手段】本発明は上記転溶式の濃
度測定装置において、被測定試料液を分離機構に導く配
管の途中に流路を任意の時点で開閉できる開閉機構を設
け、前記分離機構の膜面に接触する部分の流路体積に対
して送液された被測定試料液の体積が流路体積の5倍以
上になる任意の一定間隔で被測定試料液流路を開放して
膜と被測定試料液を接触させるようにした。被測定試料
液の送液量が流路体積に対して5倍以上となるような一
定時間間隔で被測定試料液流路を開放することにより、
分離機構部において被測定試料液と別種の液体の相対速
度は一定であり、かつ流路内が被測定試料液により完全
に置きかえられる瞬間が存在することになる。この過渡
的な過程での転溶量を検出することによって、試料量を
最小にして正確な測定が可能となる。さらに被測定試料
液が膜と接触する時間を、送液量が流路体積の5倍以上
になるように設定しておけば、その条件範囲内で時間を
短くするほど、転溶される溶液量または化学物質量は少
なくなり、感度は低下する。逆に長くすると感度が上昇
し、膜面での感度調整が可能となる。また本発明は、標
準溶液と被測定試料液を交互に分離機構に導く配管を構
成し、各々の配管の途中に流路を任意の時点で開閉でき
る開閉機構を設け、前記分離機構の膜面に接触する部分
の流路体積に対して送液される標準溶液または被測定試
料液の体積が流路体積の5倍以上になる任意の一定間隔
で標準溶液および被測定試料液流路を開放し、最初に被
測定試料液を一定時間接触せしめ、次に標準溶液を別途
定めた一定時間接触せしめた時の検出値を記憶し、続い
て標準溶液と同一時間被測定試料液を接触せしめた時の
検出値と比較して濃度を算出する用にした。このように
あらかじめ膜面に被測定試料液を接触させることによ
り、試料との接触による膜面の変動をあかじめ起こさせ
た後に標準溶液と、被測定試料液が順次一定条件で接触
するようになって、より高精度の測定が可能となる。
According to the present invention, in the above-mentioned transfer type concentration measuring apparatus, an opening / closing mechanism for opening / closing a flow path at an arbitrary time is provided in the middle of a pipe for guiding a sample liquid to be measured to the separation mechanism. Open the sample liquid channel to be measured at an arbitrary fixed interval where the volume of the sample liquid to be measured fed to the membrane volume of the separation mechanism is 5 times the volume of the channel or more. The membrane and the sample solution to be measured were brought into contact with each other. By opening the sample liquid channel to be measured at regular time intervals such that the amount of the sample liquid to be measured to be fed is 5 times or more the flow channel volume,
In the separation mechanism, the relative velocity of the sample liquid to be measured and the liquid of a different type is constant, and there is a moment when the inside of the flow path is completely replaced by the sample liquid to be measured. By detecting the amount of inversion during this transient process, the sample amount can be minimized and accurate measurement can be performed. Further, by setting the time for contacting the sample liquid to be measured with the membrane so that the amount of liquid transfer is 5 times or more of the volume of the channel, the shorter the time is within the range of the conditions, the more the solution is transferred. The amount or amount of chemicals decreases and the sensitivity decreases. On the contrary, when the length is increased, the sensitivity is increased, and the sensitivity can be adjusted on the film surface. Further, the present invention comprises a pipe that alternately guides the standard solution and the sample liquid to be measured to the separation mechanism, and provides an opening / closing mechanism capable of opening and closing the flow path at an arbitrary point in the middle of each pipe, and the membrane surface of the separation mechanism. Open the standard solution and measured sample solution flow paths at an arbitrary fixed interval where the volume of the standard solution or measured sample solution sent to the flow path volume of the part that contacts Then, the sample solution to be measured was first contacted for a certain period of time, and then the detected value when the standard solution was contacted for a predetermined period of time was memorized, and then the sample solution to be measured was contacted with the standard solution for the same period of time. It was used to calculate the concentration by comparing with the detected value at the time. In this way, by contacting the sample solution with the film surface in advance, the standard solution and the sample solution under test are sequentially contacted under certain conditions after causing the film surface to fluctuate due to contact with the sample. As a result, it becomes possible to measure with higher accuracy.

【0005】[0005]

【発明の実施の形態】図1を借りて本発明の実施の形態
を説明する。9が前述した分離機構で10が分離膜であ
る。6は被測定試料液送液系の配管で、分離機構の膜1
0の上側の流路に接続されており、途中に開閉弁が挿入
され、その上流側に送液ポンプ1が設けてある。このポ
ンプは図2に示すように開閉弁4の下流側に設けてもよ
い。まず図1で流路7は無いものとして、請求項1の発
明について述べる。8は分離機構9の膜10の下側の流
路に接続された送液用配管でポンプ3によって被測定試
料液とは別の液が分離機構の膜10の下の流路を通って
検出器11に送られるようになっている。本発明はこの
ような装置を用いて次のようにして濃度測定を行う。即
ちポンプ3を駆動して分離機構9の下側の流路に緩衝液
のような液をながしながら、開閉弁4を被測定試料液が
分離機構の上側の流路にその体積の5倍以上の一定量だ
け流れる時間だけ開き、その間の検出器11の出力を読
み取るのである。この出力の読取りの方式は例えば、試
料が膜と接触を開始した時点をスタ−ト点としてデータ
収集を開始し、膜との接触を終了した後、出力が減少す
る点までのデータを記憶し、出力の最大点と最小点を求
める。なお最大,最小の近傍で出力を平均化してS/N
を向上させることもできる。請求項2の発明は図1に示
すように、上述した装置に流路配管7を加えた装置によ
り、配管6,7を通して被測定試料液と標準溶液とを交
互に分離機構9の上側の流路に送れるようにし、まず被
測定試料液を分離機構に一定時間流した後、標準溶液を
別の一定時間分離機構の上側の流路に流し、そのときの
検出器の出力を記憶し、その後被測定試料液を上記標準
溶液と同じ時間だけ流して、そのときの検出器の出力と
先の記憶させた検出器の出力とを比較するものである。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIG. 9 is the above-mentioned separation mechanism and 10 is a separation membrane. Reference numeral 6 is a pipe for the sample liquid sending system, which is the membrane 1 of the separation mechanism.
0 is connected to the upper flow path, an on-off valve is inserted in the middle, and a liquid feed pump 1 is provided on the upstream side. This pump may be provided on the downstream side of the on-off valve 4 as shown in FIG. First, the invention of claim 1 will be described assuming that the flow path 7 is not provided in FIG. Reference numeral 8 denotes a liquid sending pipe connected to the lower channel of the membrane 10 of the separation mechanism 9 and a liquid different from the sample liquid to be measured is detected by the pump 3 through the lower channel of the membrane 10 of the separation mechanism. It is designed to be sent to the container 11. The present invention uses such a device to measure the concentration as follows. That is, while the pump 3 is driven to flow a liquid such as a buffer solution into the lower flow path of the separation mechanism 9, the open / close valve 4 is used to cause the sample liquid to be measured to flow into the upper flow path of the separation mechanism at 5 times its volume or more. The output of the detector 11 is read during the period in which the output of the detector 11 is opened for a certain amount of time. The method of reading the output is, for example, to start data collection with the start point of contact of the sample with the film as the start point, and store the data up to the point where the output decreases after the contact with the film is completed. , Find the maximum and minimum points of output. Note that the output is averaged in the vicinity of the maximum and the minimum, and the S / N
Can also be improved. As shown in FIG. 1, the invention of claim 2 is a device in which a flow path pipe 7 is added to the above-mentioned device, whereby the sample solution to be measured and the standard solution are alternately flowed through the pipes 6 and 7 above the separation mechanism 9. First, the sample solution to be measured is allowed to flow through the separation mechanism for a certain period of time, and then the standard solution is allowed to flow through the upper path of the separation mechanism for another certain period of time, and the output of the detector at that time is stored. The sample liquid to be measured is allowed to flow for the same time as the standard solution, and the output of the detector at that time is compared with the output of the previously stored detector.

【0006】分離機構部分での測定対象化合物の透過量
をできる限り一定化し測定結果を高精度化するための方
策を検討したところ、精度および感度は流速,流路形状
に関係なく膜と接触する流路体積と、その内部を通過し
た被測定試料液量に関係することがわかり、さらに検討
を進め流路体積の5倍以上の被測定試料液を通過させれ
ば良いことが判明した。たとえば被測定試料がグルコー
スの場合、40mm2の面積で膜と試料が接触し、流路
断面が1mmの正方形であるとするとその流路体積は
0.04cm3 、つまり40μlとなる。この場合最低
200μlの被測定試料液を通過させれば良い。被測定
試料液を送液するチューブポンプの流速が2ml/分で
あるとすると、10秒間送液することにより正確な結果
が得られる。膜の逆面にたとえば緩衝液が2ml/分で
流れていたとすると、転溶した測定対象化合物の濃度分
布は液体クロマトグラフのピークのような形状となる。
そしてこのときの測定値の変動率は3%である。ところ
が被測定試料液の体積が流路体積の3倍の場合は測定値
の変動率は10%にもなっているのである。たとえば被
測定試料液が酵母培養液であり、測定対象化合物がグル
コースであり、検出部がグルコースオキシダーゼを固定
化した酵素電極である場合で説明する。グルコース溶液
を被測定試料液とし、膜面積40mm2 、流路体積40
μlの分離機構部を用い、200μl〜1000μlの
被測定試料液を接触させると、得られる検出値は接触し
た被測定試料液量に比例しほぼ直線的に増加する。つま
り低濃度を高精度で測る場合は被測定試料液体積を増や
せば良いことになり、被測定試料液の通過時間を制御す
ることにより感度を制御できる。また発酵液の場合、菌
体、菌体由来の各種化合物、培地の不純物などが含まれ
ており、長時間の膜面との接触により膜透過性が変化す
る場合があるが、本発明の方法では被測定試料液の接触
時間を制限しているためこの変動量は比較的小さいが全
く影響がないわけではない。そこで、まず被測定試料液
を短時間膜面と接触させ膜面状態を試料で変動した状態
とし、その直後に標準溶液を測定し、その検出値と、そ
の後に測定した被測定試料液での検出値を比較すること
により最も精度良く測定できる。もちろん、被測定試料
液と標準溶液との間に蒸留水などによる洗浄工程を入れ
ても問題ないが、この場合も一定の間隔で実施すること
が必要である。また、あらかじめ被測定試料液を接触さ
せる工程で、配管などに溜った古い被測定試料液を廃棄
することが可能であり、装置の無駄な動作をなくせる利
点もある。
As a result of studying a method for making the amount of permeation of the compound to be measured in the separation mechanism part as constant as possible and improving the accuracy of the measurement result, the accuracy and sensitivity are in contact with the membrane regardless of the flow velocity and the shape of the flow channel. It was found that it is related to the volume of the flow channel and the amount of the sample liquid to be measured that has passed through the inside of the channel, and further studies have revealed that it is sufficient to pass the sample liquid to be measured at 5 times or more the volume of the channel. For example, in the case where the sample to be measured is glucose, if the membrane and the sample are in contact with each other in an area of 40 mm 2 and the channel cross section is a square of 1 mm, the channel volume is 0.04 cm 3 , that is, 40 μl. In this case, at least 200 μl of the sample liquid to be measured may be passed. If the flow rate of the tube pump for feeding the sample liquid to be measured is 2 ml / min, accurate results can be obtained by feeding the liquid for 10 seconds. If, for example, a buffer solution is flowing at 2 ml / min on the opposite surface of the membrane, the concentration distribution of the transferred compound to be measured has a shape like the peak of a liquid chromatograph.
The fluctuation rate of the measured value at this time is 3%. However, when the volume of the sample liquid to be measured is three times the volume of the flow channel, the fluctuation rate of the measured value is as high as 10%. For example, the case where the sample solution to be measured is a yeast culture solution, the compound to be measured is glucose, and the detection unit is an enzyme electrode having glucose oxidase immobilized thereon will be described. The glucose solution was used as the sample solution to be measured, the membrane area was 40 mm 2 , and the channel volume was 40
When 200 μl to 1000 μl of the sample liquid to be measured is brought into contact with the separation mechanism part of μl, the obtained detection value is proportional to the amount of the sample liquid to be contacted and increases almost linearly. That is, in the case of measuring low concentration with high accuracy, the volume of the sample liquid to be measured may be increased, and the sensitivity can be controlled by controlling the passage time of the sample liquid to be measured. Further, in the case of a fermentation broth, cells, various compounds derived from cells, impurities of the medium, etc. are contained, and the membrane permeability may change due to contact with the membrane surface for a long time, but the method of the present invention Since the contact time of the sample liquid to be measured is limited, this fluctuation amount is relatively small, but it is not completely ineffective. Therefore, first the sample liquid to be measured is brought into contact with the film surface for a short time to change the film surface state in the sample, and immediately after that, the standard solution is measured, and the detected value and the measured sample liquid after that are measured. The most accurate measurement can be made by comparing the detected values. Of course, there is no problem if a washing step with distilled water or the like is inserted between the sample solution to be measured and the standard solution, but in this case as well, it is necessary to carry out the washing step at regular intervals. In addition, in the step of contacting the sample liquid to be measured in advance, it is possible to discard the old sample liquid to be measured accumulated in the pipe and the like, and there is an advantage that unnecessary operation of the apparatus can be eliminated.

【0007】本発明では、配管系6,7,8等を構成す
るチューブの素材と太さは特に問わないが、開閉手段
4,5等として後述のピンチバルブを用いる場合には少
なくとも配管系のピンチバルブで挟む部分は復元力のあ
る弾性体、例えばシリコンチューブ、塩化ビニル樹脂チ
ューブ、ポリオレフィン系チューブが望ましい。中でも
ポリオレフィン系チューブはガス透過性が低く、液が停
止している際にチューブ外壁から空気が侵入し、気泡が
発生することが少なく好ましい。またこれらのチューブ
を統合する際には2方向〜4方向ジョイントが用いられ
る。この部分の構成も特に問わないが金属またはプラス
チックなどのチューブより硬い素材で構成されたジョイ
ントにチューブを装着する方法が簡便であり好ましい。
ジョイント素材がフッ素樹脂、ポリプロピレン、ポリエ
チレンで構成されていると加工が容易で各種の形態のも
のを作成できる上、金属のように中を流れる液体による
腐食が起きにくく好ましい。さらに、フッ素樹脂および
ポリプロピレン製のジョイントは発酵液を送液する際に
加圧蒸気滅菌が可能であり、より好ましい。またバルブ
としては、ピンチバルブ、電磁バルブ、モーター駆動の
多方バルブなどの各種のものが用いられるが、被測定試
料液の濁りによるつまりを防止するために内部配管径を
選択する必要がある。ピンチバルブは用いる配管がその
まま流路を閉鎖するために用いられるのでつまりの点で
は最も有利である。
In the present invention, the material and thickness of the tubes constituting the piping systems 6, 7, 8 etc. are not particularly limited, but at least when the pinch valves described below are used as the opening / closing means 4, 5 etc. The portion sandwiched by the pinch valves is preferably an elastic body having a restoring force, such as a silicone tube, a vinyl chloride resin tube, or a polyolefin tube. Above all, a polyolefin tube is preferable because it has low gas permeability and air does not enter from the outer wall of the tube when the liquid is stopped and bubbles are not generated. When integrating these tubes, two-way to four-way joints are used. The structure of this portion is not particularly limited, but a method of attaching the tube to a joint made of a material harder than the tube such as metal or plastic is simple and preferable.
When the joint material is made of fluororesin, polypropylene, or polyethylene, it is easy to process and various shapes can be prepared, and corrosion due to a liquid flowing through like metal does not easily occur, which is preferable. Furthermore, the fluororesin and polypropylene joints are more preferable because they can be subjected to pressure steam sterilization when feeding the fermentation liquid. As the valve, various ones such as a pinch valve, an electromagnetic valve, a motor-driven multi-way valve, etc. are used, but it is necessary to select the internal pipe diameter in order to prevent clogging due to turbidity of the sample liquid to be measured. The pinch valve is most advantageous in the point that the piping used is used for closing the flow path as it is.

【0008】本発明の濃度測定方法で用いる基本的な動
作および配管系の説明を補足する。ピンチバルブを備え
た配管系6,7をピンチバルブ設置部の液体の流れ方向
に対して下流側に設置した合流用のジョイント12を用
いて合流させ、膜を備えた分離機構の膜の片面流路内に
被測定試料液を導く。なおポンプ1,2は図1のように
ジョイント12の前でも図2のようにジョイント12の
後でもよく、あるいは分離機構9の後に入れてもよい。
一般的に分離機構内部の流路が細く、通過時の背圧が上
昇する可能性がある場合は、分離機構の前に入れて加圧
導入する方が良い。ここで用いるポンプは、ギアポン
プ、プランジャーポンプ、チューブポンプなど各種のも
のを用いることができるが、安価でかつ濁りを含む定被
測定試料液を送液する目的ではチューブをしごいて送液
を行なうチューブポンプが好ましい。チューブポンプに
用いるチューブは前記の配管に用いたのと同様に各種の
ものを用いることができるが、長期の送液速度安定性が
得られるポリオレフィン系チューブが好ましく用いられ
る。
The description of the basic operation and piping system used in the concentration measuring method of the present invention will be supplemented. One-sided flow of a membrane of a separation mechanism equipped with a membrane, where the piping systems 6 and 7 equipped with a pinch valve are joined using a joining joint 12 installed on the downstream side with respect to the liquid flow direction of the pinch valve installation part. Guide the sample solution to be measured into the channel. The pumps 1 and 2 may be placed before the joint 12 as shown in FIG. 1, after the joint 12 as shown in FIG. 2, or after the separating mechanism 9.
In general, when the flow path inside the separation mechanism is narrow and the back pressure at the time of passage may increase, it is better to put it in front of the separation mechanism to introduce pressure. Various pumps such as gear pumps, plunger pumps, and tube pumps can be used here, but for the purpose of sending a constant measurement sample solution containing turbidity at low cost, the tube is squeezed to send the solution. Performing tube pumps are preferred. As the tube used for the tube pump, various kinds of tubes can be used in the same manner as the tube used for the above-mentioned piping, but a polyolefin-based tube capable of obtaining long-term liquid transfer rate stability is preferably used.

【0009】一般的に膜を有する分離機構で用いる膜
は、限外ろか膜、透析膜、メンブレンフィルターなどが
例示できる。限外ろか膜としては、分離し測定する対象
物質により各種の膜材が利用できるが、ポリスルフォン
膜、セルロースアセテート膜などが例示できる。透析膜
としては再生セルロース膜などが用いられる。メンブレ
ンフィルターとしてはフッ素樹脂製、ポリカーボネート
製、再生セルロース製、ニトロセルロース製などのもの
が用いられる。水溶性低分子を測定対象とする際には、
加圧の必要性がなく丈夫な透析膜が好んで用いられる。
また水中に溶けたアンモニアやアルコールを気化、転溶
させる際にはフィルター孔径0.1〜1.0μm程度の
フッ素樹脂製メンブレンフィルターを利用すると、一種
のガス透過膜となり目的物質のみを転溶させ、不要な成
分が検出器に到達することをより有効に防げる。分離機
構部自体は金属、プラスチックなどどのような素材でも
構成できるが、液による腐食を防ぐため、ステンレス、
チタン材、アクリル樹脂、フッ素樹脂、ポリプロピレ
ン、ポリエチレン、ポリカーボネートなどで製作してお
くことが好ましい。特にプラスチックで製作すると透析
膜を挟んだ場合、膜を傷めることが少なく望ましい。
Examples of the membrane generally used in the separation mechanism having a membrane include ultrafiltration membranes, dialysis membranes and membrane filters. As the ultrafiltration membrane, various membrane materials can be used depending on the substance to be separated and measured, and examples thereof include polysulfone membrane and cellulose acetate membrane. A regenerated cellulose membrane or the like is used as the dialysis membrane. As the membrane filter, those made of fluororesin, polycarbonate, regenerated cellulose, nitrocellulose, etc. are used. When measuring water-soluble small molecules,
A durable dialysis membrane that does not require pressurization is preferred.
In addition, when vaporizing and transferring the dissolved ammonia and alcohol in water, if you use a fluororesin membrane filter with a filter pore size of 0.1 to 1.0 μm, it becomes a kind of gas permeable membrane and only the target substance is transferred. More effectively preventing unwanted components from reaching the detector. The separation mechanism itself can be made of any material such as metal or plastic, but in order to prevent corrosion by liquid, stainless steel,
It is preferably made of titanium material, acrylic resin, fluororesin, polypropylene, polyethylene, polycarbonate or the like. In particular, it is desirable to manufacture it with plastic because it does not damage the membrane when the dialysis membrane is sandwiched.

【0010】測定対象物質の検知に用いる検出器として
は、吸光光度計、蛍光光度計、pHメータ、イオン電
極、半導体イオンセンサ、電気化学検出器、原子吸光分
析器、誘導プラズマ発光分析器、酵素電極、熱測定器な
どの公知の検出器が用いられる。また流路内部で化学反
応を起こさせ、その結果変化する物理量を検知すること
も可能であるし、発酵液の菌体などを除去した後に、分
離カラムに導入し、いわゆる液体クロマトグラフと接続
することも可能である。この中で特定成分を特異的に検
出できる酵素電極の利用は、装置を簡単に構成でき、容
易に高精度化が可能である点で望ましい。酵素電極の種
類としては過酸化水素電極、酸素電極、pH電極などの
表面に膜上に酵素を固定化する形式のものでも、担体に
固定化した酵素をカラムに充填しその下流に各種電極を
設置してもよい。酵素の固定化方法としては化学結合
法、包括法、イオン結合法など公知の各種方法を用いる
ことができる。また電極上に膜状に酵素を固定化する際
は電極面に直接酵素あるいは酵素およびアルブミンなど
の酵素と架橋する化合物などが接触していてもよいし、
アセチルセルロース膜上に酵素を固定化し膜を電極面に
押し当てる形で保持してもよい。担体に固定化する場合
には、活性炭、シリカゲル、ケイソウ土などの公知の担
体を利用できる。担体をカラムとして用いる方法は酵素
活性が低い場合にタンパク質量を多く固定化できるため
有利である。
The detector used to detect the substance to be measured is an absorptiometer, a fluorometer, a pH meter, an ion electrode, a semiconductor ion sensor, an electrochemical detector, an atomic absorption analyzer, an induction plasma emission analyzer, an enzyme. Known detectors such as electrodes and thermometers are used. It is also possible to cause a chemical reaction inside the flow channel and detect the physical quantity that changes as a result, and after removing the bacterial cells of the fermentation liquid, introduce it into a separation column and connect it to a so-called liquid chromatograph. It is also possible. Of these, the use of an enzyme electrode capable of specifically detecting a specific component is desirable in that the device can be configured easily and the accuracy can be easily increased. As for the type of enzyme electrode, hydrogen peroxide electrode, oxygen electrode, pH electrode, and other types in which the enzyme is immobilized on the surface of the membrane, but the enzyme immobilized on the carrier is packed in the column and various electrodes are placed downstream of it. May be installed. As an enzyme immobilization method, various known methods such as a chemical binding method, an entrapping method, and an ionic binding method can be used. Further, when immobilizing the enzyme in the form of a film on the electrode, the electrode surface may be in direct contact with the enzyme or a compound that crosslinks with the enzyme or enzymes such as albumin and enzyme,
The enzyme may be immobilized on the acetyl cellulose membrane and held by pressing the membrane against the electrode surface. When immobilized on a carrier, known carriers such as activated carbon, silica gel and diatomaceous earth can be used. The method of using a carrier as a column is advantageous because a large amount of protein can be immobilized when the enzyme activity is low.

【0011】[0011]

【実施例】本発明の実施例を以下に示すが、本発明はこ
れに限定されるものではない。
EXAMPLES Examples of the present invention are shown below, but the present invention is not limited thereto.

【実施例1】図1に示すように、外径4mmで、内径2
mmのシリコンチューブとピンチバルブ4および5、さ
らに第1の被測定試料液送液用ポンプ1により構成され
る第1の被測定試料液送液系6と、同様に構成される第
2の被測定試料液系7をポリプロピレン製3方ジョイン
トで接続した。被測定試料液は送液用チューブポンプ1
および2を用いてどちらも流速2ml/分の速度で吸引
送液される。ピンチバルブ4または5のどちらかが開放
されて被測定試料液を切り替えるようになっている。ピ
ンチバルブを開放した時点でその配管系に配置されたチ
ューブポンプを駆動して、被測定試料液を切り替えるよ
うにした。 分離機構9には膜厚さ20μmの再生セル
ロース製透析膜10が装着されており、膜の反対側に
は、第3の送液用チューブポンプ3でpH7.0の0.
1Mリン酸緩衝液が流されている。なお分離機構9の膜
に面する流路体積は120μlであった。グルコースオ
キシダーゼを固定化した酵素電極を装着した検出器11
を分離機構9の下流に設けた。被測定試料液としては、
1.8(WT/V)%グルコース濃度および3.6(WT/V)%グ
ルコース濃度であるそれぞれ1%の酵母菌体を含む発酵
モデル液を用いた。ピンチバルブが開放される時を30
秒とし、各被測定試料液の送液される量を流路体積に対
して約8.3倍の1000μlを送液した。この試料を
交互に各5回送液し、その時の検出器11での値から発
酵モデル液のグルコース濃度を算出した。結果を表1に
示す。
Example 1 As shown in FIG. 1, the outer diameter is 4 mm and the inner diameter is 2
mm silicon tube, pinch valves 4 and 5, and a first measured sample solution sending system 6 including a first measured sample solution sending pump 1 and a second tested sample solution sending system 6 having the same structure. The measurement sample liquid system 7 was connected by a polypropylene 3-way joint. The sample liquid to be measured is a tube pump for liquid transfer 1
Both and 2 are suction-fed at a flow rate of 2 ml / min. Either the pinch valve 4 or 5 is opened to switch the sample liquid to be measured. When the pinch valve was opened, the tube pump arranged in the piping system was driven to switch the sample liquid to be measured. The separation mechanism 9 is equipped with a regenerated cellulose dialysis membrane 10 having a film thickness of 20 μm, and on the opposite side of the membrane, a third liquid delivery tube pump 3 is used to adjust the pH to 7.0.
1M phosphate buffer is running. The volume of the flow channel facing the membrane of the separation mechanism 9 was 120 μl. Detector 11 equipped with an enzyme electrode on which glucose oxidase is immobilized
Was provided downstream of the separation mechanism 9. As the sample liquid to be measured,
Fermentation model liquids containing 1% yeast cells each having a 1.8 (WT / V)% glucose concentration and a 3.6 (WT / V)% glucose concentration were used. 30 when the pinch valve is opened
Seconds, the amount of each sample liquid to be measured to be sent was about 8.3 times the flow channel volume, and 1000 μl was sent. This sample was alternately fed 5 times each, and the glucose concentration of the fermentation model liquid was calculated from the value at the detector 11 at that time. Table 1 shows the results.

【表1】 [Table 1]

【0012】[0012]

【実施例2】図2に示すように、外径4mmで、内径2
mmのシリコンチューブとピンチバルブ4および5、さ
らに第1の被測定試料液送液用ポンプ1により構成され
る第1の被測定試料液送液系6と、同様に構成される第
2の被測定試料液系7をポリプロピレン製3方ジョイン
トで接続した。被測定試料液は送液用チューブポンプ1
を用いて流速2ml/分の速度で吸引送液される。ピン
チバルブ4または5のどちらかが開放されて被測定試料
液を切り替えるようになっている。ピンチバルブが開放
される時間は45秒として実験を行なった。分離機構9
には膜厚さ20μmの再生セルロース製透析膜10が装
着されており、膜の反対側には、第3の送液用チューブ
ポンプ3でpH7.0の0.1Mリン酸緩衝液が流され
ている。なお分離機構9の膜に面する流路体積は200
μlであった。グルコースオキシダーゼを固定化した酵
素電極を装着した検出器11を分離機構9の下流に設け
た。被測定試料液としては0.9(WT/V)%グルコース濃
度であり1%の酵母菌体を含む発酵モデル液を用い、ま
た標準液としては1.8(WT/V)%グルコース水溶液を用
いた。あらかじめ被測定試料液を20秒間送液した後、
標準液および被測定試料液順次45秒ずつ分離機構9に
送液し、その時の検出器11で得られる標準液の値とそ
の後に流れる被測定試料液の値から、校正された被測定
試料液のグルコース濃度を算出する。この工程を5回繰
り返した。なお、標準液および被測定試料液の送液され
る量は流路体積に対して約7.5倍の1500μlを送
液した。この試料を交互に各5回送液し、その時の検出
器11での値から標準液発酵モデル液のグルコース濃度
を算出した。
Example 2 As shown in FIG. 2, the outer diameter is 4 mm and the inner diameter is 2 mm.
mm silicon tube, pinch valves 4 and 5, and a first measured sample solution sending system 6 including a first measured sample solution sending pump 1 and a second tested sample solution sending system 6 having the same structure. The measurement sample liquid system 7 was connected by a polypropylene 3-way joint. The sample liquid to be measured is a tube pump for liquid transfer 1
Is aspirated at a flow rate of 2 ml / min. Either the pinch valve 4 or 5 is opened to switch the sample liquid to be measured. The experiment was conducted by setting the time for opening the pinch valve to 45 seconds. Separation mechanism 9
Is equipped with a regenerated cellulose dialysis membrane 10 having a thickness of 20 μm, and a 0.1 M phosphate buffer solution having a pH of 7.0 is caused to flow by a third tube pump 3 for delivering liquid on the opposite side of the membrane. ing. The flow path volume facing the membrane of the separation mechanism 9 is 200
μl. A detector 11 equipped with an enzyme electrode on which glucose oxidase was immobilized was provided downstream of the separation mechanism 9. As the sample liquid to be measured, a fermentation model liquid having a glucose concentration of 0.9 (WT / V)% and containing 1% of yeast cells was used, and as a standard liquid, an aqueous solution of 1.8 (WT / V)% glucose was used. Using. After sending the sample liquid to be measured in advance for 20 seconds,
The standard solution and the sample solution to be measured are sequentially sent to the separation mechanism 9 for 45 seconds respectively, and the sample solution calibrated is calibrated based on the value of the standard solution obtained by the detector 11 at that time and the value of the sample solution to be measured thereafter. Calculate the glucose concentration of. This step was repeated five times. The standard solution and the sample solution to be measured were sent in an amount of 1500 μl, which is about 7.5 times the flow path volume. This sample was alternately fed 5 times, and the glucose concentration of the standard solution fermentation model liquid was calculated from the value at the detector 11 at that time.

【0013】[0013]

【比較例1】実施例2において、標準液を送液する前段
で被測定試料液を20秒間、分離機構9に送液していた
のを省略した以外は同様に実験を行った。これらの結果
を実施例2の結果と合わせて表2に示す。実施例2で
は、被測定試料液と接触することによる膜面の変動をあ
らかじめ起こさせた後に標準溶液と、被測定試料液が順
次一定条件で接触するため、より定量精度が良くまた再
現性も良好となることが判明した。
Comparative Example 1 The same experiment as in Example 2 was carried out except that the sample solution to be measured was sent to the separation mechanism 9 for 20 seconds before sending the standard solution. These results are shown in Table 2 together with the results of Example 2. In Example 2, since the standard solution and the sample solution to be measured are successively contacted with each other under a certain condition after the film surface was changed in advance due to the contact with the sample solution to be measured, the quantification accuracy was better and the reproducibility was also good. It turned out to be good.

【表2】 [Table 2]

【0014】[0014]

【発明の効果】本発明の濃度測定装置を用いることによ
り、簡単な構成で発酵液などの汚染しやすい試料を小容
量利用して高精度で測定することが可能となった。
By using the concentration measuring device of the present invention, it becomes possible to measure a sample such as a fermentation liquor which is easily contaminated with a simple structure with a small volume and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1で用いた濃度測定装置の概
略図である。
FIG. 1 is a schematic diagram of a concentration measuring device used in Example 1 of the present invention.

【図2】 本発明の実施例2で用いた濃度測定装置の概
略図である。
FIG. 2 is a schematic view of a concentration measuring device used in Example 2 of the present invention.

【記号の説明】[Explanation of symbols]

1・・・第1の被測定試料液送液用ポンプ 2・・・第2の被測定試料液送液用ポンプ 3・・・緩衝液送液用ポンプ 4・・・第1のピンチバルブ 5・・・第2のピンチバルブ 6・・・第1の試料送液用配管 7・・・第2の試料送液用配管 8・・・緩衝液送液用配管 9・・・分離機構 10・・・分離膜 11・・・酵素電極を有する検出器 DESCRIPTION OF SYMBOLS 1 ... 1st pump for sending sample liquid to be measured 2 ... 2nd pump for sending sample liquid to be measured 3 ... Pump for sending buffer solution 4 ... 1st pinch valve 5・ ・ ・ Second pinch valve 6 ・ ・ ・ First sample liquid supply pipe 7 ・ ・ ・ Second sample liquid supply pipe 8 ・ ・ ・ Buffer liquid liquid supply pipe 9 ・ ・ ・ Separation mechanism 10 ・..Separation membrane 11 ... Detector having enzyme electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】膜を有し膜両面に別個の液体が流通する分
離機構を有し、該分離機構の膜の一方の面に被測定試料
液を接触させる送液機構と、膜の別の面に接触して流通
する液体を流す別個の送液機構を持ち、被測定試料液と
膜の別面に流れる液体が膜をはさんで接する際に被測定
試料液の一部もしくは被測定試料液に溶解した化学物質
の一部を膜を介して転溶させ、この転溶した被測定試料
液もしくは化学物質を検知する検出部を備えた濃度測定
装置を用い、 被測定試料液を分離機構に導く配管の途中に流路を任意
の時点で開閉できる開閉機構を設け、前記分離機構の膜
面に接触する部分の流路体積に対して送液された被測定
試料液の体積が流路体積の5倍以上になる任意の一定の
時間間隔で被測定試料液流路を開放して膜と被測定試料
液を接触させ、この間の検出部の出力から濃度を算出す
ることを特徴とする濃度測定方法。
1. A liquid-feeding mechanism that has a membrane and has a separation mechanism that allows separate liquids to flow on both surfaces of the membrane, and a liquid-feeding mechanism that brings a sample liquid to be measured into contact with one surface of the membrane of the separation mechanism, and a separate mechanism of the membrane. It has a separate liquid transfer mechanism that allows the liquid flowing in contact with the surface to flow, and when the sample liquid to be measured and the liquid flowing to the other surface of the film are in contact with each other across the membrane, part of the sample liquid to be measured or the sample to be measured A part of the chemical substance dissolved in the liquid is transferred through the membrane, and a concentration measuring device equipped with a detector that detects the transferred sample liquid or the chemical substance is used to separate the sample liquid to be measured. An opening / closing mechanism that can open and close the flow path at any time is provided in the middle of the pipe leading to the flow path, and the volume of the sample liquid to be measured that has been sent to the flow path volume of the portion that contacts the membrane surface of the separation mechanism is the flow path. Open the sample liquid flow path to be measured at an arbitrary fixed time interval that is 5 times or more of the volume, and connect the membrane and the sample liquid to be measured. A method for measuring concentration, which comprises contacting and calculating the concentration from the output of the detection unit during this period.
【請求項2】標準溶液と被測定試料液を分離機構に導く
配管を有し、この配管が膜を有する分離機構に入る前で
1つの配管に統合されており、各々の配管の途中に流路
を任意の時点で開閉できる開閉機構を設けた装置を用
い、、前記分離機構の膜面に接触する部分の流路体積に
対して送液される標準溶液または被測定試料液の体積が
流路体積の5倍以上になる任意の一定間隔で標準溶液お
よび被測定試料液流路を開放し、最初に被測定試料液を
一定時間接触せしめ、次に標準溶液を別途定めた一定時
間接触せしめた時の検出値を記憶し、続いて標準溶液と
同一時間被測定試料液を接触せしめた時の検出値と比較
して濃度を算出するようにした請求項1記載の濃度測定
方法。
2. A pipe for guiding the standard solution and the sample liquid to be measured to a separation mechanism is provided, and this pipe is integrated into one pipe before entering the separation mechanism having a membrane, and flows in the middle of each pipe. By using a device equipped with an opening / closing mechanism that can open and close the channel at any time, the volume of the standard solution or the sample solution to be measured is flowed to the volume of the channel of the part in contact with the membrane surface of the separation mechanism. Open the flow path of the standard solution and the sample solution to be measured at an arbitrary fixed interval that is more than 5 times the channel volume, first contact the sample solution to be measured for a certain period of time, and then contact the standard solution for a certain period of time specified separately. 2. The concentration measuring method according to claim 1, wherein the detected value at the time of storage is stored, and then the concentration is calculated by comparing with the detected value when the sample solution to be measured is brought into contact with the standard solution for the same time.
JP30677695A 1995-10-31 1995-10-31 Concentration measurement method Expired - Fee Related JP3582188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30677695A JP3582188B2 (en) 1995-10-31 1995-10-31 Concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30677695A JP3582188B2 (en) 1995-10-31 1995-10-31 Concentration measurement method

Publications (2)

Publication Number Publication Date
JPH09126961A true JPH09126961A (en) 1997-05-16
JP3582188B2 JP3582188B2 (en) 2004-10-27

Family

ID=17961139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30677695A Expired - Fee Related JP3582188B2 (en) 1995-10-31 1995-10-31 Concentration measurement method

Country Status (1)

Country Link
JP (1) JP3582188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888653B2 (en) * 2010-12-01 2016-03-22 国立大学法人 熊本大学 Pretreatment device for dissolved ion analysis and dissolved ion analysis system
CN107063767A (en) * 2017-06-14 2017-08-18 山东省科学院生物研究所 A kind of sampler and fermentation tank sterile sampling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888653B2 (en) * 2010-12-01 2016-03-22 国立大学法人 熊本大学 Pretreatment device for dissolved ion analysis and dissolved ion analysis system
CN107063767A (en) * 2017-06-14 2017-08-18 山东省科学院生物研究所 A kind of sampler and fermentation tank sterile sampling method
CN107063767B (en) * 2017-06-14 2019-05-21 山东省科学院生物研究所 A kind of sampler and fermentor sterile sampling method

Also Published As

Publication number Publication date
JP3582188B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
EP1005566B1 (en) Regeneration of biosensors
US5672319A (en) Device for analyzing a fluid medium
US6183418B1 (en) Process and measuring system for detection of substances emitted or perspired through the skin
HU180210B (en) Method and device for continuous detecting concentration of an enzymatic substratum
Mandenius et al. Evaluation of a dialysis probe for continuous sampling in fermentors and in complex media
CA2209412A1 (en) A chemical sensor and use thereof
Prinzing et al. Fermentation control with biosensors in flow-injection systems: problems and progress
JP3582188B2 (en) Concentration measurement method
US20030119201A1 (en) Method for determination of product and substrate concentrations in a medium
US20040029170A1 (en) Method and device for the determination of analyte concentrations
US20080282780A1 (en) Sire Flow Detector
US3948731A (en) Method and apparatus for measuring reactant concentrations and quantities
JP3422092B2 (en) Liquid sample continuous measuring device and measuring method
US20150369775A1 (en) Electroanalitical system
JP3697766B2 (en) Concentration measuring device
JPH01237446A (en) Biosensor
JP3353487B2 (en) Liquid sample continuous measurement device
JP2784949B2 (en) Measurement device for test liquids such as samples
JP3337193B2 (en) Concentration measurement method
Trojanowicz et al. Enzymatic flow-injection determination of urea in blood serum using potentiometric gas sensor with internal nonactin based ISE
Matuszewski et al. Elimination of interferences in flow‐injection amperometric determination of glucose in blood serum using immobilized glucose oxidase
Mandenius et al. [27] Enzyme thermistors for process monitoring and control
JP2526638B2 (en) Method for quantifying microorganisms
US20230304902A1 (en) Sampling Method
US20240132822A1 (en) Cell Culturing Device and Cell Culturing System

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees