JP3422092B2 - Liquid sample continuous measuring device and measuring method - Google Patents

Liquid sample continuous measuring device and measuring method

Info

Publication number
JP3422092B2
JP3422092B2 JP23826494A JP23826494A JP3422092B2 JP 3422092 B2 JP3422092 B2 JP 3422092B2 JP 23826494 A JP23826494 A JP 23826494A JP 23826494 A JP23826494 A JP 23826494A JP 3422092 B2 JP3422092 B2 JP 3422092B2
Authority
JP
Japan
Prior art keywords
sample
liquid
carrier
passage
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23826494A
Other languages
Japanese (ja)
Other versions
JPH07311127A (en
Inventor
義雄 橋爪
昭夫 刈米
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP23826494A priority Critical patent/JP3422092B2/en
Publication of JPH07311127A publication Critical patent/JPH07311127A/en
Application granted granted Critical
Publication of JP3422092B2 publication Critical patent/JP3422092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分析機器にとって障害
となる微小固形分、タンパク質、汚染性物質などを有す
る試料を迅速に処理、測定できる、特に、培養液、発酵
液等のオンライン測定に好適な液体試料連続測定装置及
び測定方法に関する。
BACKGROUND OF THE INVENTION The present invention is capable of rapidly processing and measuring a sample having minute solids, proteins, pollutants, etc., which are obstacles to analytical instruments, and particularly for online measurement of culture solution, fermentation solution and the like. The present invention relates to a suitable liquid sample continuous measuring device and measuring method.

【0002】[0002]

【従来の技術】従来より、試料中の被検出物質を定量す
る方法としては、試料の一定量を連続する流れの中に注
入し、フローセルを備える分光光度計、原子吸光分析
計、または電気化学検出器等に導くフローインジェクシ
ョン分析法や試料を一定間隔の気泡で分節することで前
後の溶液と分離して検出器に送る気泡分節による流れ分
析法が知られている。
2. Description of the Related Art Conventionally, as a method for quantifying a substance to be detected in a sample, a fixed amount of the sample is injected into a continuous flow, and a spectrophotometer equipped with a flow cell, an atomic absorption spectrometer, or an electrochemical is provided. Known are a flow injection analysis method that leads to a detector and the like, and a flow analysis method that uses a bubble segment to separate the sample into and from the solution before and after sending the sample by segmenting the sample with bubbles at regular intervals.

【0003】これらの分析法は分析時間が短く、高精度
な分析が可能であり、しかも測定に関してこれまで人間
が行ってきた混合、分離、化学反応等の操作を連続する
流れの中で得ることができるなどの利点がある。特にフ
ローインジェクション分析法は試料の必要量が少なく、
気泡分節のような厳密な気泡の挿入・排除のための複雑
な機構を要せず、簡単な機構で装置自体が小さいなどの
特徴を有する。
These analysis methods have a short analysis time and can perform highly accurate analysis. In addition, the operations such as mixing, separation, chemical reaction, etc., which humans have performed so far in measurement, can be obtained in a continuous flow. There are advantages such as being able to. Especially, the flow injection analysis method requires less sample,
It does not require a complicated mechanism for strict insertion / removal of bubbles such as bubble segment, and has a feature that the device itself is small with a simple mechanism.

【0004】近年は、フローインジェクション分析法に
よる分析機器に自動的に試料を微量注入する装置として
オートサンプラーを組み合せ、分析の自動化が行われて
いる。しかし、試料が培養液、発酵液等のように微小固
形分、タンパク質、汚染性物質などを含有する場合に
は、分析機器に様々なトラブルを発生させため分析の自
動化の推進を困難なものとしている。
In recent years, analysis has been automated by combining an autosampler as an apparatus for automatically injecting a small amount of a sample into an analytical instrument by the flow injection analysis method. However, if the sample contains minute solids, proteins, pollutants, etc., such as culture broth and fermentation broth, it will be difficult to promote automation of analysis because various troubles will occur in the analytical equipment. There is.

【0005】例えば、機器の配管内への固形物の付着や
汚染によって管をつまらせ、異常高圧などの原因とな
る。またこれらの問題が起きる以前にも例えばオートサ
ンプラーであれば、試料の吸引ミス、秤量誤差、稼働接
液部材の損傷などを引き起こしうる。また、分析機器で
あれば検出部への汚濁物の付着による感度変動を引き起
こす。
[0005] For example, the sticking or contamination of solid matter in the piping of the equipment causes the piping to be clogged, causing abnormal high pressure. Even before these problems occur, for example, in the case of an auto sampler, a sample suction error, a weighing error, and a working wetted member may be damaged. Further, in the case of an analytical instrument, sensitivity fluctuations are caused by the attachment of contaminants to the detection section.

【0006】特に酵素等の生体関連物質を利用した分析
機器の場合、タンパク質や微生物などの付着により酵素
失活の原因となりうる。そのためこのような試料は、オ
ートサンプラーに試料を導入する前に、あらかじめ遠心
分離やろ過を行う必要があり、多大な時間と手間を費や
すことになる。さらに、試料が分析機器の定量可能な濃
度範囲を越える場合には、試料を予め希釈する操作が必
要である。具体的には試料と希釈液を各々一定量ずつ分
取し、混合、撹拌して均一な濃度の溶液とする操作であ
るが、これもまた繁雑で長時間の処理が必要となる。ま
た、使用する器具、容器による誤差や人的誤差が加わっ
てしまうという問題がある。これら希釈に要する一連の
操作を、そのまま機械動作に置き換えた方式の希釈装置
も知られているが、複雑な構成や処理に要する時間の長
さの点で難点がある。
Particularly, in the case of an analytical instrument using a bio-related substance such as an enzyme, the attachment of proteins, microorganisms and the like can cause enzyme deactivation. Therefore, it is necessary to centrifuge or filter such a sample in advance before introducing the sample into the autosampler, which consumes a great deal of time and labor. Furthermore, when the sample exceeds the quantifiable concentration range of the analytical instrument, an operation of diluting the sample in advance is necessary. Specifically, it is an operation of collecting a fixed amount of each of the sample and the diluting solution, mixing and stirring them to obtain a solution having a uniform concentration, but this is also complicated and requires a long-time treatment. In addition, there is a problem that an error and a human error are added depending on a device to be used and a container. There is also known a diluting device in which the series of operations required for diluting is directly replaced by mechanical operation, but it has a drawback in that it has a complicated configuration and the length of time required for processing.

【0007】特に培養液、発酵液など刻々と変化する溶
液中の特定成分濃度を連続的に分析するいわゆるオンラ
イン計測を行う場合、試料に含有される微小固形分、タ
ンパク質など分析機器に関する障害を排除することはも
ちろん適切な希釈を迅速に行いかつ精度のよい分析を可
能としなくてはならない。透析膜を用い、試料液から微
小固形分やタンパク質を分離し、拡散可能な低分子化学
種のみを分析器機に供給することが可能である。例え
ば、血液を注入器で一定量秤量および緩衝液流に注入
後、透析器に通して血液中のタンパク質が検出器に入ら
ぬようにして、透過したグルコース量を測定する方法が
知られている(特公昭61−20279号)。この場
合、透析膜におけるグルコースの部分的な透過は、希釈
効果をも兼ねている。
[0007] In particular, when performing so-called on-line measurement for continuously analyzing the concentration of a specific component in a solution such as a culture solution or a fermenting solution, which is continuously changing, obstacles relating to analytical equipment such as minute solids and proteins contained in the sample are eliminated. Of course, appropriate dilution must be carried out rapidly and accurate analysis must be possible. It is possible to separate minute solids and proteins from the sample solution using a dialysis membrane and supply only diffusible low molecular species to the analyzer. For example, there is known a method of measuring a permeated glucose amount by injecting a certain amount of blood with an injector and injecting it into a buffer solution flow, passing through a dialyzer so that proteins in blood do not enter the detector. (Japanese Patent Publication No. 61-2279). In this case, the partial permeation of glucose through the dialysis membrane also serves as a diluting effect.

【0008】しかしながら、この方法においては、試料
を送液する速度の変動等の透析条件の微妙な変化に起因
して透過後の低分子物質の分散パターンの変動が大きく
なるため、透析膜での透析状態の再現性が低く、計測精
度面で大きな難点がある。更に、少量の試料が透析器の
膜に瞬間的に接するために、透析膜での透過状態の再現
性が低い。注入器自体に試料原液が供給されることか
ら、注入装置の汚染も避けがたくなる。このことは試料
の秤量部分である注入器における固形物やタンパク質の
付着に伴い秤量が変化してしまう問題をも引き起こす。
However, in this method, since the dispersion pattern of the low molecular weight substance after permeation becomes large due to a slight change in the dialysis conditions such as the change in the rate of sending the sample, the change in the dialysis membrane becomes large. The reproducibility of the dialysis state is low, and there is a major drawback in terms of measurement accuracy. In addition, the reproducibility of the permeation state in the dialysis membrane is low because a small amount of the sample comes into immediate contact with the membrane of the dialyzer. Since the sample stock solution is supplied to the injector itself, it is difficult to avoid contamination of the injector. This also causes a problem that the weighing changes due to the attachment of solids and proteins in the injector, which is the weighing portion of the sample.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、分析機器にとって障害となる溶液試料中の微
小固形分、タンパク質、汚染性物質などを排除し、測定
対象成分を迅速かつ精度よく分析機器で測定可能であ
り、特に培養液、発酵液等のオンライン測定に好適な液
体試料連続測定装置及び測定方法を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and eliminates minute solids, proteins, contaminants, etc. in a solution sample, which is an obstacle to analytical instruments, and makes it possible to quickly and rapidly determine components to be measured. It is an object of the present invention to provide a liquid sample continuous measuring device and a measuring method which can be accurately measured by an analytical instrument and which is particularly suitable for online measurement of a culture solution, a fermentation solution and the like.

【0010】[0010]

【課題を解決するための手段】本発明の液体試料連続測
定装置は、半透膜を介して接する試料通液路とキャリア
通液路を有するろ過セル、試料を含む被測定液をろ過セ
ルの試料通液路に一定の流速で送液する測定液送液手段
を含む測定液送液系統、ろ過セルのキャリア通液路中に
キャリアを一定の流速で送液するキャリア送液手段を含
むキャリア送液系統、ろ過セルのキャリア通液路出口が
接続されてキャリアを断続的に検出器に注入する注入
器、注入器から検出器への緩衝液の送液流路、及び両送
液手段の送液開始後一定の時間が経過後、ろ過セルにお
いて被測定液中の試料の少なくとも一部が半透膜を介し
てキャリア中へ安定に移動して得られた測定対象成分を
含むキャリアを注入器に導入し、注入器を介して該検出
器への緩衝液の送液流路によって検出器に注入させる機
能を備えた制御部を具備する。
The liquid sample continuous measuring apparatus of the present invention comprises a filtration cell having a sample liquid passage and a carrier liquid passage which are in contact with each other through a semipermeable membrane, and a liquid to be measured containing a sample is contained in the filter cell. A measurement liquid feeding system including a measurement liquid feeding means for feeding a sample liquid passage at a constant flow rate, a carrier including a carrier feeding means for feeding a carrier at a constant flow rate into a carrier passage of a filtration cell A liquid feeding system, an injector to which the carrier liquid passage outlet of the filtration cell is connected to inject the carrier into the detector intermittently, a liquid feeding flow path of the buffer solution from the injector to the detector, and both liquid feeding means. After a lapse of a certain time after the start of liquid transfer, at least a part of the sample in the liquid to be measured in the filtration cell was stably transferred to the carrier through the semipermeable membrane to obtain the measurement target component.
The carrier containing is introduced into the injector and the detection is performed via the injector.
The control unit has a function of injecting the buffer solution into the detector through the flow path of the buffer solution to the container .

【0011】また、希釈液を送液するための希釈液送液
系統を接続する合流部を測定液送液系統の途中に設ける
と良い。合流部が測定液送液系統の測定液送液手段の上
流側に設けられ、該合流部が試料液導入口と希釈液導入
口と導出口を有し、前記各導入口のうち一方が導出口と
流路導通する時には他方は導出口と流路導通しない排他
型バルブ部であり、前記制御部が該排他型バルブ部にお
ける各導入口について個々の時間幅で導出口に流路導通
するように順次切り替えて繰り返し制御する機能を更に
備えても良い。合流部が測定液送液系統の測定液送液手
段の下流側に設けられ、希釈液送液系統が合流部に一定
の流速で希釈液を送液する希釈液送液手段を備えるるこ
とも良い。
Further, it is preferable to provide a merging portion for connecting a diluent delivery system for delivering the diluent in the middle of the measurement solution delivery system. A merging portion is provided on the upstream side of the measurement liquid feeding means of the measurement liquid feeding system, and the merging portion has a sample liquid introduction port, a diluting liquid introduction port, and a discharge port, and one of the introduction ports is introduced. The other is an exclusive type valve unit that does not conduct flow passage to the outlet when the flow passage is connected to the outlet, and the control unit is configured to conduct the flow passage to the outlet at each time width for each inlet of the exclusive valve unit. It may further have a function of sequentially switching to and repeatedly controlling. The merging portion may be provided on the downstream side of the measuring liquid feeding means of the measuring liquid feeding system, and the diluting liquid feeding system may include a diluting liquid feeding means for feeding the diluting liquid to the merging portion at a constant flow rate. good.

【0012】本発明の液体試料連続測定方法は、半透膜
を介して接する試料通液路とキャリア通液路を有するろ
過セルの試料通液路に接続された測定液送液系統によっ
て試料を含む被測定液を一定の流速で送液する工程、前
記ろ過セルのキャリア通液路に接続されたキャリア送液
系統によってキャリアを一定の流速で送液する工程、被
測定液及びキャリアの送液開始後一定の時間が経過後、
前記ろ過セルのキャリア通液路出口が接続された注入器
によって、ろ過セルにおいて被測定液中の試料の少なく
とも一部が半透膜を介してキャリア中へ安定に移動して
得られたキャリアを検出器への緩衝液の送液流路を介し
検出器に注入する工程を備える。
The liquid sample continuous measuring method of the present invention uses a measuring liquid delivery system connected to a sample passing passage of a filtration cell having a sample passing passage and a carrier passing passage which are in contact with each other through a semipermeable membrane. A step of sending a measured liquid containing at a constant flow rate, a step of sending a carrier at a constant flow rate by a carrier sending system connected to a carrier flow path of the filtration cell, a measured solution and a sending of carrier After a certain time has passed since the start,
By the injector to which the carrier flow passage outlet of the filtration cell is connected, at least a part of the sample in the liquid to be measured in the filtration cell is stably transferred into the carrier through the semipermeable membrane to obtain a carrier. Via the flow path of the buffer solution to the detector
And injecting it into the detector.

【0013】[0013]

【作用】測定液送液系統では試料を含む被測定液がろ過
セルの試料通液路に一定の流速で測定液送液手段によっ
て送液される。また同様にキャリア送液系統ではキャリ
アがキャリア通液路に一定の流速でキャリア送液手段に
よって送液される。ろ過セルでは試料通液路を流れる被
測定液中の試料の少なくとも一部がキャリア通液路を流
れるキャリア中に半透膜を介して移動する。
In the measurement liquid delivery system, the measurement liquid containing the sample is delivered to the sample passage of the filtration cell at a constant flow rate by the measurement liquid delivery means. Similarly, in the carrier liquid feeding system, the carrier is fed to the carrier liquid feeding passage at a constant flow rate by the carrier liquid feeding means. In the filtration cell, at least a part of the sample in the liquid to be measured flowing through the sample liquid passage moves into the carrier flowing through the carrier liquid passage through the semipermeable membrane.

【0014】この移動は被測定液とキャリアがそれぞれ
一定の流速で送液されているので、ある程度時間がたて
ば、十分安定に行われるようになる。制御部がこのよう
に安定な移動が行われて得られたキャリアを適切な時期
に、すなわち両送液手段の送液開始後ある程度一定の時
間が経過後、注入器によって検出器に注入する。つま
り、ろ過セルでの試料の移動が一定の濃度を有する一定
流速で送液される被測定液と一定流速で送液されるキャ
リアの間で行われるので、その送液時間をある程度とれ
ば安定な移動が得られる。すなわち、十分な量の試料が
半透膜に定常的に安定するまで必要なだけ長く接するよ
うに制御できるために、半透膜での移動状態の再現性が
高くなる。結局、本発明では、区分化された試料が半透
膜に瞬間的に接触されるのとは異なり、試料がろ過セル
の試料通液路中を満した状態で測定対象成分を透過させ
るため、キャリア通液路への透過状態が平均化され、再
現性の高い計測を可能とする。更に、試料通液路側に注
入器を接続していないので測定の誤差等を与えやすい注
入器が汚染されにくくなっている。
Since the liquid to be measured and the carrier are respectively sent at a constant flow rate, this movement can be carried out sufficiently stably after a certain period of time. The control unit injects the carrier obtained by the stable movement in this way into the detector at an appropriate time, that is, after a certain period of time elapses from the start of the liquid feeding of both liquid feeding means. In other words, the movement of the sample in the filtration cell is performed between the liquid to be measured having a constant concentration and being fed at a constant flow rate and the carrier being fed at a constant flow rate, so that the solution feeding time is stable to some extent. Can be obtained. That is, since a sufficient amount of the sample can be controlled so as to be in contact with the semipermeable membrane for as long as necessary until it is constantly stabilized, the reproducibility of the moving state in the semipermeable membrane is enhanced. After all, in the present invention, unlike the case where the segmented sample is momentarily brought into contact with the semipermeable membrane, the sample permeates the measurement target component in a state where the sample is filled in the sample passage of the filtration cell, The state of permeation into the carrier flow path is averaged, enabling highly reproducible measurement. Furthermore, since the injector is not connected to the sample passage side, the injector is liable to be contaminated and is less likely to be contaminated.

【0015】ろ過セルでは試料通液路を流れる被測定液
中の試料の少なくとも一部がキャリア通液路を流れるキ
ャリア中に半透膜を介して移動する。このようにして試
料を含んだキャリアが注入器によって検出器に注入され
る。これは詳細にいうと、注入器でキャリアが検出器用
のキャリアに注入されて、注入器の後に接続された検出
器によって測定されるということである。このようにし
て一つの試料の測定工程が完了する。
In the filtration cell, at least a part of the sample in the liquid to be measured flowing through the sample liquid passage moves into the carrier flowing through the carrier liquid passage through the semipermeable membrane. In this way, the carrier containing the sample is injected into the detector by the injector. In detail, this means that in the injector the carrier is injected into the carrier for the detector and is measured by the detector connected after the injector. In this way, the measurement process of one sample is completed.

【0016】試料の通液方向とキャリアの通液方向は、
同じ方向あるいは逆方向で膜の両側で平行に流れるよう
にする。本発明でいう半透膜は溶液や分散系中の一部の
成分は通すが、他の成分は通さないような膜をいう。例
えば、試料に含まれる物質のうち、検出器に不都合な微
小固形分やタンパク質などの巨大分子を通さず、低分子
である測定対象成分を透過しうる膜として再生セルロー
ス系膜、ポリサルホン系膜、フッ素樹脂膜、カーボネー
ト膜等が挙げられる。
The flow direction of the sample and the flow direction of the carrier are
Allow parallel flow on both sides of the membrane in the same or opposite directions. The semipermeable membrane referred to in the present invention is a membrane that allows some components in a solution or dispersion system to pass through but does not allow other components to pass through. For example, among substances contained in a sample, a regenerated cellulose-based membrane, a polysulfone-based membrane as a membrane that does not pass macromolecules such as minute solids and proteins, which are inconvenient to the detector, and can pass a measurement target component that is a low molecule, Examples thereof include a fluororesin film and a carbonate film.

【0017】部分的に半透膜を介して平行に接する試料
通液路とキャリア通液路を有する構造体がろ過セルであ
る。ろ過セルは、鏡面対称の位置に溝を有する二つのブ
ロック一対から形成され、また各ブロックの溝の両端は
それぞれ、ブロック外側に設けたセルへの出入口に向っ
て流路をなすように貫通されている。そして、二つのブ
ロックを溝どうしが向いあうようにあわせ、その溝が向
いあう部分に半透膜が挟まれた構造とする。試料の通液
方向とキャリアの通液方向は、同じ方向あるいは逆方向
で膜の両側で平行に流れるようにする。ろ過セルの溝
は、その有効面積(たとえば、流れ方向の長さと流れ方
向に垂直方向で膜と平行方向の幅の積)を大きくするこ
とで、キャリアに透過する成分の積算量が増加する。ま
た、この有効面積が大きいと、ポンプ脈動などに起因す
る変動要因を緩和するろ過の均一効果を得ることができ
るが、過度に大きいと試料や標準液を切り換えた場合、
置換に要する時間が長くなる。したがって、この有効面
積の大きさは、後段の検出器の検出濃度範囲にあわせた
寸法にするとよい。
A structure having a sample liquid passage and a carrier liquid passage that are in parallel contact with each other partially via a semipermeable membrane is a filtration cell. The filtration cell is formed of a pair of two blocks each having a groove in a mirror-symmetrical position, and both ends of the groove of each block are penetrated so as to form a flow path toward the entrance and exit of the cell provided outside the block. ing. Then, the two blocks are aligned such that the grooves face each other, and the semipermeable membrane is sandwiched in the portions where the grooves face each other. The sample flow direction and the carrier flow direction are set to flow in the same direction or in opposite directions in parallel on both sides of the membrane. By increasing the effective area (for example, the product of the length in the flow direction and the width in the direction parallel to the membrane in the direction perpendicular to the flow direction) of the groove of the filtration cell, the integrated amount of the component that permeates the carrier increases. Also, if this effective area is large, it is possible to obtain a uniform effect of filtration that alleviates fluctuation factors due to pump pulsation, etc., but if it is too large, when switching the sample or standard solution,
The time required for replacement becomes long. Therefore, the size of this effective area is preferably set to a size that matches the detection concentration range of the detector in the subsequent stage.

【0018】特に、溝の幅に関しては過度に広いと半透
膜の膜面が揺らぎ、また狭すぎると試料に含まれる微小
固形分等がつまるためこれらの現象が生じない範囲で設
定されなければならず、0.5〜5mmの範囲とするの
が好ましい。また、溝の深さについても幅と同程度とす
るのが好ましいが、試料側とキャリア側の深さは異なっ
てもよく、液体の流れる方向を法線とした溝の断面の形
状についても矩形、半円、半楕円などの形状とすること
が可能である。また、溝の流れ方向の流路形状は、直線
状、らせん状、屈曲状など種々の形状とすることができ
るが、液流が部分的に滞留したり、流路が部分的に狭く
なることがないような形状であることが望ましい。
Particularly, regarding the width of the groove, if the width is too wide, the film surface of the semipermeable membrane fluctuates, and if it is too narrow, minute solids contained in the sample are clogged, so that these phenomena must be set within a range that does not occur. However, it is preferably within the range of 0.5 to 5 mm. Further, the depth of the groove is preferably about the same as the width, but the depths of the sample side and the carrier side may be different, and the shape of the cross section of the groove with the liquid flowing direction as a normal line is also rectangular. The shape can be a half circle, a half ellipse, or the like. In addition, the flow channel shape in the flow direction of the groove can be various shapes such as a linear shape, a spiral shape, and a bent shape, but the liquid flow is partially retained or the flow channel is partially narrowed. It is desirable that the shape is such that there is no

【0019】本発明において試料通液路へ導く試料は、
実際の被検体溶液および検出器に校正が必要な場合の標
準液も含むものである。従って、検出機器の校正を行う
ために、複数の試料液や標準液を、順次切り替えるため
の切替え手段としてバルブを配置する。このバルブとし
ては3方の切り替え機能を有する3方バルブがよく使用
される。また標準液等を複数供給可能なように3方バル
ブを複数配置して使用される。
In the present invention, the sample introduced to the sample passage is
It also contains the actual sample solution and standard solution when the detector requires calibration. Therefore, in order to calibrate the detection device, a valve is arranged as a switching means for sequentially switching a plurality of sample solutions and standard solutions. As this valve, a 3-way valve having a 3-way switching function is often used. Further, a plurality of three-way valves are arranged and used so that a plurality of standard solutions can be supplied.

【0020】また、試料や検出器の校正にもちいる標準
液とは別に、ろ過セルおよびその前後の配管を洗浄する
ために蒸留水などを洗浄液として同様に配置することも
可能である。試料液を試料通液路に通液するための測定
液送液手段となる試料液搬送ポンプ及びキャリアを前記
ろ過セルのキャリア通液路に通液するためのキャリア送
液手段となるキャリア搬送ポンプとしては、プランジャ
ー式ポンプ、ギアードポンプ、ペリスタリックポンプな
ど従来より知られる各種ポンプを使用可能である。
In addition to the standard solution used for calibrating the sample and the detector, it is also possible to dispose distilled water or the like as a cleaning solution in order to clean the filtration cell and the pipes before and after it. A sample liquid transport pump that serves as a measurement liquid delivery means for delivering a sample liquid through a sample passage, and a carrier delivery pump that serves as a carrier delivery means for passing a carrier through a carrier passage of the filtration cell. As the above, various conventionally known pumps such as a plunger type pump, a geared pump, and a peristaltic pump can be used.

【0021】試料液搬送ポンプは、微小固形物や付着物
に対する耐性を有するポンプが望ましく、ペリスタリッ
クポンプを使用することがより好ましい。試料液搬送ポ
ンプの位置は、ろ過セルの試料通液路の試料供給側又は
排出側の位置に配置可能であるが、前者の位置に配置し
た場合には、試料と希釈液のいっそうの撹拌効果が得ら
れる点およびろ過セルの試料通液路内を減圧とせずに気
泡を生じさせない点で望ましい。
The sample liquid transfer pump is preferably a pump having resistance to minute solids and adhered substances, and it is more preferable to use a peristaltic pump. The position of the sample solution transfer pump can be located at the sample supply side or the discharge side of the sample passage of the filtration cell.However, when the sample solution transfer pump is located at the former position, the effect of further stirring the sample and diluent is increased. Is desirable and that the inside of the sample passage of the filtration cell is not depressurized to generate bubbles.

【0022】また、キャリア搬送ポンプにおいても、ろ
過セルへのキャリア供給側あるいはろ過セルのキャリア
通液路の排出側に配置可能であるが、試料液搬送ポンプ
と同様にろ過セルのキャリア通液路内で気泡を生じさせ
ないために、前者の位置に配置することが望ましい。本
発明で使用する各ポンプは、ひとつの送液をなし得る機
構を有するものであり、1つの動力源で、同軸で回転す
るローラーで同時に多連のチューブを動作可能なペリス
タリックポンプである場合は、当然、一台で複数のポン
プと同等である。
Also in the carrier transfer pump, it can be arranged on the carrier supply side to the filtration cell or on the discharge side of the carrier flow path of the filtration cell, but like the sample solution transfer pump, the carrier flow path of the filtration cell. It is desirable to place it in the former position so as not to generate bubbles inside. Each pump used in the present invention has a mechanism capable of delivering one liquid, and is a peristaltic pump capable of simultaneously operating multiple tubes with rollers rotating coaxially with one power source. Is, of course, equivalent to multiple pumps in one unit.

【0023】キャリア通液路のキャリアの通過速度は、
単位時間に透過する測定対象成分をどれだけのキャリア
量に受けるかを設定し得る。すなわち、ろ過セルにおけ
る希釈の大きさを変化させ得る。たとえば、キャリアの
通液速度が速くなればなるほど希釈倍率は増大し、逆に
遅くするほど希釈倍率は低下するため、キャリアの通過
速度によってろ過セルを出たキャリア中の測定対象成分
の濃度を適宜調節可能である。
The passing speed of the carrier through the carrier passage is
It is possible to set how much carrier amount the component to be measured that is transmitted per unit time is received. That is, the magnitude of dilution in the filtration cell can be varied. For example, the higher the liquid passing speed of the carrier, the higher the dilution ratio, and conversely, the slower the carrier flowing speed, the lower the dilution ratio. It is adjustable.

【0024】またキャリア搬送ポンプはこれらの特性か
ら、ろ過セルにおいて安定した希釈率を保持するために
送液の安定性・精度にすぐれたポンプを使用することが
望まれる。本発明におけるキャリアとしては、例えば蒸
留水や各種緩衝液などを使用できるが、検出に必要とさ
れる試薬などを添加して使用することも可能である。
In view of these characteristics, it is desirable that the carrier transfer pump should be a pump excellent in stability and accuracy of liquid transfer in order to maintain a stable dilution rate in the filtration cell. As the carrier in the present invention, for example, distilled water, various buffers, etc. can be used, but it is also possible to add reagents and the like required for detection and use them.

【0025】本発明において、ろ過セルのキャリア通液
路から排出される試料の分析対象物を含有するキャリア
は、後段に検出器を接続した注入器に試料として送ら
れ、検出器で検出するようにしている。尚、注入器と
は、一定量の試料を秤量し、検出器への連続した流れの
中に注入するものであり、オートサンプラーなどで一般
に採用されている6方切り替えバルブなどの機構を用い
た装置のことである。
In the present invention, the carrier containing the analyte of the sample discharged from the carrier passage of the filtration cell is sent as a sample to an injector having a detector connected to the latter stage, and is detected by the detector. I have to. The injector is a device that weighs a fixed amount of sample and injects it into a continuous flow to the detector, and uses a mechanism such as a 6-way switching valve that is generally adopted in auto samplers and the like. It is a device.

【0026】以上のような構成では試料中の測定対象成
分の濃度が比較的低い限られた範囲にある時に限って、
半透膜を透過する比率(以降、透過率と記述する)をほ
ぼ一定に保つことができる。その範囲を越えて比較的濃
い濃度領域に入ると透過率が低下するという問題が生ず
ることが判明した。そのため、測定対象成分濃度の比較
的高い試料であっても、正確な測定が可能となる構成に
ついて更に検討を行った。
With the above configuration, only when the concentration of the component to be measured in the sample is in a relatively low and limited range,
The ratio of transmission through the semipermeable membrane (hereinafter referred to as the transmittance) can be kept substantially constant. It has been found that when the density exceeds the range and enters a relatively high density region, the transmittance decreases. Therefore, further investigation was conducted on a configuration that enables accurate measurement even for a sample having a relatively high concentration of the measurement target component.

【0027】仮に複数の濃度の標準液を用いて試料濃度
と透過試料を含有するキャリア側の試料濃度の多点によ
る高次曲線の関係を求めることで高濃度の領域まで試料
中の測定対象成分の濃度を定量するとしても、定量まで
を高速に計測する必要があるオンライン計測のような場
合は、多数の標準液をあらかじめ計測する点および複数
の標準液を用意する点で校正時間が長く操作が煩雑にな
る等の欠点がある。
If the relationship between the sample concentration and the higher-order curve based on multiple points of the sample concentration on the carrier side containing the permeated sample is determined using standard solutions having a plurality of concentrations, the components to be measured in the sample up to the high concentration region are obtained. Even when quantifying the concentration of, even in the case of online measurement where high-speed measurement is required up to quantification, it takes a long time to calibrate by measuring a large number of standard solutions in advance and preparing multiple standard solutions. There is a drawback that it becomes complicated.

【0028】そのような欠点を持たない液体試料連続測
定装置として、更に希釈液送液系統を接続する合流部を
測定液送液系統の途中に設けた。このような構成によれ
ば、半透膜と試料を接触させる前に試料に希釈液を加え
て希釈して、元の試料の測定対象成分濃度に比例した処
理液を供給し、測定することが可能となる。すなわち、
測定対象成分の濃度が低濃度から高濃度まで広範囲にわ
たる場合であっても、元の試料の測定対象成分の濃度に
比例して測定対象成分が透過されて得られる処理液を供
給、測定することを可能とするものである。
As a liquid sample continuous measuring device having no such drawbacks, a confluence portion for connecting a diluting liquid feeding system was further provided in the middle of the measuring liquid feeding system. With such a configuration, it is possible to perform dilution by adding a diluting liquid to the sample before bringing the semipermeable membrane and the sample into contact with each other, and supplying a treatment liquid in proportion to the concentration of the measurement target component of the original sample for measurement. It will be possible. That is,
Even if the concentration of the measurement target component is in a wide range from low concentration to high concentration, supply and measure the treatment liquid obtained by transmitting the measurement target component in proportion to the concentration of the measurement target component of the original sample. Is possible.

【0029】以上のような合流部の一形態としては、合
流部が測定液送液系統の測定液送液手段の上流側に設け
られるものがある。この場合、合流部は試料液導入口と
希釈液導入口と導出口を有し、前記各導入口のうち一方
が導出口と流路導通する時には他方は導出口と流路導通
しない排他型バルブ部であり、更に制御部が該排他型バ
ルブ部における各導入口について個々の時間幅で導出口
に流路導通するように順次切り替えて繰り返し制御する
機能を備えることになる。
As one form of the merging portion as described above, there is one in which the merging portion is provided on the upstream side of the measuring liquid feeding means of the measuring liquid feeding system. In this case, the confluent section has a sample liquid inlet, a diluent inlet, and an outlet, and when one of the inlets is in flow passage with the outlet, the other is not in exclusive connection with the outlet. Further, the control unit is further provided with a function of sequentially switching and repeatedly controlling each introduction port in the exclusive valve unit so as to conduct the flow path to the outlet port in each time width.

【0030】この排他型バルブ部とは、試料液導入口と
希釈液導入口の2つの導入口と1つの導出口を有し、1
つの導入口が導出口と流路導通する時には他の導入口は
導出口と流路導通しない3方バルブまたは複数の開閉バ
ルブまたはこれらの組み合せによって構成され得るもの
である。なお、本発明で言う排他とは、導出口に流路導
通し得る導入口は同時に2つ以上選択されないことを意
味するものである。
The exclusive valve section has two inlets, a sample liquid inlet and a diluent inlet, and one outlet.
When one inlet is in flow passage with the outlet, the other inlet may be formed by a three-way valve or a plurality of on-off valves or a combination thereof, which is not in flow passage with the outlet. In addition, the term “exclusive” as used in the present invention means that two or more inlets that can be in fluid communication with the outlet are not selected at the same time.

【0031】バルブの駆動方式は、電磁式、空気圧力式
等が挙げられるが、応答時間が短い点や開閉精度、動力
源が小型である点から電磁式が好ましく、普通、ダイア
フラム弁を用いた電磁式のバルブが用いられる。
The valve drive system may be an electromagnetic system, an air pressure system or the like. The electromagnetic system is preferable because of its short response time, opening and closing accuracy, and small power source, and a diaphragm valve is usually used. An electromagnetic valve is used.

【0032】排他型バルブ部における各々の導入口につ
いての流路導通時間、順次切り替え、繰り返しなどの制
御は制御部によって行われる。排他型バルブ部の導入口
を切り替える周期は、短いほど均一に混合され得るが、
バルブの応答速度以下にすると正確な比率で混合するこ
とはできない。電磁式バルブの場合、動作時間が一般に
10msec程度であるため、基本的に流路導通の切り
替え周期は約50msecから10secの範囲で、ま
た流路導通時間は約50msecから10secの範囲
で制御される。
The control unit controls the passage time of each inlet in the exclusive valve unit, the sequential switching, the repetition, and the like. The shorter the cycle for switching the inlet of the exclusive valve section, the more uniform the mixing can be.
If the response speed of the valve is lower than the response speed, mixing cannot be performed in an accurate ratio. In the case of an electromagnetic valve, since the operating time is generally about 10 msec, the flow passage conduction switching period is basically controlled in the range of about 50 msec to 10 sec, and the flow passage conduction time is controlled in the range of about 50 msec to 10 sec. .

【0033】流路導通時間は0msecとして、流路導
通時間の比率を100:0または0:100に設定し、
試料液あるいは希釈液の一方の溶液だけを選択的に連続
して供給することも可能である。例えば、配管内および
試料貯留容器内を洗浄する必要がある系では、一定時間
連続して清浄な希釈液側を流路導通させ、また、試料槽
から排他型バルブ部への試料搬送を速く行う場合には、
一定時間連続して試料を流路導通するように制御する。
The flow channel conduction time is set to 0 msec, and the flow channel conduction time ratio is set to 100: 0 or 0: 100.
It is also possible to selectively and continuously supply only one of the sample liquid and the diluting liquid. For example, in a system in which it is necessary to clean the inside of the pipe and the inside of the sample storage container, the clean diluent side is continuously connected for a certain period of time, and the sample transfer from the sample tank to the exclusive valve part is performed quickly. in case of,
The sample is controlled so as to be continuously connected to the flow channel for a certain period of time.

【0034】本構成においては、装置の停止時に全ての
流路が閉状態となるように、各配管に開閉バルブを配置
することができる。また、排他型バルブ部が複数の開閉
バルブで構成される場合には、全ての導入口が導出口と
流路導通しないようにして、流路を閉状態にすることも
できる。
In this structure, an opening / closing valve can be arranged in each pipe so that all the flow paths are closed when the apparatus is stopped. Further, when the exclusive-type valve section is composed of a plurality of on-off valves, it is possible to close all the inlets so that the inlets are not electrically connected to the outlets.

【0035】排他型バルブ部の試料導入口に導く試料
は、実際の被検体溶液および分析機器に校正が必要な場
合の標準液も含むものである。従って、試料液導入口の
前段では、検出機器の校正を行うために試料液と標準液
を切り替える排他型バルブ部と同様の3方の切り替え装
置を配置することができ、また標準液を複数供給可能な
ように3方の切り替え装置を複数配置することができ
る。
The sample introduced to the sample introduction port of the exclusive type valve section includes the actual sample solution and the standard solution when the analytical instrument requires calibration. Therefore, in the previous stage of the sample solution inlet, a three-way switching device similar to the exclusive type valve section that switches between the sample solution and the standard solution for calibrating the detection device can be arranged, and a plurality of standard solutions can be supplied. A plurality of three-way switching devices can be arranged as much as possible.

【0036】排他型バルブ部では、2つの導入口をそれ
ぞれ導出口に流路的に時間配分して導通させて試料液と
希釈液を混合するが、試料液と希釈液をこの単一のポン
プで吸入するため、正確な2液の混合液を形成すること
ができる。
In the exclusive valve section, the two inlets are time-divided into the outlets in a flow-wise manner so that the sample liquid and the diluting liquid are mixed, and the sample liquid and the diluting liquid are mixed by this single pump. Since it is inhaled by, it is possible to form an accurate mixed liquid of two liquids.

【0037】以上のような合流部の別の一形態として
は、合流部が測定液送液系統の測定液送液手段の下流側
に設けられものである。この場合、希釈液送液系統が合
流部に一定の流速で希釈液を送液する希釈液送液手段と
して希釈液搬送ポンプを更に備えた装置となる。この場
合は、その希釈液搬送ポンプとしては前出の試料液搬送
ポンプに使用されるポンプが適宜使用可能である。
As another form of the merging portion as described above, the merging portion is provided on the downstream side of the measuring liquid feeding means of the measuring liquid feeding system. In this case, the diluent delivery system is an apparatus further provided with a diluent delivery pump as a diluent delivery means for delivering the diluent at a constant flow rate to the junction. In this case, the pump used for the sample liquid transfer pump described above can be appropriately used as the diluent transfer pump.

【0038】試料を含む測定液と希釈液の合流比率、即
ちろ過セルへ導かれる前の希釈倍率は、試料液搬送ポン
プと希釈液搬送ポンプの2つのポンプの流速比によって
容易に調整することができる。また希釈液の合流によっ
て全流量が増加するので当然試料の搬送速度が増加する
ため、ろ過セル内の試料の置換が早くなり、ろ過セル内
部での汚れやつまりが起りにくくなるという利点を有す
る。
The confluence ratio of the measurement liquid containing the sample and the diluting liquid, that is, the dilution ratio before being introduced into the filtration cell, can be easily adjusted by the flow rate ratio between the two pumps of the sample liquid conveying pump and the diluting liquid conveying pump. it can. Further, since the total flow rate is increased due to the confluence of the diluting liquid, the sample transport speed is naturally increased, so that the replacement of the sample in the filtration cell is accelerated, and there is an advantage that contamination and clogging in the filtration cell are less likely to occur.

【0039】[0039]

【実施例】以下に図に示す実施例に基づいて、本発明の
液体試料連続測定装置の構成を詳細に説明する。なお、
単に%と表記したものは重量%を表す。 〔実施例1〕図1は本発明の液体試料連続測定装置を、
溶液中のグルコース濃度を測定するためのフローインジ
ェクション分析装置に適用した第1の実施例の系統図で
ある。
EXAMPLES The configuration of the liquid sample continuous measuring apparatus of the present invention will be described in detail below with reference to the examples shown in the drawings. In addition,
What is simply expressed as% means% by weight. Example 1 FIG. 1 shows a liquid sample continuous measuring apparatus of the present invention,
It is a systematic diagram of the 1st example applied to the flow injection analyzer for measuring the glucose concentration in a solution.

【0040】試料液(14)、標準液(15)および洗
浄液(3)は3方の電磁バルブ(24)および(25)
で、いずれか一つの液が選択され試料液搬送ポンプ
(9)によってろ過セル(8)の試料通液路(5)に供
給される。以上で測定液送液系統が構成される。また、
キャリア(13)がキャリア搬送ポンプ(10)によっ
てろ過セル(8)のキャリア通液路(6)に供給され
る。以上でキャリア送液系統が構成される。
The sample solution (14), the standard solution (15) and the cleaning solution (3) are three-way electromagnetic valves (24) and (25).
Then, any one of the liquids is selected and supplied to the sample liquid passage (5) of the filtration cell (8) by the sample liquid transfer pump (9). The measurement liquid delivery system is configured as described above. Also,
The carrier (13) is supplied to the carrier liquid passage (6) of the filtration cell (8) by the carrier transfer pump (10). The carrier liquid feeding system is configured as described above.

【0041】ろ過セル(8)は、内部で部分的に半透膜
を介して平行に接する試料通液路(5)とキャリア通液
路(6)を有しており、低分子の測定対象成分の一部が
試料通液路(5)からでキャリア通液路(6)に透過し
て、注入器で構成される試料注入部(20)に運ばれそ
こで5μlが秤量され、検出器(21)に注入される。
The filtration cell (8) has a sample liquid passage (5) and a carrier liquid passage (6), which are in contact with each other in parallel through a semipermeable membrane partially inside, and is an object of measurement of low molecular weight substances. A part of the component permeates the sample liquid passage (5) to the carrier liquid passage (6) and is carried to the sample injection part (20) composed of an injector, where 5 μl is weighed and the detector ( 21).

【0042】この工程を詳細に説明すると、試料を含む
被測定液である試料液(14)がろ過セル(8)の試料
通液路(5)一定の流速で測定液送液手段である試料液
搬送ポンプ(9)によって送液される。また同様にキャ
リア(13)がキャリア送液手段であるキャリア搬送ポ
ンプ(10)によってキャリア通液路(6)に一定の流
速で送液される。この状態で、ろ過セル(8)では試料
通液路(5)を流れる被測定液中の試料の少なくとも一
部がキャリア通液路(6)を流れるキャリア中に半透膜
である半透膜(7)を介して移動する。
Explaining this step in detail, the sample liquid (14), which is the liquid to be measured containing the sample, is the sample liquid passage (5) of the filtration cell (8), which is the measuring liquid sending means at a constant flow rate. The liquid is transferred by the liquid transfer pump (9). Similarly, the carrier (13) is sent to the carrier passage (6) at a constant flow rate by the carrier transfer pump (10) which is a carrier sending means. In this state, in the filtration cell (8), at least a part of the sample in the liquid to be measured flowing through the sample liquid passage (5) is a semipermeable membrane which is a semipermeable membrane in the carrier flowing through the carrier liquid passage (6). Move through (7).

【0043】この移動は被測定液とキャリアがそれぞれ
一定の流速で送液されているので、ある程度時間がたて
ば、十分安定に行われるようになる。制御部(11)が
このように安定な移動が行われて得られたキャリアを適
切な時期に、すなわち両ポンプの送液開始後ある程度一
定の時間が経過後、試料注入部(20)によって緩衝液
中に注入する。注入された試料は試料注入部(20)の
後に接続された検出器(21)によって測定される。こ
のような一定の時間はあらかじめ装置を種々の条件(試
料やキャリアの流量、濃度、配管等)で試験して、それ
ぞれの場合に応じて設定しておく。つまり、ろ過セルで
の試料の移動が一定の濃度を有する一定流速で送液され
る被測定液と一定流速で送液されるキャリアの間で行わ
れるので、その送液時間をある程度とれば安定な移動が
得られる。すなわち、十分な量の試料が半透膜に定常的
に安定するまで必要なだけ長く接するように制御できる
ために、半透膜での移動状態の再現性が高くなる。試料
注入部(20)から検出器(21)への試料の搬送は、
緩衝液搬送ポンプ(19)による検出器用の緩衝液(1
8)によって行なわれ、検出済みの液は廃液ボトル(2
2)に排出される。このように制御部(11)は各ポン
プ(9)(10)(11)、バルブ(24)(25)及
び試料注入部(20)の動作を制御するものでマイクロ
コンピュータと必要な入出力装置等の周辺器機によって
構成されるものである。
Since the liquid to be measured and the carrier are respectively sent at a constant flow rate, this movement can be carried out sufficiently stably after a certain period of time. The control unit (11) buffers the carrier obtained by such stable movement at an appropriate time, that is, after a certain period of time elapses after the start of liquid feeding of both pumps, by the sample injection unit (20). Inject into liquid. The injected sample is measured by the detector (21) connected after the sample injection part (20). Such a certain period of time is set in advance according to each case by testing the device under various conditions (flow rate of sample and carrier, concentration, piping, etc.). In other words, the movement of the sample in the filtration cell is performed between the liquid to be measured having a constant concentration and being fed at a constant flow rate and the carrier being fed at a constant flow rate, so that the solution feeding time is stable to some extent. Can be obtained. That is, since a sufficient amount of the sample can be controlled so as to be in contact with the semipermeable membrane for as long as necessary until it is constantly stabilized, the reproducibility of the moving state in the semipermeable membrane is enhanced. Transport of the sample from the sample injection part (20) to the detector (21)
Buffer solution (1) for detector by buffer solution transfer pump (19)
8), and the detected liquid is the waste liquid bottle (2
It is discharged to 2). In this way, the control unit (11) controls the operations of the pumps (9) (10) (11), the valves (24) (25) and the sample injection unit (20), and is a microcomputer and a necessary input / output device. It is composed of peripheral equipment such as.

【0044】なお試料液搬送ポンプ(9)、キャリア搬
送ポンプ(10)はいずれもれペリスタリックポンプを
用い、それぞれ流速を、1.0ml/min、0.75
ml/minとした。また緩衝液搬送ポンプ(19)に
はプランジャー式ポンプを用い、流速を1.0ml/m
inとした。ろ過セル(8)において半透膜(7)の両
側のキャリア通液路(6)および試料通液路(5)を形
成する2つのそれぞれのブロックの溝の形状は、深さ
0.5mm、幅2mmの矩形断面とし、長さ40mmと
し、半透膜として分画分子量300,000のスペクト
ラ/ポアCEタイプ(Spectrum Medica
l Industries, Inc 製)の透析膜を
使用した。
The sample solution transfer pump (9) and the carrier transfer pump (10) were both leaky peristaltic pumps, and the flow rates were 1.0 ml / min and 0.75, respectively.
It was set to ml / min. A plunger type pump was used as the buffer solution transfer pump (19), and the flow rate was 1.0 ml / m.
in. In the filtration cell (8), the groove of each of the two blocks forming the carrier liquid passage (6) and the sample liquid passage (5) on both sides of the semipermeable membrane (7) has a depth of 0.5 mm, A rectangular cross section with a width of 2 mm, a length of 40 mm, and a semipermeable membrane with a molecular weight cutoff of 300,000, Spectra / Pore CE type (Spectrum Medica)
l Industries, Inc.) dialysis membrane was used.

【0045】なお緩衝液は100mMリン酸ナトリウム
緩衝液(pH6)とし、キャリア(13)および洗浄液
(3)には蒸留水を使用した。検出器(21)は、37
℃に保持された恒温槽の内部にフローセルが配置されて
いる。また、このフローセル中にはグルコース検出用の
固定化酵素電極、Ag/AgCl参照電極が配置され、
さらにフローセル中の液に接しステンレス製接続継手で
構成される対極が隣接する。なおポテンシオスタットで
固定化酵素電極に、Ag/AgCl参照電極に対して+
0.6Vの電圧が印加され、注入された試料のグルコー
ス量に基づいて出力される電流値を得て、その電流値の
波形のピーク高さを応答値として検出する。
The buffer was 100 mM sodium phosphate buffer (pH 6), and distilled water was used as the carrier (13) and the washing solution (3). The detector (21) is 37
A flow cell is placed inside a constant temperature bath maintained at ℃. Further, an immobilized enzyme electrode for glucose detection and an Ag / AgCl reference electrode are arranged in this flow cell,
Further, the counter electrode, which is in contact with the liquid in the flow cell and is made of a stainless steel connection joint, is adjacent to the counter electrode. It should be noted that potentiostat was added to the immobilized enzyme electrode and to the Ag / AgCl reference electrode +
A voltage of 0.6 V is applied, an output current value is obtained based on the glucose amount of the injected sample, and the peak height of the waveform of the current value is detected as a response value.

【0046】以下に上記グルコース検出用の固定化酵素
電極の製造方法を示す。直径2mmの白金線の側面を熱
収縮テフロンで被覆し、その線の一端をやすりおよび1
500番のエメリー紙で平滑に仕上げる。この白金線を
作用極、1cm角型白金板を対極、飽和カロメル電極
(以下SCEと略す)を参照極として、0.1M硫酸
中、+2.0Vで5分間の電解処理を行う。その後白金
線をよく水洗し、40℃で10分間乾燥し、10%γ−
アミノプロピルトリエトキシシランの無水トルエン溶液
に1時間浸漬後、洗浄した。このアミノシラン化した白
金線上に酵素を以下のようにして固定化した。
The method for producing the above-mentioned immobilized enzyme electrode for detecting glucose will be described below. The side surface of a platinum wire with a diameter of 2 mm is coated with heat-shrinkable Teflon, and one end of the wire is rasp and
Smooth it with # 500 emery paper. Using this platinum wire as a working electrode, a 1 cm square platinum plate as a counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) as a reference electrode, electrolytic treatment is performed in 0.1 M sulfuric acid at +2.0 V for 5 minutes. After that, the platinum wire was washed well with water, dried at 40 ° C. for 10 minutes, and 10% γ-
It was immersed in an anhydrous toluene solution of aminopropyltriethoxysilane for 1 hour and then washed. The enzyme was immobilized on the aminosilanized platinum wire as follows.

【0047】グルコースオキシダーゼ(シグマ社製、タ
イプII)5mg、および牛血清アルブミン(シグマ社
製、Fraction V)5mgを100mMリン酸
ナトリウム緩衝液(pH7)1mlに溶解し、グルタル
アルデヒドを0.2%になるように加える。この混合液
を手早く先に用意した白金線上に5μlのせ、40℃で
15分間乾燥硬化後、100mMリン酸ナトリウム緩衝
液(pH6)中に保存したものを使用した。 〔第1の実施例の効果〕ろ過セルで溶液試料中の微小固
形分、タンパク質、汚染性物質などを排除し、迅速かつ
精度よく分析することができる。
Glucose oxidase (Sigma II, type II) 5 mg and bovine serum albumin (Sigma, Fraction V) 5 mg were dissolved in 100 ml of sodium phosphate buffer (pH 7) 100 mM, and glutaraldehyde was added to 0.2%. To be added. 5 μl of this mixed solution was quickly put on a platinum wire prepared in advance, dried and cured at 40 ° C. for 15 minutes, and then stored in 100 mM sodium phosphate buffer (pH 6). [Effects of the first embodiment] The filtration cell can eliminate minute solids, proteins, contaminants and the like in the solution sample, and analyze quickly and accurately.

【0048】〔実施例2〕図2は本発明の液体試料連続
測定装置を、溶液中のグルコース濃度を測定するための
フローインジェクション分析装置に適用した第2の実施
例の系統図である。図中実施例1と同一の図番で示した
部材は実施例1において使用したものと同一であるので
その説明等を省略している。
[Embodiment 2] FIG. 2 is a system diagram of a second embodiment in which the liquid sample continuous measuring apparatus of the present invention is applied to a flow injection analyzer for measuring the glucose concentration in a solution. In the drawings, the members indicated by the same reference numerals as those of the first embodiment are the same as those used in the first embodiment, and therefore the description thereof will be omitted.

【0049】本実施例では測定液送液系統と後述の希釈
液送液系統を接続する合流部となる三方電磁バルブで構
成されている排他型バルブ部(4)を有していることが
大きな特徴である。希釈液送液系統として希釈液(1
2)が希釈液導入口(2)に接続されている。試料(1
4)又は標準液(15)が試料液導入口(1)に接続さ
れる。すなわち、試料液導入口(1)の前段では分析機
器を校正する際には標準液(15)が、また定量を行う
際には試料(14)に接続されるように、排他型バルブ
部(4)と同様の試料切り替えバルブ(17)が配置さ
れる。この試料(14)、標準液(15)、試料切り替
えバルブ(17)、試料液搬送ポンプ(9)で測定液送
液系統が構成されていることになる。
In the present embodiment, the exclusive type valve section (4) which is composed of a three-way electromagnetic valve which serves as a confluent section for connecting the measuring solution sending system and the diluting solution sending system described later is large. It is a feature. Diluent (1
2) is connected to the diluent inlet (2). Sample (1
4) or the standard solution (15) is connected to the sample solution inlet (1). That is, in the preceding stage of the sample solution inlet (1), the exclusive valve part (so that the standard solution (15) is connected when calibrating the analytical instrument and the sample (14) when quantifying is performed. A sample switching valve (17) similar to 4) is arranged. The sample (14), the standard solution (15), the sample switching valve (17) and the sample solution transport pump (9) constitute a measurement solution delivery system.

【0050】排他型バルブ部(4)の導出口(3)から
ろ過セル(8)に送液を行う試料液搬送ポンプ(9)
は、ペリスタリックポンプを用い1ml/minの流速
で吸引、送液が行われる。制御部(11)は実施例1に
おいて説明したような制御機能に加えて、排他型バルブ
部(4)の実質的な駆動および制御を行うものであり、
排他型バルブ部(4)における駆動電圧の印加をON、
OFFして各々の導入口について、個々の時間幅で導出
口(3)に流路導通9るように順次切り替えて、繰り返
し制御を行う。
Sample liquid transfer pump (9) for feeding liquid from the outlet (3) of the exclusive valve section (4) to the filtration cell (8).
Is aspirated at a flow rate of 1 ml / min using a peristaltic pump, and liquid is fed. The control unit (11) performs the substantial drive and control of the exclusive valve unit (4) in addition to the control function described in the first embodiment.
ON the drive voltage application in the exclusive valve section (4),
It is turned off, and the respective inlets are sequentially switched to the outlet (3) in the individual time width so that the flow passage 9 is conducted, and the repetitive control is performed.

【0051】三方電磁バルブがON時には試料液導入口
(1)と導出口(3)が,またOFF時には希釈液導入
口(2)と導出口(3)が流路導通するようにして、O
FF→ON→OFFを繰り返し、その切り替え周期を1
秒とし、ON:OFFの時間比率を1:3として、時間
幅の比率に相当する混合比率を得た。試料液と希釈液を
それぞれの導入口に接続した場合、試料液導入口(1)
と導出口(3)の流路導通、希釈液導入口(2)と導出
口(3)の流路導通に関する流路導通時間を設定し、そ
の比率によって所定の混合比を得る。
When the three-way electromagnetic valve is turned on, the sample liquid inlet (1) and the outlet (3) are connected to each other, and when the three-way electromagnetic valve is turned off, the diluent inlet (2) and the outlet (3) are connected to each other.
FF → ON → OFF is repeated and the switching cycle is set to 1
Seconds and an ON: OFF time ratio of 1: 3 were used to obtain a mixing ratio corresponding to a time width ratio. When the sample solution and diluent are connected to their respective inlets, the sample liquid inlet (1)
And flow passage conduction between the outlet (3) and the flow passage between the diluent inlet (2) and the outlet (3) are set, and a predetermined mixing ratio is obtained by the ratio.

【0052】ろ過セル(8)内部は、キャリア通液路
(6)と試料通液路(5)が部分的に半透膜(7)を挟
んで対向しており、キャリア搬送ポンプ(10’)とし
てプランジャー式ポンプを用い、流速0.75ml/m
inでキャリア(13)がキャリア通液路(6)に送ら
れ、試料通液路(5)から半透膜(7)を通じて透過し
てくる測定対象成分を受給して試料注入部(20)に送
液される。また試料通液路(5)を通る液流は廃液ボト
ル(16)に蓄えられる。
In the inside of the filtration cell (8), the carrier liquid passage (6) and the sample liquid passage (5) are partially opposed to each other with the semipermeable membrane (7) interposed therebetween, and the carrier transfer pump (10 '). ), Using a plunger type pump, flow rate 0.75 ml / m
In, the carrier (13) is sent to the carrier liquid passage (6), receives the component to be measured transmitted from the sample liquid passage (5) through the semipermeable membrane (7), and receives the sample injection part (20). Is sent to. The liquid flow through the sample liquid passage (5) is stored in the waste liquid bottle (16).

【0053】試料注入部(20)では5μlが秤量さ
れ、ポンプ(19)による緩衝液(18)のボトルから
検出器(21)への送液流の中に注入される。なお緩衝
液(18)は100mMリン酸ナトリウム緩衝液(pH
6)を使用し、希釈液(12)およびキャリア(13)
には蒸留水を使用した。
In the sample injection part (20), 5 μl is weighed and injected into the flow of the buffer solution (18) from the bottle to the detector (21) by the pump (19). The buffer solution (18) was 100 mM sodium phosphate buffer solution (pH
6) is used to dilute (12) and carrier (13)
For this, distilled water was used.

【0054】標準液(15)として1000mMまでの
グルコース標準液を順次、使用して応答値を計測した結
果を図3のBに示す。また比較のために、希釈液(1
2)および排他型バルブ部(4)を省略し、直接、切り
替えバルブ部(17)から試料液搬送ポンプ(9)に接
続した場合、これは実施例1の構成に相当するが、この
構成について同様の標準液を用いて計測した結果を図3
のAに示す。
The results of measuring response values by sequentially using glucose standard solutions up to 1000 mM as the standard solution (15) are shown in FIG. 3B. For comparison, the diluent (1
2) and the exclusive valve part (4) are omitted and the switching valve part (17) is directly connected to the sample liquid transfer pump (9), which corresponds to the structure of the first embodiment. The result of measurement using the same standard solution is shown in FIG.
Of A.

【0055】また、参考のために試料注入部(20)に
低濃度の標準液を直接注入した場合の応答値を図4に示
す。図4に示すように500nA相当のグルコース溶液
を計測した場合には、濃度とその応答値の関係が直線に
なっている。
For reference, FIG. 4 shows the response values when the low concentration standard solution was directly injected into the sample injection part (20). As shown in FIG. 4, when a glucose solution equivalent to 500 nA is measured, the relationship between the concentration and its response value is linear.

【0056】しかしながら、図3のAに示すように、高
濃度のグルコース溶液を直接ろ過セル(8)に通液した
場合、元のグルコース溶液の濃度がある濃度を越える
と、グルコースの一部が透過したキャリアの応答値がグ
ルコース濃度に比例していなかった。すなわち透過率が
低下していた。
However, as shown in FIG. 3A, when a high-concentration glucose solution is directly passed through the filtration cell (8), when the original glucose solution concentration exceeds a certain concentration, a part of glucose is The response value of the permeated carrier was not proportional to the glucose concentration. That is, the transmittance was lowered.

【0057】この第2の実施例の液体試料連続測定装置
のように、高濃度の試料を排他型バルブ部(4)で希釈
をおこなってから、ろ過セル(8)の試料通液路(5)
に通液することで、図3のBのように高濃度領域まで応
答値と溶液に含まれる測定対象成分濃度の直線性が得ら
れる。つまり、図3のAから分かるように実施例1の構
成ではグルコース濃度が200mM以下のような比較的
低濃度の範囲において直線性が得られているが、それ以
上の濃度では非直線になる。このように、実施例1の構
成では測定対象の濃度範囲が比較的低濃度に限られてい
たのに対して本実施例2の構成ではより高い濃度の測定
対象を計測可能にしていることが図3のBから分か
る。。なお、同様に試料としてヨーグルトを通液してグ
ルコース量を測定したが24時間にわたり感度低下等は
認められず再現性の良い結果が得られた。
As in the liquid sample continuous measuring apparatus of the second embodiment, a high concentration sample is diluted with the exclusive valve section (4) and then the sample passage (5) of the filtration cell (8) is used. )
As shown in B of FIG. 3, the linearity between the response value and the concentration of the measurement target component contained in the solution can be obtained by passing the solution through. That is, as can be seen from FIG. 3A, in the configuration of Example 1, linearity is obtained in a relatively low concentration range of glucose concentration of 200 mM or less, but it becomes non-linear at a concentration higher than that. As described above, in the configuration of the first embodiment, the concentration range of the measurement target is limited to a relatively low concentration, whereas in the configuration of the second embodiment, the measurement target of a higher concentration can be measured. It can be seen from B in FIG. . Similarly, yogurt was passed through as a sample to measure the amount of glucose, but no decrease in sensitivity was observed for 24 hours, and reproducible results were obtained.

【0058】〔第2の実施例の効果〕ろ過セルで溶液試
料中の微小固形分、タンパク質、汚染性物質などを排除
し、しかもろ過セルの前段で混合・希釈することによっ
て、広濃度範囲の測定対象成分を迅速かつ精度よく分析
することができる。しかも、排他型バルブ部で2つの導
入口をそれぞれ導出口に流路的に時間配分して導通させ
て、しかも単一のポンプで吸入するため、安定で正確な
試料の希釈が可能となり、分析機器の測定感度にあわせ
て混合・希釈比率を容易に設定できる。
[Effect of the Second Embodiment] By removing fine solids, proteins, contaminants, etc. in the solution sample with the filtration cell, and mixing and diluting in the previous stage of the filtration cell, a wide concentration range can be obtained. The measurement target component can be analyzed quickly and accurately. Moreover, since the exclusive valve section distributes the two inlets to the outlets in a flow-wise manner and conducts them, and also sucks in with a single pump, stable and accurate dilution of the sample becomes possible, and analysis is performed. The mixing / dilution ratio can be easily set according to the measurement sensitivity of the device.

【0059】〔実施例3〕図5は本発明の液体試料連続
測定装置を、溶液中のグルコース濃度を測定するための
フローインジェクション分析装置に適用した第3の実施
例の系統図である。図中実施例1、2と同一の図番で示
した部材は実施例1、2において使用したものと同一で
あるのでその説明等を省略している。
[Embodiment 3] FIG. 5 is a system diagram of a third embodiment in which the liquid sample continuous measuring apparatus of the present invention is applied to a flow injection analyzer for measuring the glucose concentration in a solution. In the figure, the members indicated by the same reference numerals as those of the first and second embodiments are the same as those used in the first and second embodiments, and therefore the description thereof will be omitted.

【0060】本実施例は測定液送液系統と希釈液送液系
統を接続する合流部(4’)を有していることが大きな
特徴である。この合流部(4’)は単なるT字管で構成
されているものである。試料液(14)、標準液(1
5)および洗浄液(3)は3方の電磁バルブ(1)およ
び(2)で、いずれか一つの液が選択され試料液搬送ポ
ンプ(9)によって合流部(4’)に供給される。以上
が測定液送液系統となる。希釈液搬送ポンプ(11)に
よって送られてくる希釈液(12)も合流部(4’)に
供給される。以上が希釈液送液系統となる。ろ過セル
(8)の試料通液路(5)へは、合流部(4’)で合流
して希釈された試料が供給され、またキャリア(13)
がキャリア搬送ポンプ(10)によってろ過セル(8)
のキャリア通液路(6)に供給される。
The major feature of this embodiment is that it has a confluence section (4 ') for connecting the measurement liquid delivery system and the diluent delivery system. The merging portion (4 ') is simply a T-shaped tube. Sample solution (14), standard solution (1
5) and the washing solution (3) are supplied to the confluence section (4 ′) by the sample solution transfer pump (9) by selecting one of the three solutions by the electromagnetic valves (1) and (2). The above is the measurement liquid delivery system. The diluent (12) sent by the diluent transfer pump (11) is also supplied to the merging section (4 ′). The above is the diluent delivery system. A sample diluted by joining at the joining section (4 ′) is supplied to the sample passage (5) of the filtration cell (8), and the carrier (13).
Is a carrier transfer pump (10) for filtration cell (8)
Is supplied to the carrier liquid passage (6).

【0061】ろ過セル(8)は、内部で部分的に半透膜
を介して平行に接する試料通液路(5)とキャリア通液
路(6)を有しており、低分子の測定対象成分の一部が
試料通液路(5)から半透膜(7)を介してキャリア通
液路(6)に透過して、試料注入部(20)に運ばれて
一定量が検出器(21)に注入される。ろ過セルと 検
出器(21)への試料の搬送は、緩衝液搬送ポンプ(1
9)による緩衝液(18)によって行なわれ、検出済み
の液は廃液ボトル(22)に排出される。
The filtration cell (8) has a sample liquid passage (5) and a carrier liquid passage (6) which are in contact with each other in parallel via a semipermeable membrane inside, and is an object of measurement of low-molecular weight substances. Part of the components permeate from the sample liquid passage (5) through the semipermeable membrane (7) to the carrier liquid passage (6), and are carried to the sample injection part (20), where a fixed amount of the detector ( 21). The sample is transferred to the filtration cell and the detector (21) by the buffer transfer pump (1
9) and the detected liquid is discharged to the waste liquid bottle (22).

【0062】なお希釈液搬送ポンプ(23)、試料液搬
送ポンプ(9)、キャリア搬送ポンプはいずれもペリス
タリックポンプを用い、それぞれ流速を3.5ml/m
in、1.0ml/min、1.0ml/minとし
た。また緩衝液搬送ポンプ(19)にはプランジャー式
ポンプを用い、流速を1.0ml/minとした。
A peristaltic pump was used for each of the diluent transport pump (23), the sample solution transport pump (9), and the carrier transport pump, and the flow rate was 3.5 ml / m.
in, 1.0 ml / min, and 1.0 ml / min. A plunger pump was used as the buffer solution transport pump (19), and the flow rate was 1.0 ml / min.

【0063】ろ過セル(8)は実施例1で使用したもの
とほぼ同様であるが、試料通液路(5)を形成する2つ
のそれぞれのブロックの溝の形状の内長さが120mm
であること以外は同一の構成のものを使用した。なお緩
衝液は100mMリン酸ナトリウム緩衝液(pH6)と
し、キャリア(13)も同じものをもちいた。また希釈
液(12)および洗浄液(3)には蒸留水を使用した。
The filtration cell (8) is almost the same as that used in Example 1, except that the inner length of the groove shape of each of the two blocks forming the sample passage (5) is 120 mm.
The same configuration was used except that. The buffer was 100 mM sodium phosphate buffer (pH 6), and the same carrier (13) was used. Distilled water was used as the diluting solution (12) and the washing solution (3).

【0064】標準液として1000mMまでのグルコー
ス標準液を順次、使用して応答値を計測した結果を図6
のBに示す。また比較のために、希釈液(12)を合流
させずに、直接、試料をろ過セル(8)に供給した場
合、これも実施例1の構成にほぼ相当するが、この構成
について同様の標準液を用いて計測した結果を図6のA
に示す。
The results of measuring the response values by sequentially using glucose standard solutions up to 1000 mM as standard solutions are shown in FIG.
B of FIG. Further, for comparison, when the sample is directly supplied to the filtration cell (8) without joining the diluting liquid (12), this also substantially corresponds to the configuration of Example 1, but a similar standard is used for this configuration. The result measured using the liquid is shown in Fig. 6A.
Shown in.

【0065】また、試料注入部(20)に低濃度の標準
液を直接注入した場合の応答値を図7に示す。図7に示
すように500nA相当のグルコース溶液を計測した場
合には、濃度とその応答値の関係が直線になっている。
しかしながら、図6のAに示すように、高濃度のグルコ
ース溶液を直接ろ過セル(8)に通液した場合、元のグ
ルコース溶液の濃度がある濃度を越えると、グルコース
の一部が透過したキャリアの応答値がグルコース濃度に
比例していないこと、すなわち透過率が低下していた。
FIG. 7 shows the response values when the low concentration standard solution was directly injected into the sample injection part (20). As shown in FIG. 7, when a glucose solution equivalent to 500 nA is measured, the relationship between the concentration and its response value is linear.
However, as shown in FIG. 6A, when a high-concentration glucose solution is directly passed through the filtration cell (8), when the original glucose solution concentration exceeds a certain concentration, some of the glucose permeates the carrier. Response value was not proportional to glucose concentration, that is, the transmittance was decreased.

【0066】この第3の実施例の液体試料連続測定装置
のように、高濃度の試料を希釈液の合流により希釈をお
こなってから、ろ過セル(8)の試料通液路に通液する
ことで、図6のBのように高濃度領域まで応答値と溶液
に含まれる測定対象成分濃度の直線性が得られる。また
同様に試料としてヨーグルトを通液してグルコース量を
測定したが24時間にわたり感度低下等は認められず再
現性の良い結果が得られた。
As in the liquid sample continuous measuring apparatus of the third embodiment, after diluting a high-concentration sample by confluence of the diluting liquid, the sample is passed through the sample passage of the filtration cell (8). As shown in FIG. 6B, the linearity between the response value and the concentration of the measurement target component contained in the solution can be obtained up to the high concentration region. Similarly, yogurt was passed through as a sample to measure the amount of glucose, but no decrease in sensitivity was observed for 24 hours, and good reproducible results were obtained.

【0067】〔第3の実施例の効果〕ろ過セルで溶液試
料中の微小固形分、タンパク質、汚染性などの排除し、
しかもろ過セルの前段で混合・希釈することによって、
広濃度範囲の測定対象成分を迅速かつ精度よく分析する
ことが可能となる。また希釈液の合流によって希釈とと
もに試料の搬送速度が増加するため、ろ過セル内の試料
の置換が早くなり分析時間を短縮でき、ろ過セル内部で
の汚れやつまりが起りにくくなる。
[Effects of the Third Embodiment] A filter cell is used to eliminate minute solids, proteins, contaminants, etc. in the solution sample,
Moreover, by mixing and diluting in the previous stage of the filtration cell,
It becomes possible to analyze the measurement target component in a wide concentration range quickly and accurately. Further, since the sample transport speed increases with the dilution due to the confluence of the diluting liquid, the replacement of the sample in the filtration cell becomes faster, the analysis time can be shortened, and contamination and clogging in the filtration cell are less likely to occur.

【0068】[0068]

【発明の効果】溶液試料中の微小固形分、タンパク質、
汚染性物質などを排除し、広濃度範囲の測定対象成分を
迅速かつ精度よく分析機器で測定可能である。
EFFECTS OF THE INVENTION Micro-solids, proteins in solution samples,
It eliminates contaminants, etc., and can quickly and accurately measure a wide range of components to be measured with analytical instruments.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の液体試料連続測定装置を、溶液
中のグルコース濃度を測定するためのフローインジェク
ション分析装置に適用した第1の実施例の系統図。
FIG. 1 is a system diagram of a first embodiment in which the liquid sample continuous measurement apparatus of the present invention is applied to a flow injection analysis apparatus for measuring glucose concentration in a solution.

【図2】図2は本発明の液体試料連続測定装置を、溶液
中のグルコース濃度を測定するためのフローインジェク
ション分析装置に適用した第2の実施例の系統図。
FIG. 2 is a system diagram of a second embodiment in which the liquid sample continuous measurement apparatus of the present invention is applied to a flow injection analysis apparatus for measuring glucose concentration in a solution.

【図3】図3は第1及び第2の実施例の液体試料連続測
定装置によってグルコースの各高濃度標準液を順次使用
して応答値を計測し、もとのグルコース濃度と応答値の
関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the original glucose concentration and the response value obtained by measuring the response value by sequentially using the high-concentration standard solutions of glucose by the liquid sample continuous measuring devices of the first and second embodiments. The graph showing.

【図4】図4は第2の実施例の液体試料連続測定装置に
おいて試料注入部より既知濃度の低濃度グルコース標準
液を直接注入した場合のグルコース濃度と応答値の関係
を示すグラフである。
FIG. 4 is a graph showing a relationship between a glucose concentration and a response value when a low-concentration glucose standard solution having a known concentration is directly injected from a sample injection part in the liquid sample continuous measurement apparatus of the second embodiment.

【図5】図5は本発明の液体試料連続測定装置を、溶液
中のグルコース濃度を測定するためのフローインジェク
ション分析装置に適用した第3の実施例の系統図。
FIG. 5 is a system diagram of a third embodiment in which the liquid sample continuous measurement apparatus of the present invention is applied to a flow injection analysis apparatus for measuring glucose concentration in a solution.

【図6】図6は第3の実施例の液体試料連続測定装置に
よってグルコースの各高濃度標準液を順次使用して応答
値を計測し、もとのグルコース濃度と応答値の関係を示
すグラフ。尚、図6中、Bはろ過セル(8)で希釈液
(12)との合流部(4)を省略して、希釈を行わずに
直接、ろ過セル(8)の試料通液部(5)に試料側の溶
液を通液した場合の計測結果を示す。
FIG. 6 is a graph showing the relationship between the original glucose concentration and the response value obtained by sequentially using the high-concentration standard solutions of glucose by the liquid sample continuous measuring apparatus of the third embodiment to measure the response value. . In FIG. 6, B is a filtration cell (8), omitting the confluence part (4) with the diluting liquid (12), and directly carrying out the sample passage part (5) of the filtration cell (8) without dilution. ) Shows the measurement results when the solution on the sample side was passed through.

【図7】図7は第3の実施例の液体試料連続測定装置に
おいて試料注入部より既知濃度の低濃度グルコース標準
液を直接注入した場合のグルコース濃度と応答値の関係
を示すグラフである。
FIG. 7 is a graph showing a relationship between a glucose concentration and a response value when a low-concentration glucose standard solution having a known concentration is directly injected from a sample injection part in the liquid sample continuous measurement apparatus of the third embodiment.

【符号の説明】[Explanation of symbols]

4,4’ 合流部 5 試料通液路 6 キャリア通液路 7 半透膜 8 ろ過セル 9 試料液搬送ポンプ 10、10’ キャリア搬送ポンプ 11 制御部 12 希釈液 13 キャリア 14 試料 15 標準液 18 緩衝液 19 緩衝液搬送ポンプ 20 試料注入部 21 検出器 23 希釈液搬送ポンプ 4, 4'merging section 5 Sample passage 6 Carrier flow path 7 Semi-permeable membrane 8 filtration cells 9 Sample liquid transfer pump 10, 10 'carrier transfer pump 11 Control unit 12 Diluent 13 career 14 samples 15 standard solution 18 buffer 19 Buffer transfer pump 20 Sample injection part 21 detector 23 Diluent carrier pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−94263(JP,A) 特開 平5−302871(JP,A) 特開 平4−84771(JP,A) 特開 平5−333028(JP,A) 特公 昭61−20279(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01N 35/06 - 35/08 C12Q 1/00 - 1/70 G01N 1/00 - 1/44 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-1-94263 (JP, A) JP-A-5-302871 (JP, A) JP-A-4-84771 (JP, A) JP-A-5- 333028 (JP, A) Japanese Patent Publication Sho 61-20279 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 35/06-35/08 C12Q 1/00-1/70 G01N 1/00-1/44

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半透膜を介して接する試料通液路とキャリ
ア通液路を有するろ過セル、試料を含む被測定液をろ過
セルの試料通液路に一定の流速で送液する測定液送液手
段を含む測定液送液系統、ろ過セルのキャリア通液路中
にキャリアを一定の流速で送液するキャリア送液手段を
含むキャリア送液系統、ろ過セルのキャリア通液路出口
が接続されてキャリアを断続的に検出器に注入する注入
器、注入器から検出器への緩衝液の送液流路、及び両送
液手段の送液開始後一定の時間が経過後、ろ過セルにお
いて被測定液中の試料の少なくとも一部が半透膜を介し
てキャリア中へ安定に移動して得られた測定対象成分を
含むキャリアを注入器に導入し、注入器を介して該検出
器への緩衝液の送液流路によって検出器に注入させる機
能を備えた制御部を具備する液体試料連続測定装置。
1. A filtration cell having a sample liquid passage and a carrier liquid passage which are in contact with each other through a semipermeable membrane, and a measurement liquid for feeding a liquid to be measured containing a sample to the sample liquid passage of the filtration cell at a constant flow rate. The measurement liquid delivery system including the liquid delivery means, the carrier delivery system including the carrier delivery means for delivering the carrier at a constant flow rate into the carrier passage of the filtration cell, and the carrier passage outlet of the filtration cell are connected An injector for intermittently injecting the carrier into the detector, a flow path for sending the buffer solution from the injector to the detector, and a certain time after the start of the solution sending of both solution sending means, in the filtration cell At least a part of the sample in the liquid to be measured is stably transferred to the carrier through the semipermeable membrane ,
The carrier containing is introduced into the injector and the detection is performed via the injector.
A liquid sample continuous measuring device comprising a controller having a function of injecting a buffer solution into a detector by a flow path of a buffer solution to the container .
【請求項2】希釈液を送液するための希釈液送液系統を
接続する合流部を測定液送液系統の途中に設けた請求項
1記載の液体試料連続測定装置。
2. The liquid sample continuous measuring apparatus according to claim 1, wherein a merging portion for connecting a diluent delivery system for delivering the diluent is provided in the middle of the measurement solution delivery system.
【請求項3】前記合流部が測定液送液系統の測定液送液
手段の上流側に設けられ、該合流部が試料液導入口と希
釈液導入口と導出口を有し、前記各導入口のうち一方が
導出口と流路導通する時には他方は導出口と流路導通し
ない排他型バルブ部であり、前記制御部が該排他型バル
ブ部における各導入口について個々の時間幅で導出口に
流路導通するように順次切り替えて繰り返し制御する機
能を更に備えた請求項2記載の液体試料連続測定装置。
3. The merging portion is provided on the upstream side of the measuring liquid feeding means of the measuring liquid feeding system, and the merging portion has a sample liquid introducing port, a diluting liquid introducing port, and an outlet, and When one of the ports is in flow passage communication with the outlet, the other is an exclusive valve unit that does not flow in communication with the outlet, and the control unit has outlet ports with individual time widths for each inlet of the exclusive valve unit. 3. The liquid sample continuous measuring apparatus according to claim 2, further comprising a function of sequentially switching and repeatedly controlling so that the flow path is electrically connected to.
【請求項4】前記合流部が測定液送液系統の測定液送液
手段の下流側に設けられ、希釈液送液系統が合流部に一
定の流速で希釈液を送液する希釈液送液手段を備える請
求項2記載の液体試料連続測定装置。
4. A diluting liquid delivery system in which the merging portion is provided on the downstream side of the measurement liquid delivery means of the measurement fluid delivery system, and the diluting fluid delivery system delivers the diluting liquid to the merging portion at a constant flow rate. The liquid sample continuous measuring apparatus according to claim 2, further comprising means.
【請求項5】半透膜を介して接する試料通液路とキャリ
ア通液路を有するろ過セルの試料通液路に接続された測
定液送液系統によって試料を含む被測定液を一定の流速
で送液する工程、前記ろ過セルのキャリア通液路に接続
されたキャリア送液系統によってキャリアを一定の流速
で送液する工程、被測定液及びキャリアの送液開始後一
定の時間が経過後、前記ろ過セルのキャリア通液路出口
が接続された注入器によって、ろ過セルにおいて被測定
液中の試料の少なくとも一部が半透膜を介してキャリア
中へ安定に移動して得られたキャリアを検出器への緩衝
液の送液流路を介して検出器に注入する工程、を備えた
液体試料連続測定方法。
5. A solution to be measured containing a sample is kept at a constant flow rate by a measurement solution delivery system connected to a sample passage of a filtration cell having a sample passage and a carrier passage which are in contact with each other through a semipermeable membrane. In the step of sending the carrier at a constant flow rate by the carrier sending system connected to the carrier passage of the filtration cell, after a certain time has elapsed after starting the sending of the solution to be measured and the carrier The carrier obtained by stably transferring at least a part of the sample in the liquid to be measured in the filtration cell into the carrier through the semipermeable membrane by the injector to which the carrier passage outlet of the filtration cell is connected. Buffer to the detector
A method for continuously measuring a liquid sample, which comprises a step of injecting a liquid into a detector through a liquid supply channel .
JP23826494A 1994-03-25 1994-09-30 Liquid sample continuous measuring device and measuring method Expired - Fee Related JP3422092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23826494A JP3422092B2 (en) 1994-03-25 1994-09-30 Liquid sample continuous measuring device and measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-55523 1994-03-25
JP5552394 1994-03-25
JP23826494A JP3422092B2 (en) 1994-03-25 1994-09-30 Liquid sample continuous measuring device and measuring method

Publications (2)

Publication Number Publication Date
JPH07311127A JPH07311127A (en) 1995-11-28
JP3422092B2 true JP3422092B2 (en) 2003-06-30

Family

ID=26396405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23826494A Expired - Fee Related JP3422092B2 (en) 1994-03-25 1994-09-30 Liquid sample continuous measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP3422092B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4530485B2 (en) * 2000-06-05 2010-08-25 株式会社島津製作所 Liquid chromatograph
JP2003014594A (en) * 2001-06-29 2003-01-15 Dkk Toa Corp Diluting device
JP2006126092A (en) * 2004-10-29 2006-05-18 Ntt Advanced Technology Corp Microbiosensor having thin-layer passage and dialysis membrane
JP2007057420A (en) * 2005-08-25 2007-03-08 Ias Inc Solution supply device
WO2014157505A1 (en) * 2013-03-29 2014-10-02 積水メディカル株式会社 Sample-injection device for flow-analysis device, flow-analysis device, and method for measuring hemoglobin components
CN111948202A (en) * 2020-08-15 2020-11-17 内蒙古自治区农牧业科学院 Method for determining protein in food by using flow injection method
CN117347457A (en) * 2023-10-07 2024-01-05 山东谦诺生物科技有限公司 Automatic calibration system and method for on-line detection of enzyme electrode of bioreactor

Also Published As

Publication number Publication date
JPH07311127A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US5695719A (en) Device for analyzing a fluid medium
US5773298A (en) Successive samples analysis method and analysis apparatus
US4209299A (en) Method and apparatus for determination of volatile electrolytes
US5672319A (en) Device for analyzing a fluid medium
EP0047130B1 (en) Flow analysis
SE525639C2 (en) Determination of slag products in dialysis fluid by means of optical sensor
US4486097A (en) Flow analysis
CN209485753U (en) One kind being used for bioprocesses on-line period detection device
HU180210B (en) Method and device for continuous detecting concentration of an enzymatic substratum
JP3422092B2 (en) Liquid sample continuous measuring device and measuring method
US4610544A (en) Flow analysis
EP0805350B1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
JP3353487B2 (en) Liquid sample continuous measurement device
EP2957916A1 (en) Electroanalytical system and method for measuring analytes
US5344571A (en) Method for separating isoanalytes and measuring analytes in fluids
EP0995098A1 (en) Method and device for taking series of samples
JP2784949B2 (en) Measurement device for test liquids such as samples
EP0412046B1 (en) Method of measuring a component in a liquid
US20080184810A1 (en) Calibratable Flow Detector
WO2019110185A1 (en) Device and method for examining a medium
DK146399B (en) PROCEDURE FOR ENZYMATIC DETERMINATION OF OXIDIZABLE OR REDUCABLE SUBSTANCES AND APPARATUS FOR IMPLEMENTING THE PROCEDURE
EP3851827B1 (en) Filtration module and assembly for filtering a process medium in a bioprocess and method of sampling during a bioprocess
JPS60205346A (en) Flow-through type analysis device
DE2726771A1 (en) Multiple electrochemical measurement system - has housing contg. isolating bodies defining measuring chambers for receiving a probe
JPH09126961A (en) Concentration measuring method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees