JP3353487B2 - Liquid sample continuous measurement device - Google Patents

Liquid sample continuous measurement device

Info

Publication number
JP3353487B2
JP3353487B2 JP23826594A JP23826594A JP3353487B2 JP 3353487 B2 JP3353487 B2 JP 3353487B2 JP 23826594 A JP23826594 A JP 23826594A JP 23826594 A JP23826594 A JP 23826594A JP 3353487 B2 JP3353487 B2 JP 3353487B2
Authority
JP
Japan
Prior art keywords
sample
liquid
carrier
filtration cell
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23826594A
Other languages
Japanese (ja)
Other versions
JPH08101212A (en
Inventor
義雄 橋爪
昭夫 刈米
隆造 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP23826594A priority Critical patent/JP3353487B2/en
Publication of JPH08101212A publication Critical patent/JPH08101212A/en
Application granted granted Critical
Publication of JP3353487B2 publication Critical patent/JP3353487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微小固形分、タンパク
質、汚染性物質などを有する液体試料を、迅速に連続的
に測定する液体試料連続測定装置であって、特に分析時
間が短く、培養液、発酵液等のオンライン測定に好適な
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid sample continuous measuring device for rapidly and continuously measuring a liquid sample containing fine solids, proteins, contaminants, etc. It is suitable for online measurement of liquids, fermented liquids and the like.

【0002】[0002]

【従来の技術】従来より、試料中の被検出物質を測定定
量する方法としては、試料の一定量を連続する流れの中
に注入し、フローセルを備える分光光度計、原子吸光分
析計、または電気化学検出器等に導くフローインジェク
ション分析法や試料を一定間隔の気泡で分節することで
前後の溶液と分離して検出器に送る気泡分節による流れ
分析法が知られている。
2. Description of the Related Art Conventionally, as a method for measuring and quantifying a substance to be detected in a sample, a fixed amount of the sample is injected into a continuous flow, and a spectrophotometer equipped with a flow cell, an atomic absorption spectrometer, or an electric spectrometer. There are known a flow injection analysis method leading to a chemical detector or the like, and a flow analysis method using a bubble segmentation in which a sample is segmented by bubbles at regular intervals to separate the solution from the preceding and following solutions and sent to the detector.

【0003】これらの分析法は分析時間が短く、高精度
な分析が可能であり、しかも測定に関してこれまで人間
が行ってきた混合、分離、化学反応等の操作を連続する
流れの中で得ることができるなどの利点がある。特にフ
ローインジェクション分析法は試料の必要量が少なく、
気泡分節のような厳密な気泡の挿入・排除のための複雑
な機構を要せず、簡単な機構で装置自体が小さいなどの
特徴を有する。
[0003] These analysis methods require a short analysis time, enable high-precision analysis, and obtain the operations such as mixing, separation, and chemical reaction that have been performed by humans in a continuous flow. There are advantages such as being able to. In particular, the flow injection analysis method requires a small amount of sample,
It does not require a complicated mechanism for inserting and removing bubbles strictly like a bubble segment, and has features such as a simple mechanism and small size of the device itself.

【0004】近年は、フローインジェクション分析法に
よる分析機器に自動的に試料を微量注入する装置として
オートサンプラーを組み合せ、分析の自動化が行われて
いる。しかし、試料が培養液、発酵液等のように微小固
形分、タンパク質、汚染性物質などを含有する場合に
は、分析機器に様々なトラブルを発生させるため分析の
自動化の推進を困難なものとしている。
In recent years, analysis has been automated by combining an autosampler as a device for automatically injecting a small amount of a sample into an analytical instrument based on the flow injection analysis method. However, if the sample contains minute solids, proteins, contaminants, etc., such as culture solution and fermentation solution, it will be difficult to promote the automation of analysis because it will cause various troubles in analytical instruments. I have.

【0005】例えば、機器の配管内への固形物の付着や
汚染によって管をつまらせ、異常高圧などの原因とな
る。またこれらの問題が起きる以前にも例えばオートサ
ンプラーであれば、試料の吸引ミス、秤量誤差、稼働接
液部材の損傷などを引き起こしうる。また、分析機器で
あれば検出部への汚濁物の付着による感度変動を引き起
こす問題があった。
[0005] For example, solid matter adheres or contaminates the pipes of the equipment, causing the pipes to be pinched, causing abnormal high pressure and the like. In addition, even before these problems occur, for example, if an autosampler is used, a suction error of a sample, a weighing error, a damage to a working liquid contact member, and the like may be caused. Further, in the case of an analytical instrument, there is a problem that the sensitivity may fluctuate due to the attachment of contaminants to the detection unit.

【0006】特に酵素等の生体関連物質を利用した分析
機器の場合、タンパク質や微生物などの付着により酵素
失活の原因となりうる。そのためこのような試料は、オ
ートサンプラーに試料を導入する前に、あらかじめ遠心
分離やろ過を行う必要があり、多大な時間と手間を費や
すことになる。
[0006] Particularly, in the case of an analytical instrument utilizing a bio-related substance such as an enzyme, the enzyme may be deactivated due to adhesion of proteins and microorganisms. Therefore, such a sample needs to be centrifuged or filtered in advance before introducing the sample into the autosampler, which requires a great deal of time and effort.

【0007】さらに、試料が分析機器の定量可能な濃度
範囲を越える場合には、試料を予め希釈する操作が必要
である。具体的には試料と希釈液を各々一定量ずつ分取
し、混合、撹拌して均一な濃度の溶液とする操作である
が、これもまた繁雑で長時間の処理が必要となる。ま
た、使用する器具、容器による誤差や人的誤差が加わっ
てしまうという問題があった。これら希釈に要する一連
の操作を、そのまま機械動作に置き換えた方式の希釈装
置も知られているが、複雑な構成や処理に要する時間の
長さの点で問題があった。
Further, when the sample exceeds the concentration range that can be quantified by the analytical instrument, an operation for diluting the sample in advance is necessary. Specifically, this is an operation in which a fixed amount of a sample and a diluent are separately collected, mixed, and stirred to obtain a solution having a uniform concentration, but this is also complicated and requires a long-time treatment. In addition, there is a problem that errors and human errors due to instruments and containers used are added. A dilution apparatus in which a series of operations required for the dilution are directly replaced with a mechanical operation is also known, but has a problem in terms of a complicated configuration and a long time required for processing.

【0008】特に培養液、発酵液など刻々と変化する溶
液中の特定成分濃度を連続的に分析するいわゆるオンラ
イン計測を行う場合、試料に含有される微小固形分、タ
ンパク質など分析機器に関する障害を排除することはも
ちろん適切な希釈を迅速に行い、かつ精度のよい分析を
可能としなくてはならない。透析膜を用い、試料液から
微小固形分やタンパク質を分離し、拡散可能な低分子化
学種のみを分析器機に供給することが可能である。例え
ば、血液を注入器で一定量秤量および緩衝液流に注入
後、透析器に通して血液中のタンパク質が検出器に入ら
ぬようにして、透過したグルコース量を測定する方法が
知られている(特公昭61−20279号)。この場
合、透析膜におけるグルコースの部分的な透過は、希釈
効果をも兼ねている。
In particular, when performing so-called on-line measurement for continuously analyzing the concentration of a specific component in a constantly changing solution such as a culture solution or a fermentation solution, obstruction relating to an analytical instrument such as a minute solid content and a protein contained in a sample is eliminated. Of course, appropriate dilution must be performed promptly and allow for accurate analysis. Using a dialysis membrane, it is possible to separate minute solids and proteins from the sample solution and supply only diffusible low molecular species to the analyzer. For example, a method is known in which after a certain amount of blood is weighed by a syringe and injected into a buffer solution, the protein in the blood is prevented from entering the detector by passing through a dialyzer, and the amount of transmitted glucose is measured. (Japanese Patent Publication No. 61-20279). In this case, the partial permeation of glucose through the dialysis membrane also has a dilution effect.

【0009】しかしながら、この方法においては、試料
を送液する速度の変動等の透析条件の微妙な変化に起因
して透過後の低分子物質の分散パターンの変動が大きく
なるため、半透膜での透過状態の再現性が低く、計測精
度面で大きな難点がある。更に、少量の試料が透析器の
膜に瞬間的に接するために、半透膜での透過状態の再現
性が低い。注入器自体に試料原液が供給されることか
ら、注入器の汚染も避けがたくなる。このことは試料の
秤量部分である注入器における固形物やタンパク質の付
着に伴い秤量が変化してしまう問題をも引き起こす。
However, in this method, the dispersion pattern of the low-molecular-weight substance after permeation becomes large due to a subtle change in dialysis conditions such as a change in the speed at which the sample is sent. Is low in the reproducibility of the transmission state, and there is a great difficulty in measuring accuracy. In addition, the reproducibility of the permeation state through the semipermeable membrane is low because a small amount of the sample comes into contact with the dialyzer membrane instantaneously. Since the sample stock solution is supplied to the injector itself, it is difficult to avoid contamination of the injector. This also causes a problem that the weighing changes with the attachment of solids and proteins in the injector, which is the weighing portion of the sample.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、試料の微小固形分、タンパク質、汚染性物質
などを有する試料に対しても迅速かつ高精度で、分析可
能で、特に培養液、発酵液等のオンライン測定で効率良
く複数の試料を連続測定できる液体試料連続測定装置を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and enables rapid and high-precision analysis of a sample having minute solids, proteins, contaminants, and the like of the sample. It is an object of the present invention to provide a continuous liquid sample measurement device capable of continuously measuring a plurality of samples efficiently by online measurement of a culture solution, a fermentation solution, and the like.

【0011】[0011]

【課題を解決するための手段】本発明の液体試料連続測
定装置は半透膜を介して接する試料通液路とキャリア通
液路を有するろ過セル、試料を含む複数の被測定液を選
択する切替え手段及びその選択した被測定液をろ過セル
の試料通液路に一定の流速で送液するための測定液送液
手段を備えた測定液送液系統、ろ過セルのキャリア通液
路中にキャリアを一定の流速で送液するキャリア送液手
段を備えたキャリア送液系統、ろ過セルのキャリア通液
路出口が接続されてキャリアを断続的に検出器に注入す
る注入器及び両送液手段の送液開始後一定の時間が経過
後、ろ過セルにおいて被測定液中の試料の少なくとも一
部が半透膜を介してキャリア中へ安定に移動して得られ
たキャリアを注入器によって検出器に注入させる機能を
備え、かつ一つの被測定液中の試料の測定工程を終了す
る前に、前記切替え手段を切り換えて、次の被測定液を
選択して前記ろ過セルの試料通液路に送液する機能を備
えた制御部を具備する。
The liquid sample continuous measuring apparatus of the present invention selects a plurality of liquids to be measured including a sample, a filtration cell having a sample liquid passage and a carrier liquid passage which are in contact with each other via a semipermeable membrane. The measurement liquid supply system including the switching means and the measurement liquid supply means for supplying the selected liquid to be measured to the sample liquid passage of the filtration cell at a constant flow rate, in the carrier liquid passage of the filtration cell. A carrier liquid supply system including a carrier liquid supply means for supplying a carrier at a constant flow rate, an injector connected to a carrier liquid passage outlet of a filtration cell and intermittently injecting a carrier into a detector, and both liquid supply means After a certain period of time has elapsed since the start of the liquid sending, at least a part of the sample in the liquid to be measured is stably moved into the carrier through the semipermeable membrane in the filtration cell, and the obtained carrier is detected by the injector. With the function of injecting Before ending the measurement step of the sample in the measurement liquid, the control unit is provided with a function of switching the switching means, selecting the next liquid to be measured, and sending it to the sample passage of the filtration cell. I do.

【0012】また制御部が、一つの被測定液中の試料を
測定するための注入器による注入工程の前に、前記切替
え手段を切り換えて、次の被測定液を前記ろ過セルの試
料通液路に送液するように制御すると良い。更に、制御
部が、該注入工程の終了前のキャリア中に次の被測定液
の試料が混入する時期より後に、次の被測定液を前記ろ
過セルの試料通液路に送液するように制御しても良い。
Further, the control unit switches the switching means before the injection step by the injector for measuring the sample in one liquid to be measured so that the next liquid to be measured passes the sample through the filtration cell. It is better to control so that the liquid is sent to the road. Further, the control unit sends the next liquid to be measured to the sample passage of the filtration cell after the time when the sample of the next liquid to be measured is mixed in the carrier before the end of the injection step. It may be controlled.

【0013】[0013]

【作用】試料を含む被測定液がろ過セルの試料通液路に
一定の流速で測定液送液手段によって送液される。また
同様にキャリアがキャリア通液路に一定の流速でキャリ
ア送液手段によって送液される。ろ過セルでは試料通液
路を流れる被測定液中の試料の少なくとも一部がキャリ
ア通液路を流れるキャリア中に半透膜を介して移動す
る。この移動は被測定液とキャリアがそれぞれ一定の流
速で送液されているので、ある程度送液が行われると十
分安定に行われる。制御部がこのように安定な移動が行
われて得られたキャリアを適切な時機に注入器によって
検出器に注入する。
The liquid to be measured containing the sample is sent to the sample passage of the filtration cell at a constant flow rate by the measuring liquid sending means. Similarly, the carrier is sent to the carrier liquid passage at a constant flow rate by the carrier liquid sending means. In the filtration cell, at least a part of the sample in the liquid to be measured flowing through the sample passage moves to the carrier flowing through the carrier passage through the semipermeable membrane. Since the liquid to be measured and the carrier are respectively sent at a constant flow rate, this movement is sufficiently stable when the liquid is sent to some extent. The controller injects the carrier obtained by performing such a stable movement into the detector at an appropriate time by the injector.

【0014】ろ過セルでの試料の移動が一定の濃度を有
する、一定流速で送液される被測定液と一定流速で送液
されるキャリアの間で行われるので、その送液時間をあ
る程度とれば安定な移動が得られる。すなわち、十分な
量の試料が半透膜に定常的に安定するまで必要なだけ長
く接するように制御できるために、半透膜での移動状態
の再現性が高くなる。更に、試料送液路側に注入器を接
続していないので測定の誤差等を与えやすい注入器が汚
染されにくくなっている。
Since the movement of the sample in the filtration cell is performed between the liquid to be measured having a certain concentration and being sent at a constant flow rate and the carrier being sent at a constant flow rate, the liquid sending time can be taken to some extent. Stable movement can be obtained. That is, since a sufficient amount of the sample can be controlled so as to be in contact with the semipermeable membrane as long as necessary until it is constantly stabilized, the reproducibility of the moving state in the semipermeable membrane is improved. Further, since the injector is not connected to the sample liquid supply path side, the injector which is liable to give a measurement error or the like is less likely to be contaminated.

【0015】以上の測定においては、試料を含む複数の
被測定液のひとつが切替え手段によって切替えられて選
択されて、ろ過セルの試料通液路に送液されて以上のよ
うなタイミングで測定されて一つの測定工程が終了す
る。このような一つの工程の中で試料の半透膜を通した
安定な移動状態を得るまでの時間が必要になる。この時
間について着目し、各試料についてこの時間を確保した
後はその試料の測定が終了したか否かにかかわらず、で
きるだけ速やかに次の試料の測定工程を開始するという
ことを試行した。つまり、一つの被測定液の測定工程を
終了する前に、前記切替え手段を切り換えて、次の被測
定液をろ過セルの試料通液路に送液するように制御し
て、装置として前段の測定工程が完了する前に次の試料
の測定工程を開始することによって測定の効率化をはか
ることに成功した。
In the above measurement, one of the plurality of liquids to be measured including the sample is switched and selected by the switching means, sent to the sample passage of the filtration cell, and measured at the above timing. One measurement process is completed. In such one step, a time is required until a stable moving state of the sample through the semipermeable membrane is obtained. Attention was paid to this time, and after securing this time for each sample, an attempt was made to start the measurement process for the next sample as soon as possible, regardless of whether the measurement of that sample was completed. In other words, before ending the measurement step of one liquid to be measured, the switching means is switched to control the next liquid to be measured to be sent to the sample passage of the filtration cell, and the apparatus at the preceding stage is used as the apparatus. By starting the next sample measurement step before the measurement step was completed, the measurement efficiency was improved.

【0016】結局、検出器での検出及び検出値の解析を
おこなっている時には既に次の試料のろ過セルへの導入
が開始されているように、試料の切り替えのバルブやポ
ンプの動作を制御することによって複数の試料を連続的
にしかも、短時間で効率良く測定することができるもの
である。即ち、通常、ろ過セルへの試料の搬送および試
料通液路での置換にかかる時間と検出、解析にかかる時
間の合計を短縮して分析を行う。
After all, when the detection by the detector and the analysis of the detected value are performed, the operation of the valve and the pump for switching the sample is controlled so that the introduction of the next sample into the filtration cell has already been started. Thus, a plurality of samples can be measured continuously and efficiently in a short time. That is, the analysis is usually performed by shortening the time required for transporting the sample to the filtration cell and replacing the sample in the sample passage and the time required for detection and analysis.

【0017】なお、本発明において、現試料を次試料に
切り換えてから、その次試料がろ過セルの試料通液路を
通過してその部分の置換が終了し、キャリアにろ過され
た部分が濃度定常状態になり、注入器に充分到達するま
での時間を以下単に、ろ過処理時間と称する。また、同
じく、現試料を次試料に切り換えてから、ろ過セルの試
料通液路を通過して、注入器に次試料が到達し現試料に
混入し始めるまでの時間を以下単に、試料到達時間と称
する。
In the present invention, after the current sample is switched to the next sample, the next sample passes through the sample passage of the filtration cell, and the replacement of that portion is completed. The time required to reach the steady state and reach the injector sufficiently is hereinafter simply referred to as the filtration time. Similarly, the time from switching the current sample to the next sample, passing through the sample passage of the filtration cell, and arriving at the injector at the next sample and starting to mix with the current sample is simply referred to as the sample arrival time. Called.

【0018】さらに、ろ過された試料が注入器で検出器
に注入され、出力の検出および解析に要する時間を以下
単に、検出時間と称する。ろ過処理時間は主に、配管
長、配管径、ろ過セルの試料液通液路の容量、および送
液速度などによって異なる。例えば、検出器への試料の
注入に同期して、ろ過セルに導く試料を次の試料に切り
換えると良い。
Further, the time required for the filtered sample to be injected into the detector by the injector and for the detection and analysis of the output is hereinafter simply referred to as the detection time. The filtration processing time mainly depends on the length of the pipe, the diameter of the pipe, the capacity of the sample liquid passage of the filtration cell, the liquid sending speed, and the like. For example, the sample guided to the filtration cell may be switched to the next sample in synchronization with the injection of the sample into the detector.

【0019】さらに、ろ過時間が検出時間に比較して長
い場合には、ろ過セルに導く試料を次試料に切り換えた
後の一定時間内に、注入器より前の試料分を検出器に注
入することができる。しかし、この場合、次試料の影響
が出ないように、次試料における試料到達時間を越える
までに検出器に注入する必要がある。本発明でいう半透
膜は溶液や分散系中の一部の成分は通すが、他の成分は
通さないような膜をいう。例えば、試料に含まれる物質
のうち、検出器に不都合な微小固形分やタンパク質など
の巨大分子を通さず、低分子である測定対象成分を透過
しうる膜として再生セルロース系膜、ポリサルホン系
膜、フッ素樹脂膜、カーボネート膜等が挙げられる。
Further, if the filtration time is longer than the detection time, the sample before the injector is injected into the detector within a certain time after the sample to be guided to the filtration cell is switched to the next sample. be able to. However, in this case, it is necessary to inject the sample into the detector before the sample arrival time of the next sample is exceeded so that the influence of the next sample does not occur. The semipermeable membrane referred to in the present invention refers to a membrane that allows some components in a solution or dispersion system to pass through but does not allow other components to pass through. For example, among the substances contained in the sample, a regenerated cellulose-based membrane, a polysulfone-based membrane, and a membrane that does not pass through macromolecules such as minute solids and proteins that are inconvenient to the detector and that can transmit a low-molecular component to be measured. Fluororesin films, carbonate films and the like can be mentioned.

【0020】部分的に半透膜を介して平行に接する試料
通液路とキャリア通液路を有する構造体がろ過セルであ
る。ろ過セルは、鏡面対称の位置に溝を有する二つのブ
ロック一対から形成され、また各ブロックの溝の両端は
それぞれ、ブロック外側に設けたセルへの出入口に向っ
て流路をなすように貫通されている。そして、二つのブ
ロックを溝どうしが向いあうようにあわせ、その溝が向
いあう部分に半透膜が挟まれた構造とする。試料の通液
方向とキャリアの通液方向は、同じ方向あるいは逆方向
で膜の両側で平行に流れるようにする。ろ過セルの溝
は、その有効面積(たとえば、流れ方向の長さと流れ方
向に垂直方向で膜と平行方向の幅の積)を大きくするこ
とで、キャリアに透過する成分の積算量が増加する。ま
た、この有効面積が大きいと、ポンプ脈動などに起因す
る変動要因を緩和するろ過の均一効果を得ることができ
るが、過度に大きいと試料や標準液を切り換えた場合、
置換に要する時間が長くなる。したがって、この有効面
積の大きさは、後段の検出器の検出濃度範囲にあわせた
寸法にするとよい。
A structure having a sample liquid passage and a carrier liquid passage partially in parallel with each other via a semipermeable membrane is a filtration cell. The filtration cell is formed from a pair of two blocks having grooves at mirror symmetric positions, and both ends of the groove of each block are respectively pierced so as to form a flow path toward an entrance to a cell provided outside the block. ing. Then, the two blocks are aligned so that the grooves face each other, and a structure in which a semipermeable membrane is sandwiched between the portions where the grooves face each other. The liquid flowing direction of the sample and the liquid flowing direction of the carrier are the same or opposite, and flow in parallel on both sides of the membrane. By increasing the effective area of the groove of the filtration cell (for example, the product of the length in the flow direction and the width in the direction parallel to the membrane in the direction perpendicular to the flow direction), the integrated amount of the component permeating the carrier increases. In addition, when the effective area is large, a uniform effect of filtration can be obtained to mitigate fluctuation factors caused by pump pulsation and the like.
The time required for replacement increases. Therefore, the size of the effective area is preferably set to a size corresponding to the detection concentration range of the subsequent detector.

【0021】特に、溝の幅に関しては過度に広いと半透
膜の膜面が揺らぎ、また狭すぎると試料に含まれる微小
固形分等がつまるためこれらの現象が生じない範囲で設
定されなければならず、0.5〜5mmの範囲とするの
が好ましい。また、溝の深さについても幅と同程度とす
るのが好ましいが、試料側とキャリア側の深さは異なっ
てもよく、液体の流れる方向を法線とした溝の断面の形
状についても矩形、半円、半楕円などの形状とすること
が可能である。また、溝の流れ方向の流路形状は、直線
状、らせん状、屈曲状など種々の形状とすることができ
るが、液流が部分的に滞留したり、流路が部分的に狭く
なることがないような形状であることが望ましい。
In particular, if the width of the groove is excessively large, the surface of the semipermeable membrane will fluctuate. If the width is too narrow, fine solids and the like contained in the sample will be clogged. However, it is preferable to set it in the range of 0.5 to 5 mm. The depth of the groove is also preferably about the same as the width, but the depth on the sample side and the carrier side may be different, and the cross-sectional shape of the groove with the normal to the direction in which the liquid flows is also rectangular. , Semi-circle, semi-ellipse and the like. In addition, the shape of the flow path in the flow direction of the groove can be various shapes such as a linear shape, a spiral shape, and a bent shape, but the liquid flow partially stays or the flow path partially narrows. It is desirable that the shape be such that there is no void.

【0022】本発明では、区分化された試料が半透膜に
瞬間的に接触されるのとは異なり、試料がろ過セルの試
料通液路中を満した状態で測定対象成分を透過させるた
め、キャリア通液路への透過状態が平均化され、再現性
の高い計測を可能とする。本発明において試料通液路へ
導く試料は、実際の被検体溶液および検出器に校正が必
要な場合の標準液も含むものである。従って、検出機器
の校正を行うために、複数の試料液や標準液を、順次切
り替えるための切替え手段としてバルブを配置する。こ
のバルブとしては3方の切り替え機能を有する3方バル
ブがよく使用される。また標準液等を複数供給可能なよ
うに3方バルブを複数配置して使用される。
In the present invention, unlike the case where the segmented sample is instantaneously brought into contact with the semipermeable membrane, the sample permeates the measurement target component in a state where the sample is filled in the sample passage of the filtration cell. In addition, the transmission state to the carrier passage is averaged, and measurement with high reproducibility is enabled. In the present invention, the sample guided to the sample passage includes the actual analyte solution and the standard solution when calibration is required for the detector. Therefore, in order to calibrate the detection device, a valve is arranged as a switching means for sequentially switching a plurality of sample solutions and standard solutions. As this valve, a three-way valve having a three-way switching function is often used. Further, a plurality of three-way valves are arranged and used so that a plurality of standard liquids or the like can be supplied.

【0023】また、試料や検出器の校正にもちいる標準
液とは別に、ろ過セルおよびその前後の配管を洗浄する
ために蒸留水などを洗浄液として同様に配置することも
可能である。試料液を試料通液路に通液するための試料
通液用ポンプ及びキャリアを前記ろ過セルのキャリア通
液路に通液するためのキャリア搬送ポンプとしては、プ
ランジャー式ポンプ、ギアードポンプ、ペリスタリック
ポンプなど従来より知られる各種ポンプを使用可能であ
る。
In addition to the standard solution used for calibrating the sample and the detector, distilled water or the like can be similarly disposed as a washing solution for washing the filtration cell and the piping before and after it. A plunger pump, a geared pump, a peristaltic pump, and a carrier pump for passing the sample liquid through the sample liquid passage and the carrier through the carrier liquid passage of the filtration cell. Conventionally known various pumps such as a tallic pump can be used.

【0024】試料通液用ポンプは、微小固形物や付着物
に対する耐性を有するポンプが望ましく、ペリスタリッ
クポンプを使用することが好ましい。試料通液用ポンプ
の位置は、ろ過セルの試料通液路の試料供給側又は排出
側の位置に配置可能であるが、前者の位置に配置した場
合には、試料と希釈液のいっそうの撹拌効果が得られる
点およびろ過セルの試料通液路内を減圧とせずに気泡を
生じさせない点で望ましい。
The sample passing pump is desirably a pump having resistance to minute solids and attached matter, and a peristaltic pump is preferably used. The position of the sample flow pump can be located at the sample supply side or the discharge side of the sample flow path of the filtration cell.However, when the pump is located at the former position, the sample and the diluent are further stirred. This is desirable in that the effect is obtained and that air bubbles are not generated without reducing the pressure in the sample passage of the filtration cell.

【0025】また、キャリア搬送ポンプにおいても、ろ
過セルへのキャリア供給側あるいはろ過セルのキャリア
通液路の排出側に配置可能であるが、試料通液用ポンプ
と同様にろ過セルのキャリア通液路内で気泡を生じさせ
ないために、前者の位置に配置することが望ましい。本
発明で使用する各ポンプは、ひとつの送液をなし得る機
構を有するものであり、1つの動力源で、同軸で回転す
るローラーで同時に多連のチューブを動作可能なペリス
タリックポンプである場合は、当然、一台で複数のポン
プと同等である。
The carrier transport pump can also be arranged on the carrier supply side to the filtration cell or on the discharge side of the carrier fluid passage of the filtration cell. In order not to generate air bubbles in the road, it is desirable to arrange the former position. Each pump used in the present invention has a mechanism capable of performing one liquid supply, and is a peristaltic pump capable of simultaneously operating multiple tubes with a single power source and coaxially rotating rollers. Is, of course, equivalent to a single set of multiple pumps.

【0026】キャリア通液路のキャリアの通過速度は、
単位時間に透過する測定対象成分をどれだけのキャリア
量に受けか、すなわちろ過セルにおける希釈の大きさを
変化させ得る。たとえば、キャリアの通液速度が速くな
ればなるほど希釈倍率は増大し、逆に遅くするほど希釈
倍率は低下するため、キャリアの通過速度によってろ過
セルを出たキャリア中の測定対象成分の濃度を適宜調節
可能である。
The passing speed of the carrier in the carrier passage is as follows:
It is possible to change the amount of the carrier to receive the component to be measured per unit time, that is, the magnitude of the dilution in the filtration cell. For example, the dilution rate increases as the flow rate of the carrier increases, and the dilution rate decreases as the flow rate decreases, so that the concentration of the component to be measured in the carrier exiting the filtration cell may be appropriately adjusted according to the passing rate of the carrier. It is adjustable.

【0027】またキャリア搬送ポンプはこれらの特性か
ら、ろ過セルにおいて安定した希釈率を保持するために
送液の安定性・精度にすぐれたポンプを使用することが
望まれる。本発明におけるキャリアとしては、例えば蒸
留水や各種緩衝液などを使用できるが、検出に必要とさ
れる試薬などを添加して使用することも可能である。
In view of these characteristics, it is desirable to use a carrier transport pump having excellent stability and precision in liquid sending in order to maintain a stable dilution rate in the filtration cell. As the carrier in the present invention, for example, distilled water or various buffers can be used, but it is also possible to add a reagent required for detection and the like.

【0028】本発明において、ろ過セルのキャリア通液
路から排出される試料の分析対象物を含有するキャリア
は、後段に検出器を接続した注入器に試料として送ら
れ、検出器で検出するようにしている。尚、注入器と
は、一定量の試料を秤量し、検出器への連続した流れの
中に注入するものであり、オートサンプラーなどで一般
に採用されている6方切り替えバルブなどの機構を用い
た装置のことである。
In the present invention, the carrier containing the analyte of the sample discharged from the carrier passage of the filtration cell is sent as a sample to an injector having a detector connected to the subsequent stage, and is detected by the detector. I have to. In addition, the injector weighs a certain amount of sample and injects it into a continuous flow to the detector, and uses a mechanism such as a 6-way switching valve generally used in an autosampler or the like. It is a device.

【0029】本発明によれば、半透膜と試料を接触させ
る前に、測定対象成分の透過率が一定となるように希釈
することにより、元の試料の測定対象成分濃度に比例し
た処理液を供給することを可能とすることもできる。
According to the present invention, before the sample is brought into contact with the semipermeable membrane, the treatment liquid is diluted so that the transmittance of the component to be measured is constant, so that the processing solution is proportional to the concentration of the component to be measured in the original sample. Can be supplied.

【0030】[0030]

【実施例】以下に実施例に基づいて、液体試料連続測定
装置について詳細に説明するが、本発明はこれに限定さ
れない。なお、単に%と表記したものは重量%を表す。
図1は本発明の液体試料連続測定装置の一実施例の系統
図であり、溶液中のグルコース濃度を測定するためのも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A continuous liquid sample measuring apparatus will be described in detail below based on embodiments, but the present invention is not limited thereto. In addition, what was simply expressed as% represents% by weight.
FIG. 1 is a system diagram of an embodiment of a liquid sample continuous measuring apparatus according to the present invention, which is for measuring a glucose concentration in a solution.

【0031】制御部(21)によって、試料A(1
0)、試料B(11)、標準液(12)、洗浄液(1
3)は3方電磁バルブ(7)、(8)、(9)によって
いずれか一つの被測定液が選択され試料搬送ポンプ
(5)に接続され、ろ過セル(1)の試料通液路(3)
へ供給される。またキャリア(14)がキャリア搬送ポ
ンプ(6)によってろ過セル(1)のキャリア通液路
(4)に供給される。
The control unit (21) controls the sample A (1
0), sample B (11), standard solution (12), washing solution (1
In 3), any one of the liquids to be measured is selected by the three-way electromagnetic valves (7), (8), and (9), connected to the sample transport pump (5), and the sample passage of the filtration cell (1) ( 3)
Supplied to In addition, the carrier (14) is supplied to the carrier passage (4) of the filtration cell (1) by the carrier transport pump (6).

【0032】ろ過セル(1)は、内部で部分的に半透膜
(2)を介して平行に接する試料通液路(3)とキャリ
ア通液路(4)を有しており、低分子の測定対象成分の
一部が試料通液路(3)からでキャリア通液路(4)に
透過して、注入器(18)に運ばれて一定量が検出器
(19)に注入される。キャリア通液路(4)から注入
器(18)への試料の搬送はキャリア搬送ポンプ(6)
によるキャリア(14)によって行なわれ、注入器(1
8)で注入されなかった液は図示を省略した廃液ボトル
等に排出される。
The filtration cell (1) has a sample liquid passage (3) and a carrier liquid passage (4) that are partially in parallel with each other via a semipermeable membrane (2) and are in parallel with each other. A part of the component to be measured permeates through the sample passage (3) to the carrier passage (4), is conveyed to the injector (18), and is injected into the detector (19) at a constant amount. . The transport of the sample from the carrier passage (4) to the injector (18) is performed by the carrier transport pump (6).
Performed by the carrier (14) by the injector (1).
The liquid not injected in 8) is discharged to a waste liquid bottle or the like (not shown).

【0033】注入器(18)から検出器(19)への試
料の搬送は、緩衝液搬送ポンプ(17)による検出器用
の緩衝液(16)によって行なわれ、測定済みの液は廃
液ボトル(20)に排出される。なお試料搬送ポンプ
(5)、キャリア搬送ポンプ(6)はいずれもれペリス
タリックポンプを用い、1.0ml/minとし、また
緩衝液搬送ポンプ(17)にはプランジャー式ポンプを
用い、流速を1.0ml/minとした。
The transport of the sample from the injector (18) to the detector (19) is performed by a buffer solution (16) for the detector by a buffer solution transport pump (17), and the measured solution is a waste liquid bottle (20). ). Each of the sample transport pump (5) and the carrier transport pump (6) uses a peristaltic pump at 1.0 ml / min, and the buffer transport pump (17) uses a plunger pump. 1.0 ml / min.

【0034】ろ過セル(1)において半透膜(2)の両
側のキャリア通液路(4)および試料通液路(3)を形
成する2つのそれぞれのブロックの溝の形状は、深さ
0.5mm、幅2mmの矩形断面とし、長さ120mm
とし、半透膜として分画分子量300,000のスペク
トラ/ポアCEタイプ(Spectrum Medic
al Industries, Inc 製)の透析膜
を使用した。
In the filtration cell (1), the shape of the groove of each of the two blocks forming the carrier liquid passage (4) and the sample liquid passage (3) on both sides of the semipermeable membrane (2) is 0 depth. 0.5 mm, width 2 mm, rectangular section, length 120 mm
Spectra / Pore CE type (Spectrum Medic) having a molecular weight cut off of 300,000 as a semipermeable membrane.
al Industries, Inc.).

【0035】なお緩衝液は100mMリン酸ナトリウム
緩衝液(pH6)とし、キャリア(14)も同じものを
もちいた。また洗浄液(13)には蒸留水を使用した。
検出器(19)は、37℃に保持された恒温槽の内部に
フローセルが配置されて構成されている。また、このフ
ローセル中にはグルコース検出用の固定化酵素電極、A
g/AgCl参照電極が配置され、さらにフローセル中
の液に接しステンレス製接続継手で構成される対極が隣
接する。なおポテンシオスタットで固定化酵素電極に、
Ag/AgCl参照電極に対して+0.6Vの電圧が印
加され、注入された試料のグルコース量に基づいて出力
される電流値を得て、その電流値の波形のピーク高さを
応答値として検出する。
The buffer was 100 mM sodium phosphate buffer (pH 6), and the same carrier (14) was used. Further, distilled water was used as the washing liquid (13).
The detector (19) is configured by arranging a flow cell inside a thermostat kept at 37 ° C. In this flow cell, an immobilized enzyme electrode for detecting glucose, A
A g / AgCl reference electrode is disposed, and a counter electrode formed of a stainless steel connection joint is adjacent to the liquid in the flow cell. It should be noted that the potentiostat on the immobilized enzyme electrode,
A voltage of +0.6 V is applied to the Ag / AgCl reference electrode, a current value output based on the glucose amount of the injected sample is obtained, and the peak height of the waveform of the current value is detected as a response value. I do.

【0036】以下にグルコース検出用の固定化酵素電極
の製造方法を示す。直径2mmの白金線の側面を熱収縮
テフロンで被覆し、その線の一端をやすりおよび150
0番のエメリー紙で平滑に仕上げる。この白金線を作用
極、1cm角型白金板を対極、飽和カロメル電極(以下
SCEと略す)を参照極として、0.1M硫酸中、+
2.0Vで5分間の電解処理を行う。その後白金線をよ
く水洗した後、40℃で10分間乾燥し、10%γ−ア
ミノプロピルトリエトキシシランの無水トルエン溶液に
1時間浸漬後、洗浄した。このアミノシラン化した白金
線上に酵素を以下のようにに固定化した。
A method for producing an immobilized enzyme electrode for detecting glucose will be described below. A side surface of a platinum wire having a diameter of 2 mm is covered with a heat-shrinkable Teflon, and one end of the wire is sanded and 150 mm thick.
Finish smoothly with No. 0 emery paper. The platinum wire was used as a working electrode, a 1 cm square platinum plate was used as a counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) was used as a reference electrode.
Electrolysis treatment is performed at 2.0 V for 5 minutes. Thereafter, the platinum wire was thoroughly washed with water, dried at 40 ° C. for 10 minutes, immersed in an anhydrous toluene solution of 10% γ-aminopropyltriethoxysilane for 1 hour, and washed. The enzyme was immobilized on the aminosilanized platinum wire as follows.

【0037】グルコースオキシダーゼ(シグマ社製、タ
イプII)5mg、および牛血清アルブミン(シグマ社
製、Fraction V)5mgを100mMリン酸
ナトリウム緩衝液(pH7)1mlに溶解し、グルタル
アルデヒドを0.2%になるように加える。この混合液
を手早く先に用意した白金線上に5μlのせ、40℃で
15分間乾燥硬化後、100mMリン酸ナトリウム緩衝
液(pH6)中に保存したものを使用した。
5 mg of glucose oxidase (manufactured by Sigma, type II) and 5 mg of bovine serum albumin (manufactured by Sigma, Fraction V) were dissolved in 1 ml of 100 mM sodium phosphate buffer (pH 7), and glutaraldehyde was dissolved in 0.2%. Add so that 5 μl of this mixed solution was quickly placed on the previously prepared platinum wire, dried and cured at 40 ° C. for 15 minutes, and then used in a 100 mM sodium phosphate buffer (pH 6).

【0038】図2は本発明の液体試料連続測定装置の試
料処理、測定工程を表現したタイムチャートの第1の例
である。本タイムチャートから検出器への試料の注入に
同期して、ろ過セルに導く試料を次の試料に切り換えて
一連の分析が制御部によって制御されて行われる様子が
判る。まず、キャリア搬送ポンプおよび試料搬送ポンプ
をONにすると同時に、標準液が試料搬送ポンプに接続
されるように電磁弁を制御して、標準液をろ過セルに導
く。
FIG. 2 is a first example of a time chart expressing the sample processing and measuring steps of the liquid sample continuous measuring apparatus of the present invention. From this time chart, it can be seen that in synchronization with the injection of the sample into the detector, the sample guided to the filtration cell is switched to the next sample, and a series of analyzes is controlled and performed by the control unit. First, at the same time as turning on the carrier transport pump and the sample transport pump, the electromagnetic valve is controlled so that the standard solution is connected to the sample transport pump, and the standard solution is guided to the filtration cell.

【0039】この場合、標準液をろ過セルに導き充分流
路内を標準液で置換し、かつキャリア通液路側にろ過す
る標準液の量が定常状態となって注入器にその状態が反
映されるだけの時間を待って、ろ過後のキャリアを検出
器へ注入器によって注入する。これは図中aの部分が相
当する。その注入が終了すると検出器での検出および解
析とほぼ同時に、ろ過セルに接続される液を電磁弁を制
御して標準液から次の試料Aに切り換える。これは図中
bの部分が相当する。
In this case, the standard solution is introduced into the filtration cell, the inside of the flow path is sufficiently replaced with the standard solution, and the amount of the standard solution to be filtered to the carrier passage becomes a steady state, which is reflected on the injector. After a sufficient time, the filtered carrier is injected into the detector by the injector. This corresponds to the portion a in the figure. When the injection is completed, the solution connected to the filtration cell is switched from the standard solution to the next sample A by controlling the solenoid valve almost simultaneously with the detection and analysis by the detector. This corresponds to the portion b in the figure.

【0040】これら試料側の切り替えのタイミングは、
注入の直前、注入と同時、注入操作の終了後、あるいは
注入操作後しばらくしてからでもよいが、本発明の効果
を損なわないために注入の直前であることがこのまし
い。もちろん、標準液から試料Aへ切り換える間に洗浄
液を流すようにしてろ過セルへの配管内を洗浄してもよ
い。
The switching timing of these samples is as follows.
Immediately before the injection, at the same time as the injection, after the end of the injection operation, or some time after the injection operation, it may be immediately before the injection so as not to impair the effects of the present invention. Of course, the inside of the pipe to the filtration cell may be washed by flowing the washing solution while switching from the standard solution to the sample A.

【0041】図2のようなタイミングで標準液や試料を
切り換える際には、次の試料に切り換えてからその試料
がろ過セルに到達し、さらにろ過セルでキャリアにろ過
した試料が注入器に到達し始めるまでには、若干の時間
を有する。この時間を利用し、さらに全体の測定時間を
短縮するための本発明の液体試料連続測定装置の試料処
理、測定工程を表現したタイムチャートの第2の例を図
3に示す。
When switching between the standard solution and the sample at the timing shown in FIG. 2, the sample is switched to the next sample, then the sample reaches the filtration cell, and the sample filtered by the carrier in the filtration cell reaches the injector. You have some time to start. FIG. 3 shows a second example of a time chart expressing the sample processing and the measuring process of the liquid sample continuous measuring apparatus of the present invention for further shortening the entire measuring time using this time.

【0042】図3は、ろ過セルに導く試料を次試料に切
り換えた後、次試料における試料到達時間に達しない間
に、注入器より前の試料分を検出器に注入し、分析する
様子を示している。まず、キャリア搬送ポンプおよび試
料搬送ポンプをONにすると同時に、標準液が試料搬送
ポンプに接続されるように電磁弁を制御して、標準液を
ろ過セルに導く。
FIG. 3 shows a state in which after the sample guided to the filtration cell is switched to the next sample, the sample amount before the injector is injected into the detector and analysis is performed before the sample arrival time of the next sample is reached. Is shown. First, at the same time as turning on the carrier transport pump and the sample transport pump, the electromagnetic valve is controlled so that the standard solution is connected to the sample transport pump, and the standard solution is guided to the filtration cell.

【0043】そして、標準液をろ過セルに導き充分流路
内を標準液で置換し、かつキャリア通液路側にろ過する
標準液の量が定常状態となって注入器にその状態が反映
される前にろ過セルに接続される液を電磁弁を制御して
標準液から次の試料Aに切り換える。これは図中cの部
分が相当する。その後、次の試料Aがろ過セルに到達し
て、キャリア中にろ過されて入った試料Aが注入器に到
達して標準液に混じり始める前に、標準液のみを含むキ
ャリア部分を検出器に注入する。これは図中dの部分が
相当する。
Then, the standard solution is guided to the filtration cell, the inside of the flow path is sufficiently replaced with the standard solution, and the amount of the standard solution to be filtered toward the carrier passage becomes a steady state, which is reflected on the injector. The solution connected to the filtration cell is switched from the standard solution to the next sample A by controlling the solenoid valve. This corresponds to the portion c in the figure. After that, before the next sample A reaches the filtration cell and the sample A filtered into the carrier reaches the injector and starts to mix with the standard solution, the carrier portion containing only the standard solution is sent to the detector. inject. This corresponds to the portion d in the figure.

【0044】ただし、標準液が流され初めてから注入器
で注入されるまでの時間は、標準液がろ過セルに導びか
れ充分流路内が標準液で置換され、かつキャリア通液路
側にろ過する標準液の量が定常状態となって注入器にそ
の状態が反映されるだけの時間を必要とする。しかしな
がら、図2の場合に比較して、流す液を標準液から試料
Aに切り替えた後、注入器の配管に次の試料Aが到達し
始めるまでの時間分だけ1つの試料元にかかる時間を短
縮することが可能である。この場合のタイミングは、流
速や配管系に応じてあるいは予めこれらの時間を計測し
ておくことによって実現可能である。
However, during the time from the first flow of the standard solution to the time when the standard solution is injected by the injector, the standard solution is guided to the filtration cell, the inside of the flow path is sufficiently replaced with the standard solution, and the filtration is performed to the carrier passage. It takes time for the volume of the standard solution to reach a steady state and reflect that state in the injector. However, as compared with the case of FIG. 2, after switching the flowing liquid from the standard solution to the sample A, the time required for one sample source is equal to the time until the next sample A starts to reach the pipe of the injector. It is possible to shorten it. The timing in this case can be realized according to the flow velocity or the piping system or by measuring these times in advance.

【0045】[0045]

【発明の効果】本発明の液体試料連続測定装置による
と、ろ過セルで溶液試料中の微小固形分、タンパク質、
汚染性などの排除しするといった試料の前処理工程を行
いながら、同時に処理液を検出、解析計測を行うため、
複数の試料を迅速に効率良く分析することが可能であ
り、分析の自動化および培養液、発酵液等のオンライン
測定に好適である。
According to the liquid sample continuous measuring apparatus of the present invention, fine solids, protein,
While performing sample pre-treatment steps such as eliminating contamination, etc., at the same time detecting and analyzing the processing solution,
A plurality of samples can be analyzed quickly and efficiently, which is suitable for automation of analysis and on-line measurement of a culture solution, a fermentation solution and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の液体分析方法を実施するための
装置例の概略図であり、溶液中のグルコース濃度を測定
するためのものである。
FIG. 1 is a schematic view of an example of an apparatus for carrying out a liquid analysis method of the present invention, for measuring a glucose concentration in a solution.

【図2】図2は本発明の液体試料連続測定装置の試料処
理、測定工程を表現したタイムチャートの第1の例。
FIG. 2 is a first example of a time chart expressing a sample processing and a measuring process of the liquid sample continuous measuring apparatus of the present invention.

【図3】図3は本発明の液体試料連続測定装置の試料処
理、測定工程を表現したタイムチャートの第2の例。
FIG. 3 is a second example of a time chart expressing a sample processing and a measuring process of the liquid sample continuous measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 ろ過セル 2 半透膜 3 試料通液路 4 キャリア通液路 5 試料搬送ポンプ 6 キャリア搬送ポンプ 12 標準液 13 洗浄液 14 キャリア 16 緩衝液 17 緩衝液搬送ポンプ 18 注入器 19 検出器 21 制御部 DESCRIPTION OF SYMBOLS 1 Filtration cell 2 Semi-permeable membrane 3 Sample passage 4 Carrier passage 5 Sample transfer pump 6 Carrier transfer pump 12 Standard solution 13 Washing solution 14 Carrier 16 Buffer solution 17 Buffer solution transfer pump 18 Injector 19 Detector 21 Controller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 33/48 G01N 27/46 336A (56)参考文献 特開 昭64−49968(JP,A) 特開 平1−94263(JP,A) 特開 平4−212064(JP,A) 実開 昭56−66867(JP,U) 特公 昭61−20279(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01N 35/08 G01N 27/327 G01N 27/416 C12M 1/34 G01N 33/48 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 Identification symbol FI G01N 33/48 G01N 27/46 336A (56) References JP-A-64-49968 (JP, A) JP-A-1-94263 ( JP, A) JP-A-4-212064 (JP, A) JP-A-56-66867 (JP, U) JP-B-61-20279 (JP, B1) (58) Fields investigated (Int. Cl. 7 , (DB name) G01N 35/08 G01N 27/327 G01N 27/416 C12M 1/34 G01N 33/48

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半透膜を介して接する試料通液路とキャリ
ア通液路を有するろ過セル、 試料を含む複数の被測定液を選択する切替え手段及びそ
の選択した被測定液をろ過セルの試料通液路に一定の流
速で送液するための測定液送液手段を備えた測定液送液
系統、 ろ過セルのキャリア通液路中にキャリアを一定の流速で
送液するキャリア送液手段を備えたキャリア送液系統、 ろ過セルのキャリア通液路出口が接続されてキャリアを
断続的に検出器に注入する注入器、 及び両送液手段の送液開始後一定の時間が経過後、ろ過
セルにおいて被測定液中の試料の少なくとも一部が半透
膜を介してキャリア中へ安定に移動して得られたキャリ
アを注入器によって検出器に注入させる機能を備え、か
つ一つの被測定液中の試料の測定工程を終了する前に、
前記切替え手段を切り換えて、次の被測定液を選択して
前記ろ過セルの試料通液路に送液する機能を備えた制御
部を具備する液体試料連続測定装置。
1. A filtration cell having a sample passage and a carrier passage which are in contact with each other via a semi-permeable membrane, a switching means for selecting a plurality of liquids to be measured including a sample, and A measuring liquid feeding system provided with a measuring liquid sending means for sending a sample liquid at a constant flow rate, a carrier liquid sending means for sending a carrier at a constant flow rate into a carrier flowing path of a filtration cell. A carrier liquid feeding system equipped with: a carrier liquid passage outlet of the filtration cell is connected, an injector for intermittently injecting the carrier into the detector, and a certain time after starting the liquid feeding of both liquid feeding means, In the filtration cell, a function is provided in which at least a part of the sample in the liquid to be measured is stably moved into the carrier through the semipermeable membrane, and the obtained carrier is injected into the detector by the injector, and one sample to be measured is provided. Before finishing the measurement process of the sample in the liquid,
A liquid sample continuous measurement device comprising a control unit having a function of switching the switching means to select the next liquid to be measured and to feed the same to the sample passage of the filtration cell.
【請求項2】前記制御部が、一つの被測定液中の試料を
測定するための注入器による注入工程の前に、前記切替
え手段を切り換えて、次の被測定液を前記ろ過セルの試
料通液路に送液するように制御する請求項1記載の液体
試料連続測定装置。
2. The method according to claim 1, wherein the control unit switches the switching unit before the injection step using an injector for measuring a sample in one liquid to be measured so that the next liquid to be measured is sampled in the filtration cell. The liquid sample continuous measurement device according to claim 1, wherein the liquid sample is controlled to be sent to a liquid passage.
【請求項3】前記制御部が、該注入工程の終了前のキャ
リア中に次の被測定液の試料が混入する時期より後に、
次の被測定液を前記ろ過セルの試料通液路に送液するよ
うに制御する請求項2記載の液体試料連続測定装置。
3. The method according to claim 1, wherein the controller is configured to:
3. The continuous liquid sample measuring apparatus according to claim 2, wherein control is performed such that the next liquid to be measured is sent to a sample passage of the filtration cell.
JP23826594A 1994-09-30 1994-09-30 Liquid sample continuous measurement device Expired - Fee Related JP3353487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23826594A JP3353487B2 (en) 1994-09-30 1994-09-30 Liquid sample continuous measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23826594A JP3353487B2 (en) 1994-09-30 1994-09-30 Liquid sample continuous measurement device

Publications (2)

Publication Number Publication Date
JPH08101212A JPH08101212A (en) 1996-04-16
JP3353487B2 true JP3353487B2 (en) 2002-12-03

Family

ID=17027615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23826594A Expired - Fee Related JP3353487B2 (en) 1994-09-30 1994-09-30 Liquid sample continuous measurement device

Country Status (1)

Country Link
JP (1) JP3353487B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565738B1 (en) * 1999-01-28 2003-05-20 Abbott Laboratories Diagnostic test for the measurement of analyte in abiological fluid
JP2003014594A (en) * 2001-06-29 2003-01-15 Dkk Toa Corp Diluting device
SE0402078L (en) * 2004-08-25 2006-02-07 Chemel Ab Calibrable throughput detector
JP5268445B2 (en) * 2008-06-25 2013-08-21 株式会社日立ハイテクノロジーズ Flow injection analyzer
CN111289447A (en) * 2018-12-06 2020-06-16 洛阳华清天木生物科技有限公司 On-line measuring fungus concentration device
JP7071597B2 (en) 2019-09-18 2022-05-19 富士フイルム株式会社 Permeability evaluation method of porous membrane, cell evaluation method and drug evaluation method
CN117031055A (en) * 2023-08-25 2023-11-10 北京宝德仪器有限公司 Flow analysis system with bubble interval continuous flow and flow injection switchable

Also Published As

Publication number Publication date
JPH08101212A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US5695719A (en) Device for analyzing a fluid medium
EP0047130B1 (en) Flow analysis
EP0098550B1 (en) Method and apparatus for conducting flow analysis
US5672319A (en) Device for analyzing a fluid medium
JPH09512905A (en) Analytical method and analytical equipment
US4486097A (en) Flow analysis
CA2185359A1 (en) Analysis method and analysis apparatus
JP3353487B2 (en) Liquid sample continuous measurement device
US4610544A (en) Flow analysis
JP3422092B2 (en) Liquid sample continuous measuring device and measuring method
Mattiasson et al. Sampling and sample handling—crucial steps in process monitoring and control
EP0805350A1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
EP0995098A1 (en) Method and device for taking series of samples
US20150369775A1 (en) Electroanalitical system
EP1558921B1 (en) Method of performing calibration and quality control of a sensor and apparatus for performing said method
EP0412046B1 (en) Method of measuring a component in a liquid
US7780917B2 (en) Calibratable flow detector
JPH03163357A (en) Method and apparatus for analyzing catecholamine
Neeley et al. Design and performance of a miniaturized high-speed continuous-flow analyzer
Kyröläinen et al. On‐line calibration of a computerized biosensor system for continuous measurements of glucose and lactate
US7807041B2 (en) Method for detecting the presence or absence of a gas bubble in an aqueous liquid
Mandenius et al. [27] Enzyme thermistors for process monitoring and control
EP3851827B1 (en) Filtration module and assembly for filtering a process medium in a bioprocess and method of sampling during a bioprocess
JP2936797B2 (en) Flow type dilution device
JPS60205346A (en) Flow-through type analysis device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees